Properties

Label 637.2.e.i
Level $637$
Weight $2$
Character orbit 637.e
Analytic conductor $5.086$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(79,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.2696112.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 5x^{4} + 18x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{5} - \beta_{4} - \beta_{3} - \beta_{2} - \beta_1) q^{3} + (\beta_{5} - \beta_{4} - \beta_{3}) q^{4} + ( - \beta_{4} - \beta_1 + 1) q^{5} + ( - 2 \beta_{2} - 2) q^{6} + (\beta_{3} + 1) q^{8} + (3 \beta_{4} + 2 \beta_1 - 3) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + (\beta_{5} - \beta_{4} - \beta_{3} - \beta_{2} - \beta_1) q^{3} + (\beta_{5} - \beta_{4} - \beta_{3}) q^{4} + ( - \beta_{4} - \beta_1 + 1) q^{5} + ( - 2 \beta_{2} - 2) q^{6} + (\beta_{3} + 1) q^{8} + (3 \beta_{4} + 2 \beta_1 - 3) q^{9} + (\beta_{5} - 3 \beta_{4} - \beta_{3} - \beta_{2} - \beta_1) q^{10} + (\beta_{5} - \beta_{4} - \beta_{3} - \beta_{2} - \beta_1) q^{11} + (4 \beta_{4} - 4) q^{12} - q^{13} + ( - \beta_{3} - 3 \beta_{2} - 3) q^{15} + (\beta_{5} - \beta_{4} - 2 \beta_1 + 1) q^{16} + ( - \beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} - \beta_1) q^{17} + ( - 2 \beta_{5} + 6 \beta_{4} + 2 \beta_{3} + 3 \beta_{2} + 3 \beta_1) q^{18} + (\beta_{4} - \beta_1 - 1) q^{19} - 2 \beta_{2} q^{20} + ( - 2 \beta_{2} - 2) q^{22} + (\beta_{5} + 4 \beta_{4} + 2 \beta_1 - 4) q^{23} - 4 \beta_{4} q^{24} + (\beta_{5} + \beta_{4} - \beta_{3} - 2 \beta_{2} - 2 \beta_1) q^{25} + \beta_1 q^{26} + (4 \beta_{2} + 4) q^{27} + (\beta_{3} + 8) q^{29} + ( - 2 \beta_{5} + 8 \beta_{4} + 4 \beta_1 - 8) q^{30} + ( - 2 \beta_{5} - \beta_{4} + 2 \beta_{3} + \beta_{2} + \beta_1) q^{31} + ( - \beta_{5} - 3 \beta_{4} + \beta_{3} - 2 \beta_{2} - 2 \beta_1) q^{32} + (6 \beta_{4} + 2 \beta_1 - 6) q^{33} + ( - 2 \beta_{3} + 2 \beta_{2} - 4) q^{34} + (\beta_{3} + 4 \beta_{2} + 1) q^{36} + ( - \beta_{5} - \beta_{4} - 3 \beta_1 + 1) q^{37} + (\beta_{5} - 3 \beta_{4} - \beta_{3} + \beta_{2} + \beta_1) q^{38} + ( - \beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} + \beta_1) q^{39} - 2 \beta_1 q^{40} + (2 \beta_{3} + 2 \beta_{2}) q^{41} + ( - 3 \beta_{3} + 2 \beta_{2} + 4) q^{43} + (4 \beta_{4} - 4) q^{44} + ( - 2 \beta_{5} + 9 \beta_{4} + 2 \beta_{3} + 5 \beta_{2} + 5 \beta_1) q^{45} + ( - 3 \beta_{5} + 7 \beta_{4} + 3 \beta_{3} + 3 \beta_{2} + 3 \beta_1) q^{46} + ( - 4 \beta_{5} + 3 \beta_{4} + \beta_1 - 3) q^{47} + ( - 4 \beta_{2} - 8) q^{48} + ( - \beta_{3} - 5) q^{50} + ( - 2 \beta_{4} + 2 \beta_1 + 2) q^{51} + ( - \beta_{5} + \beta_{4} + \beta_{3}) q^{52} + ( - 3 \beta_{5} - 2 \beta_{4} + 3 \beta_{3} + 2 \beta_{2} + 2 \beta_1) q^{53} + (4 \beta_{5} - 12 \beta_{4} - 4 \beta_1 + 12) q^{54} + ( - \beta_{3} - 3 \beta_{2} - 3) q^{55} + (\beta_{3} - \beta_{2} - 1) q^{57} + ( - \beta_{5} + \beta_{4} - 9 \beta_1 - 1) q^{58} + ( - 4 \beta_{5} - 2 \beta_{4} + 4 \beta_{3} - 2 \beta_{2} - 2 \beta_1) q^{59} + (4 \beta_{4} + 4 \beta_{2} + 4 \beta_1) q^{60} + (2 \beta_{4} - 2) q^{61} + ( - \beta_{3} + \beta_{2} + 1) q^{62} + ( - \beta_{3} + 2 \beta_{2} - 5) q^{64} + (\beta_{4} + \beta_1 - 1) q^{65} + ( - 2 \beta_{5} + 6 \beta_{4} + 2 \beta_{3} + 6 \beta_{2} + 6 \beta_1) q^{66} + (4 \beta_{5} + 2 \beta_{4} - 4 \beta_{3} - 6 \beta_{2} - 6 \beta_1) q^{67} + (2 \beta_{5} - 6 \beta_{4} + 4 \beta_1 + 6) q^{68} + (5 \beta_{3} + 9 \beta_{2} + 5) q^{69} + ( - \beta_{3} - 3 \beta_{2} - 3) q^{71} + ( - \beta_{5} + \beta_{4} + 4 \beta_1 - 1) q^{72} + (4 \beta_{5} - 3 \beta_{4} - 4 \beta_{3} + \beta_{2} + \beta_1) q^{73} + (4 \beta_{5} - 10 \beta_{4} - 4 \beta_{3}) q^{74} + (2 \beta_{5} + 6 \beta_{4} + 2 \beta_1 - 6) q^{75} + (2 \beta_{3} - 2 \beta_{2} + 2) q^{76} + (2 \beta_{2} + 2) q^{78} + (\beta_{5} - 6 \beta_{4} - 4 \beta_1 + 6) q^{79} + (2 \beta_{5} - 6 \beta_{4} - 2 \beta_{3} - 4 \beta_{2} - 4 \beta_1) q^{80} + (4 \beta_{5} - 3 \beta_{4} - 4 \beta_{3} - 6 \beta_{2} - 6 \beta_1) q^{81} + ( - 4 \beta_{4} - 2 \beta_1 + 4) q^{82} + ( - 4 \beta_{3} - 9 \beta_{2} + 1) q^{83} + ( - \beta_{3} + \beta_{2} - 3) q^{85} + (5 \beta_{5} - 9 \beta_{4} - \beta_1 + 9) q^{86} + (7 \beta_{5} - 11 \beta_{4} - 7 \beta_{3} - 7 \beta_{2} - 7 \beta_1) q^{87} - 4 \beta_{4} q^{88} + ( - 2 \beta_{5} + \beta_{4} + 5 \beta_1 - 1) q^{89} + (3 \beta_{3} + 11 \beta_{2} + 13) q^{90} + (2 \beta_{3} + 6 \beta_{2} - 2) q^{92} + ( - 3 \beta_{5} - 7 \beta_{4} + \beta_1 + 7) q^{93} + (3 \beta_{5} - \beta_{4} - 3 \beta_{3} + 7 \beta_{2} + 7 \beta_1) q^{94} + (\beta_{5} - 2 \beta_{4} - \beta_{3}) q^{95} + ( - 4 \beta_{5} + 4 \beta_{4} + 8 \beta_1 - 4) q^{96} + ( - \beta_{2} + 3) q^{97} + (3 \beta_{3} + 7 \beta_{2} + 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 2 q^{3} - 3 q^{4} + 2 q^{5} - 8 q^{6} + 6 q^{8} - 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{2} - 2 q^{3} - 3 q^{4} + 2 q^{5} - 8 q^{6} + 6 q^{8} - 7 q^{9} - 8 q^{10} - 2 q^{11} - 12 q^{12} - 6 q^{13} - 12 q^{15} + q^{16} + 4 q^{17} + 15 q^{18} - 4 q^{19} + 4 q^{20} - 8 q^{22} - 10 q^{23} - 12 q^{24} + 5 q^{25} + q^{26} + 16 q^{27} + 48 q^{29} - 20 q^{30} - 4 q^{31} - 7 q^{32} - 16 q^{33} - 28 q^{34} - 2 q^{36} - 10 q^{38} + 2 q^{39} - 2 q^{40} - 4 q^{41} + 20 q^{43} - 12 q^{44} + 22 q^{45} + 18 q^{46} - 8 q^{47} - 40 q^{48} - 30 q^{50} + 8 q^{51} + 3 q^{52} - 8 q^{53} + 32 q^{54} - 12 q^{55} - 4 q^{57} - 12 q^{58} - 4 q^{59} + 8 q^{60} - 6 q^{61} + 4 q^{62} - 34 q^{64} - 2 q^{65} + 12 q^{66} + 12 q^{67} + 22 q^{68} + 12 q^{69} - 12 q^{71} + q^{72} - 10 q^{73} - 30 q^{74} - 16 q^{75} + 