Properties

Label 637.2.e.h.79.1
Level $637$
Weight $2$
Character 637.79
Analytic conductor $5.086$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Defining polynomial: \(x^{4} - x^{3} + 2 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(-0.309017 + 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 637.79
Dual form 637.2.e.h.508.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.190983 - 0.330792i) q^{2} +(1.11803 + 1.93649i) q^{3} +(0.927051 + 1.60570i) q^{4} +(-1.11803 + 1.93649i) q^{5} +0.854102 q^{6} +1.47214 q^{8} +(-1.00000 + 1.73205i) q^{9} +O(q^{10})\) \(q+(0.190983 - 0.330792i) q^{2} +(1.11803 + 1.93649i) q^{3} +(0.927051 + 1.60570i) q^{4} +(-1.11803 + 1.93649i) q^{5} +0.854102 q^{6} +1.47214 q^{8} +(-1.00000 + 1.73205i) q^{9} +(0.427051 + 0.739674i) q^{10} +(1.50000 + 2.59808i) q^{11} +(-2.07295 + 3.59045i) q^{12} +1.00000 q^{13} -5.00000 q^{15} +(-1.57295 + 2.72443i) q^{16} +(-3.73607 - 6.47106i) q^{17} +(0.381966 + 0.661585i) q^{18} +(1.50000 - 2.59808i) q^{19} -4.14590 q^{20} +1.14590 q^{22} +(1.88197 - 3.25966i) q^{23} +(1.64590 + 2.85078i) q^{24} +(0.190983 - 0.330792i) q^{26} +2.23607 q^{27} -4.47214 q^{29} +(-0.954915 + 1.65396i) q^{30} +(2.50000 + 4.33013i) q^{31} +(2.07295 + 3.59045i) q^{32} +(-3.35410 + 5.80948i) q^{33} -2.85410 q^{34} -3.70820 q^{36} +(4.35410 - 7.54153i) q^{37} +(-0.572949 - 0.992377i) q^{38} +(1.11803 + 1.93649i) q^{39} +(-1.64590 + 2.85078i) q^{40} -4.47214 q^{41} -8.00000 q^{43} +(-2.78115 + 4.81710i) q^{44} +(-2.23607 - 3.87298i) q^{45} +(-0.718847 - 1.24508i) q^{46} +(0.736068 - 1.27491i) q^{47} -7.03444 q^{48} +(8.35410 - 14.4697i) q^{51} +(0.927051 + 1.60570i) q^{52} +(-0.736068 - 1.27491i) q^{53} +(0.427051 - 0.739674i) q^{54} -6.70820 q^{55} +6.70820 q^{57} +(-0.854102 + 1.47935i) q^{58} +(3.73607 + 6.47106i) q^{59} +(-4.63525 - 8.02850i) q^{60} +(1.50000 - 2.59808i) q^{61} +1.90983 q^{62} -4.70820 q^{64} +(-1.11803 + 1.93649i) q^{65} +(1.28115 + 2.21902i) q^{66} +(1.50000 + 2.59808i) q^{67} +(6.92705 - 11.9980i) q^{68} +8.41641 q^{69} +8.94427 q^{71} +(-1.47214 + 2.54981i) q^{72} +(5.35410 + 9.27358i) q^{73} +(-1.66312 - 2.88061i) q^{74} +5.56231 q^{76} +0.854102 q^{78} +(-5.35410 + 9.27358i) q^{79} +(-3.51722 - 6.09201i) q^{80} +(5.50000 + 9.52628i) q^{81} +(-0.854102 + 1.47935i) q^{82} +16.7082 q^{85} +(-1.52786 + 2.64634i) q^{86} +(-5.00000 - 8.66025i) q^{87} +(2.20820 + 3.82472i) q^{88} +(-1.11803 + 1.93649i) q^{89} -1.70820 q^{90} +6.97871 q^{92} +(-5.59017 + 9.68246i) q^{93} +(-0.281153 - 0.486971i) q^{94} +(3.35410 + 5.80948i) q^{95} +(-4.63525 + 8.02850i) q^{96} +17.4164 q^{97} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 3q^{2} - 3q^{4} - 10q^{6} - 