16 q^{76} + 8 q^{78} + 14 q^{79} - 14 q^{80} - 3 q^{81} + 10 q^{82} + 24 q^{83} - 20 q^{85} + 26 q^{86} - 26 q^{87} - 12 q^{88} + 2 q^{89} + 56 q^{90} - 24 q^{92} + 22 q^{93} - 10 q^{94} - 6 q^{95} - 4 q^{96} + 20 q^{97} + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 5x^{4} + 18x^{2} - 8x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 5\nu^{4} + 25\nu^{3} - 18\nu^{2} + 8\nu - 40 ) / 82 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{5} - 10\nu^{4} + 9\nu^{3} - 36\nu^{2} + 16\nu - 121 ) / 41 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -10\nu^{5} + 9\nu^{4} - 45\nu^{3} - 25\nu^{2} - 162\nu + 72 ) / 82 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -26\nu^{5} + 7\nu^{4} - 117\nu^{3} - 65\nu^{2} - 454\nu - 26 ) / 82 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - 3\beta_{4} - \beta_{3} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + 4\beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -5\beta_{5} + 13\beta_{4} - 2\beta _1 - 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -7\beta_{5} + 11\beta_{4} + 7\beta_{3} - 18\beta_{2} - 18\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(1\) \(-1 + \beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
1.17146 2.02903i
0.235342 0.407624i
−0.906803 + 1.57063i
1.17146 + 2.02903i
0.235342 + 0.407624i
−0.906803 1.57063i
−1.17146 + 2.02903i −0.573183 0.992782i −1.74464 3.02181i −0.671462 + 1.16301i 2.68585 0 3.48929 0.842923 1.45999i −1.57318 2.72483i
79.2 −0.235342 + 0.407624i 1.12457 + 1.94781i 0.889229 + 1.54019i 0.264658 0.458402i −1.05863 0 −1.77846 −1.02932 + 1.78283i 0.124570 + 0.215762i
79.3 0.906803 1.57063i −1.55139 2.68708i −0.644584 1.11645i 1.40680 2.43665i −5.62721 0 1.28917 −3.31361 + 5.73933i −2.55139 4.41913i
508.1 −1.17146 2.02903i −0.573183 + 0.992782i −1.74464 + 3.02181i −0.671462 1.16301i 2.68585 0 3.48929 0.842923 + 1.45999i −1.57318 + 2.72483i
508.2 −0.235342 0.407624i 1.12457 1.94781i 0.889229 1.54019i 0.264658 + 0.458402i −1.05863 0 −1.77846 −1.02932 1.78283i 0.124570 0.215762i
508.3 0.906803 + 1.57063i −1.55139 + 2.68708i −0.644584 + 1.11645i 1.40680 + 2.43665i −5.62721 0 1.28917 −3.31361 5.73933i −2.55139 + 4.41913i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 508.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.2.e.i 6
7.b odd 2 1 637.2.e.j 6
7.c even 3 1 637.2.a.j 3
7.c even 3 1 inner 637.2.e.i 6
7.d odd 6 1 91.2.a.d 3
7.d odd 6 1 637.2.e.j 6
21.g even 6 1 819.2.a.i 3
21.h odd 6 1 5733.2.a.x 3
28.f even 6 1 1456.2.a.t 3
35.i odd 6 1 2275.2.a.m 3
56.j odd 6 1 5824.2.a.by 3
56.m even 6 1 5824.2.a.bs 3
91.r even 6 1 8281.2.a.bg 3
91.s odd 6 1 1183.2.a.i 3
91.bb even 12 2 1183.2.c.f 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.d 3 7.d odd 6 1
637.2.a.j 3 7.c even 3 1