12q^{8} - 4q^{9} + O(q^{10}) \) \( 4q + 3q^{2} - 3q^{4} - 10q^{6} - 12q^{8} - 4q^{9} - 5q^{10} + 6q^{11} - 15q^{12} + 4q^{13} - 20q^{15} - 13q^{16} - 6q^{17} + 6q^{18} + 6q^{19} - 30q^{20} + 18q^{22} + 12q^{23} + 20q^{24} + 3q^{26} - 15q^{30} + 10q^{31} + 15q^{32} + 2q^{34} + 12q^{36} + 4q^{37} - 9q^{38} - 20q^{40} - 32q^{43} + 9q^{44} - 23q^{46} - 6q^{47} + 30q^{48} + 20q^{51} - 3q^{52} + 6q^{53} - 5q^{54} + 10q^{58} + 6q^{59} + 15q^{60} + 6q^{61} + 30q^{62} + 8q^{64} - 15q^{66} + 6q^{67} + 21q^{68} - 20q^{69} + 12q^{72} + 8q^{73} + 9q^{74} - 18q^{76} - 10q^{78} - 8q^{79} + 15q^{80} + 22q^{81} + 10q^{82} + 40q^{85} - 24q^{86} - 20q^{87} - 18q^{88} + 20q^{90} - 66q^{92} + 19q^{94} + 15q^{96} + 16q^{97} - 24q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.190983 0.330792i 0.135045 0.233905i −0.790569 0.612372i \(-0.790215\pi\)
0.925615 + 0.378467i \(0.123549\pi\)
\(3\) 1.11803 + 1.93649i 0.645497 + 1.11803i 0.984186 + 0.177136i \(0.0566831\pi\)
−0.338689 + 0.940898i \(0.609984\pi\)
\(4\) 0.927051 + 1.60570i 0.463525 + 0.802850i
\(5\) −1.11803 + 1.93649i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(6\) 0.854102 0.348686
\(7\) 0 0
\(8\) 1.47214 0.520479
\(9\) −1.00000 + 1.73205i −0.333333 + 0.577350i
\(10\) 0.427051 + 0.739674i 0.135045 + 0.233905i
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) −2.07295 + 3.59045i −0.598409 + 1.03647i
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −5.00000 −1.29099
\(16\) −1.57295 + 2.72443i −0.393237 + 0.681107i
\(17\) −3.73607 6.47106i −0.906130 1.56946i −0.819394 0.573231i \(-0.805690\pi\)
−0.0867359 0.996231i \(-0.527644\pi\)
\(18\) 0.381966 + 0.661585i 0.0900303 + 0.155937i
\(19\) 1.50000 2.59808i 0.344124 0.596040i −0.641071 0.767482i \(-0.721509\pi\)
0.985194 + 0.171442i \(0.0548427\pi\)
\(20\) −4.14590 −0.927051
\(21\) 0 0
\(22\) 1.14590 0.244306
\(23\) 1.88197 3.25966i 0.392417 0.679686i −0.600351 0.799737i \(-0.704972\pi\)
0.992768 + 0.120051i \(0.0383057\pi\)
\(24\) 1.64590 + 2.85078i 0.335968 + 0.581913i
\(25\) 0 0
\(26\) 0.190983 0.330792i 0.0374548 0.0648737i
\(27\) 2.23607 0.430331
\(28\) 0 0
\(29\) −4.47214 −0.830455 −0.415227 0.909718i \(-0.636298\pi\)
−0.415227 + 0.909718i \(0.636298\pi\)
\(30\) −0.954915 + 1.65396i −0.174343 + 0.301971i
\(31\) 2.50000 + 4.33013i 0.449013 + 0.777714i 0.998322 0.0579057i \(-0.0184423\pi\)
−0.549309 + 0.835619i \(0.685109\pi\)
\(32\) 2.07295 + 3.59045i 0.366449 + 0.634708i
\(33\) −3.35410 + 5.80948i −0.583874 + 1.01130i
\(34\) −2.85410 −0.489474
\(35\) 0 0
\(36\) −3.70820 −0.618034
\(37\) 4.35410 7.54153i 0.715810 1.23982i −0.246836 0.969057i \(-0.579391\pi\)
0.962646 0.270762i \(-0.0872757\pi\)
\(38\) −0.572949 0.992377i −0.0929446 0.160985i
\(39\) 1.11803 + 1.93649i 0.179029 + 0.310087i
\(40\) −1.64590 + 2.85078i −0.260239 + 0.450748i
\(41\) −4.47214 −0.698430 −0.349215 0.937043i \(-0.613552\pi\)
−0.349215 + 0.937043i \(0.613552\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) −2.78115 + 4.81710i −0.419275 + 0.726205i
\(45\) −2.23607 3.87298i −0.333333 0.577350i
\(46\) −0.718847 1.24508i −0.105988 0.183577i
\(47\) 0.736068 1.27491i 0.107367 0.185964i −0.807336 0.590092i \(-0.799091\pi\)
0.914703 + 0.404128i \(0.132425\pi\)
\(48\) −7.03444 −1.01533
\(49\) 0 0
\(50\) 0 0
\(51\) 8.35410 14.4697i 1.16981 2.02617i
\(52\) 0.927051 + 1.60570i 0.128559 + 0.222670i
\(53\) −0.736068 1.27491i −0.101107 0.175122i 0.811034 0.584999i \(-0.198905\pi\)
−0.912141 + 0.409877i \(0.865572\pi\)
\(54\) 0.427051 0.739674i 0.0581143 0.100657i
\(55\) −6.70820 −0.904534
\(56\) 0 0
\(57\) 6.70820 0.888523
\(58\) −0.854102 + 1.47935i −0.112149 + 0.194248i
\(59\) 3.73607 + 6.47106i 0.486395 + 0.842460i 0.999878 0.0156395i \(-0.00497842\pi\)
−0.513483 + 0.858100i \(0.671645\pi\)
\(60\) −4.63525 8.02850i −0.598409 1.03647i
\(61\) 1.50000 2.59808i 0.192055 0.332650i −0.753876 0.657017i \(-0.771818\pi\)
0.945931 + 0.324367i \(0.105151\pi\)
\(62\) 1.90983 0.242549
\(63\) 0 0
\(64\) −4.70820 −0.588525
\(65\) −1.11803 + 1.93649i −0.138675 + 0.240192i
\(66\) 1.28115 + 2.21902i 0.157699 + 0.273143i
\(67\) 1.50000 + 2.59808i 0.183254 + 0.317406i 0.942987 0.332830i \(-0.108004\pi\)
−0.759733 + 0.650236i \(0.774670\pi\)
\(68\) 6.92705 11.9980i 0.840028 1.45497i
\(69\) 8.41641 1.01322
\(70\) 0 0
\(71\) 8.94427 1.06149 0.530745 0.847532i \(-0.321912\pi\)
0.530745 + 0.847532i \(0.321912\pi\)
\(72\) −1.47214 + 2.54981i −0.173493 + 0.300498i
\(73\) 5.35410 + 9.27358i 0.626650 + 1.08539i 0.988219 + 0.153045i \(0.0489079\pi\)
−0.361569 + 0.932345i \(0.617759\pi\)
\(74\) −1.66312 2.88061i −0.193334 0.334864i
\(75\) 0 0
\(76\) 5.56231 0.638040
\(77\) 0 0
\(78\) 0.854102 0.0967080
\(79\) −5.35410 + 9.27358i −0.602384 + 1.04336i 0.390076 + 0.920783i \(0.372449\pi\)
−0.992459 + 0.122576i \(0.960884\pi\)
\(80\) −3.51722 6.09201i −0.393237 0.681107i
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) −0.854102 + 1.47935i −0.0943198 + 0.163367i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 16.7082 1.81226
\(86\) −1.52786 + 2.64634i −0.164754 + 0.285362i
\(87\) −5.00000 8.66025i −0.536056 0.928477i
\(88\) 2.20820 + 3.82472i 0.235395 + 0.407717i
\(89\) −1.11803 + 1.93649i −0.118511 + 0.205268i −0.919178 0.393842i \(-0.871146\pi\)
0.800667 + 0.599110i \(0.204479\pi\)
\(90\) −1.70820 −0.180061
\(91\) 0 0
\(92\) 6.97871 0.727581
\(93\) −5.59017 + 9.68246i −0.579674 + 1.00402i