637.2.e.i 6 1.a even 1 1 trivial
637.2.e.i 6 7.c even 3 1 inner
637.2.e.j 6 7.b odd 2 1
637.2.e.j 6 7.d odd 6 1
819.2.a.i 3 21.g even 6 1
1183.2.a.i 3 91.s odd 6 1
1183.2.c.f 6 91.bb even 12 2
1456.2.a.t 3 28.f even 6 1
2275.2.a.m 3 35.i odd 6 1
5733.2.a.x 3 21.h odd 6 1
5824.2.a.bs 3 56.m even 6 1
5824.2.a.by 3 56.j odd 6 1
8281.2.a.bg 3 91.r even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(637, [\chi])\):

\( T_{2}^{6} + T_{2}^{5} + 5T_{2}^{4} + 18T_{2}^{2} + 8T_{2} + 4 \) Copy content Toggle raw display
\( T_{3}^{6} + 2T_{3}^{5} + 10T_{3}^{4} + 4T_{3}^{3} + 52T_{3}^{2} + 48T_{3} + 64 \) Copy content Toggle raw display
\( T_{5}^{6} - 2T_{5}^{5} + 7T_{5}^{4} + 2T_{5}^{3} + 13T_{5}^{2} - 6T_{5} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{5} + 5 T^{4} + 18 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{6} + 2 T^{5} + 10 T^{4} + 4 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$5$ \( T^{6} - 2 T^{5} + 7 T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 2 T^{5} + 10 T^{4} + 4 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( (T + 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 4 T^{5} + 26 T^{4} + 48 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( T^{6} + 4 T^{5} + 15 T^{4} + 12 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( T^{6} + 10 T^{5} + 99 T^{4} + \cdots + 18496 \) Copy content Toggle raw display
$29$ \( (T^{3} - 24 T^{2} + 185 T - 454)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 4 T^{5} + 35 T^{4} - 108 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$37$ \( T^{6} + 58 T^{4} - 248 T^{3} + \cdots + 15376 \) Copy content Toggle raw display
$41$ \( (T^{3} + 2 T^{2} - 28 T + 8)^{2} \) Copy content Toggle raw display
$43$ \( (T^{3} - 10 T^{2} - 71 T + 628)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 8 T^{5} + 143 T^{4} + \cdots + 295936 \) Copy content Toggle raw display
$53$ \( T^{6} + 8 T^{5} + 99 T^{4} - 324 T^{3} + \cdots + 484 \) Copy content Toggle raw display
$59$ \( T^{6} + 4 T^{5} + 172 T^{4} + \cdots + 473344 \) Copy content Toggle raw display
$61$ \( (T^{2} + 2 T + 4)^{3} \) Copy content Toggle raw display
$67$ \( T^{6} - 12 T^{5} + 268 T^{4} + \cdots + 952576 \) Copy content Toggle raw display
$71$ \( (T^{3} + 6 T^{2} - 22 T + 16)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 10 T^{5} + 199 T^{4} + \cdots + 75076 \) Copy content Toggle raw display
$79$ \( T^{6} - 14 T^{5} + 191 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$83$ \( (T^{3} - 12 T^{2} - 271 T + 3268)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} - 2 T^{5} + 99 T^{4} + \cdots + 178084 \) Copy content Toggle raw display
$97$ \( (T^{3} - 10 T^{2} + 29 T - 22)^{2} \) Copy content Toggle raw display
show more
show less