\(94\) −0.281153 0.486971i −0.0289987 0.0502272i
\(95\) 3.35410 + 5.80948i 0.344124 + 0.596040i
\(96\) −4.63525 + 8.02850i −0.473084 + 0.819405i
\(97\) 17.4164 1.76837 0.884184 0.467139i \(-0.154715\pi\)
0.884184 + 0.467139i \(0.154715\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) −4.50000 7.79423i −0.447767 0.775555i 0.550474 0.834853i \(-0.314447\pi\)
−0.998240 + 0.0592978i \(0.981114\pi\)
\(102\) −3.19098 5.52694i −0.315954 0.547249i
\(103\) 5.35410 9.27358i 0.527555 0.913753i −0.471929 0.881637i \(-0.656442\pi\)
0.999484 0.0321160i \(-0.0102246\pi\)
\(104\) 1.47214 0.144355
\(105\) 0 0
\(106\) −0.562306 −0.0546160
\(107\) 7.11803 12.3288i 0.688126 1.19187i −0.284317 0.958730i \(-0.591767\pi\)
0.972443 0.233139i \(-0.0748999\pi\)
\(108\) 2.07295 + 3.59045i 0.199470 + 0.345492i
\(109\) −5.35410 9.27358i −0.512830 0.888248i −0.999889 0.0148787i \(-0.995264\pi\)
0.487059 0.873369i \(-0.338070\pi\)
\(110\) −1.28115 + 2.21902i −0.122153 + 0.211575i
\(111\) 19.4721 1.84821
\(112\) 0 0
\(113\) −14.9443 −1.40584 −0.702919 0.711269i \(-0.748121\pi\)
−0.702919 + 0.711269i \(0.748121\pi\)
\(114\) 1.28115 2.21902i 0.119991 0.207830i
\(115\) 4.20820 + 7.28882i 0.392417 + 0.679686i
\(116\) −4.14590 7.18091i −0.384937 0.666730i
\(117\) −1.00000 + 1.73205i −0.0924500 + 0.160128i
\(118\) 2.85410 0.262741
\(119\) 0 0
\(120\) −7.36068 −0.671935
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) −0.572949 0.992377i −0.0518724 0.0898456i
\(123\) −5.00000 8.66025i −0.450835 0.780869i
\(124\) −4.63525 + 8.02850i −0.416258 + 0.720980i
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) 15.4164 1.36798 0.683992 0.729489i \(-0.260242\pi\)
0.683992 + 0.729489i \(0.260242\pi\)
\(128\) −5.04508 + 8.73834i −0.445927 + 0.772368i
\(129\) −8.94427 15.4919i −0.787499 1.36399i
\(130\) 0.427051 + 0.739674i 0.0374548 + 0.0648737i
\(131\) −1.88197 + 3.25966i −0.164428 + 0.284798i −0.936452 0.350796i \(-0.885911\pi\)
0.772024 + 0.635593i \(0.219245\pi\)
\(132\) −12.4377 −1.08256
\(133\) 0 0
\(134\) 1.14590 0.0989905
\(135\) −2.50000 + 4.33013i −0.215166 + 0.372678i
\(136\) −5.50000 9.52628i −0.471621 0.816872i
\(137\) 1.88197 + 3.25966i 0.160787 + 0.278492i 0.935151 0.354249i \(-0.115263\pi\)
−0.774364 + 0.632740i \(0.781930\pi\)
\(138\) 1.60739 2.78408i 0.136830 0.236997i
\(139\) −3.41641 −0.289776 −0.144888 0.989448i \(-0.546282\pi\)
−0.144888 + 0.989448i \(0.546282\pi\)
\(140\) 0 0
\(141\) 3.29180 0.277219
\(142\) 1.70820 2.95870i 0.143349 0.248288i
\(143\) 1.50000 + 2.59808i 0.125436 + 0.217262i
\(144\) −3.14590 5.44886i −0.262158 0.454071i
\(145\) 5.00000 8.66025i 0.415227 0.719195i
\(146\) 4.09017 0.338505
\(147\) 0 0
\(148\) 16.1459 1.32718
\(149\) 6.35410 11.0056i 0.520548 0.901616i −0.479166 0.877724i \(-0.659061\pi\)
0.999715 0.0238920i \(-0.00760577\pi\)
\(150\) 0 0
\(151\) 3.20820 + 5.55677i 0.261080 + 0.452204i 0.966529 0.256557i \(-0.0825880\pi\)
−0.705449 + 0.708760i \(0.749255\pi\)
\(152\) 2.20820 3.82472i 0.179109 0.310226i
\(153\) 14.9443 1.20817
\(154\) 0 0
\(155\) −11.1803 −0.898027
\(156\) −2.07295 + 3.59045i −0.165969 + 0.287466i
\(157\) 3.50000 + 6.06218i 0.279330 + 0.483814i 0.971219 0.238190i \(-0.0765542\pi\)
−0.691888 + 0.722005i \(0.743221\pi\)
\(158\) 2.04508 + 3.54219i 0.162698 + 0.281802i
\(159\) 1.64590 2.85078i 0.130528 0.226081i
\(160\) −9.27051 −0.732898
\(161\) 0 0
\(162\) 4.20163 0.330111
\(163\) −5.20820 + 9.02087i −0.407938 + 0.706569i −0.994659 0.103220i \(-0.967085\pi\)
0.586721 + 0.809789i \(0.300419\pi\)
\(164\) −4.14590 7.18091i −0.323740 0.560735i
\(165\) −7.50000 12.9904i −0.583874 1.01130i
\(166\) 0 0
\(167\) −13.5279 −1.04682 −0.523409 0.852082i \(-0.675340\pi\)
−0.523409 + 0.852082i \(0.675340\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 3.19098 5.52694i 0.244737 0.423897i
\(171\) 3.00000 + 5.19615i 0.229416 + 0.397360i
\(172\) −7.41641 12.8456i −0.565496 0.979467i
\(173\) 5.20820 9.02087i 0.395972 0.685844i −0.597252 0.802053i \(-0.703741\pi\)
0.993225 + 0.116209i \(0.0370743\pi\)
\(174\) −3.81966 −0.289568
\(175\) 0 0
\(176\) −9.43769 −0.711393
\(177\) −8.35410 + 14.4697i −0.627933 + 1.08761i
\(178\) 0.427051 + 0.739674i 0.0320088 + 0.0554409i
\(179\) −10.0623 17.4284i −0.752092 1.30266i −0.946807 0.321802i \(-0.895712\pi\)
0.194715 0.980860i \(-0.437622\pi\)
\(180\) 4.14590 7.18091i 0.309017 0.535233i
\(181\) −1.41641 −0.105281 −0.0526404 0.998614i \(-0.516764\pi\)
−0.0526404 + 0.998614i \(0.516764\pi\)
\(182\) 0 0
\(183\) 6.70820 0.495885
\(184\) 2.77051 4.79866i 0.204245 0.353762i
\(185\) 9.73607 + 16.8634i 0.715810 + 1.23982i
\(186\) 2.13525 + 3.69837i 0.156564 + 0.271178i
\(187\) 11.2082 19.4132i 0.819625 1.41963i
\(188\) 2.72949 0.199069
\(189\) 0 0
\(190\) 2.56231 0.185889
\(191\) 5.59017 9.68246i 0.404491 0.700598i −0.589772 0.807570i \(-0.700782\pi\)
0.994262 + 0.106972i \(0.0341155\pi\)
\(192\) −5.26393 9.11740i −0.379892 0.657992i
\(193\) 6.35410 + 11.0056i 0.457378 + 0.792202i 0.998821 0.0485349i \(-0.0154552\pi\)
−0.541443 + 0.840737i \(0.682122\pi\)
\(194\) 3.32624 5.76121i 0.238810 0.413631i
\(195\) −5.00000 −0.358057
\(196\) 0 0
\(197\) −26.9443 −1.91970 −0.959850 0.280514i \(-0.909495\pi\)
−0.959850 + 0.280514i \(0.909495\pi\)
\(198\) −1.14590 + 1.98475i −0.0814354 + 0.141050i
\(199\) −3.64590 6.31488i −0.258451 0.447650i 0.707376 0.706837i \(-0.249879\pi\)
−0.965827 + 0.259187i \(0.916545\pi\)
\(200\) 0 0
\(201\) −3.35410 + 5.80948i −0.236580 + 0.409769i
\(202\) −3.43769 −0.241875
\(203\) 0 0
\(204\) 30.9787 2.16894
\(205\) 5.00000 8.66025i 0.349215 0.604858i
\(206\) −2.04508 3.54219i −0.142488 0.246796i
\(207\) 3.76393 + 6.51932i 0.261611 + 0.453124i
\(208\) −1.57295 + 2.72443i −0.109064 + 0.188905i
\(209\) 9.00000 0.622543
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 1.36475 2.36381i 0.0937311 0.162347i
\(213\) 10.0000 + 17.3205i 0.685189 + 1.18678i
\(214\) −2.71885 4.70918i −0.185857 0.321913i
\(215\) 8.94427 15.4919i 0.609994 1.05654i
\(216\) 3.29180 0.223978
\(217\) 0 0
\(218\) −4.09017 −0.277021
\(219\) −11.9721 + 20.7363i −0.809002 + 1.40123i
\(220\) −6.21885 10.7714i −0.419275 0.726205i
\(221\) −3.73607 6.47106i −0.251315 0.435291i
\(222\) 3.71885 6.44123i 0.249593 0.432307i
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2.85410 + 4.94345i −0.189852 + 0.328833i
\(227\) −5.97214 10.3440i −0.396385 0.686558i 0.596892 0.802321i \(-0.296402\pi\)
−0.993277 + 0.115763i \(0.963069\pi\)
\(228\) 6.21885 + 10.7714i 0.411853 + 0.713351i
\(229\) −8.06231 + 13.9643i −0.532772 + 0.922788i 0.466495 + 0.884524i \(0.345516\pi\)
−0.999268 + 0.0382649i \(0.987817\pi\)
\(230\) 3.21478 0.211976
\(231\) 0 0
\(232\) −6.58359 −0.432234
\(233\) 2.97214 5.14789i 0.194711 0.337250i −0.752095 0.659055i \(-0.770956\pi\)
0.946806 + 0.321806i \(0.104290\pi\)
\(234\) 0.381966 + 0.661585i 0.0249699 + 0.0432491i
\(235\) 1.64590 + 2.85078i 0.107367 + 0.185964i
\(236\) −6.92705 + 11.9980i −0.450913 + 0.781004i
\(237\) −23.9443 −1.55535
\(238\) 0 0
\(239\) −7.41641 −0.479728 −0.239864 0.970807i \(-0.577103\pi\)
−0.239864 + 0.970807i \(0.577103\pi\)
\(240\) 7.86475 13.6221i 0.507667 0.879305i
\(241\) −4.35410 7.54153i −0.280472 0.485792i 0.691029 0.722827i \(-0.257158\pi\)
−0.971501 + 0.237035i \(0.923824\pi\)
\(242\) −0.381966 0.661585i −0.0245537 0.0425283i
\(243\) −8.94427 + 15.4919i −0.573775 + 0.993808i
\(244\) 5.56231 0.356090
\(245\) 0 0
\(246\) −3.81966 −0.243533
\(247\) 1.50000 2.59808i 0.0954427 0.165312i
\(248\) 3.68034 + 6.37454i 0.233702 + 0.404783i
\(249\) 0 0
\(250\) −2.13525 + 3.69837i −0.135045 + 0.233905i
\(251\) −10.4721 −0.660995 −0.330498 0.943807i \(-0.607217\pi\)
−0.330498 + 0.943807i \(0.607217\pi\)
\(252\) 0 0
\(253\) 11.2918 0.709909
\(254\) 2.94427 5.09963i 0.184740 0.319979i
\(255\) 18.6803 + 32.3553i 1.16981 + 2.02617i
\(256\) −2.78115 4.81710i −0.173822 0.301069i
\(257\) −8.97214 + 15.5402i −0.559666 + 0.969371i 0.437858 + 0.899044i \(0.355737\pi\)
−0.997524 + 0.0703264i \(0.977596\pi\)
\(258\) −6.83282 −0.425393
\(259\) 0 0
\(260\) −4.14590 −0.257118
\(261\) 4.47214 7.74597i 0.276818 0.479463i
\(262\) 0.718847 + 1.24508i 0.0444105 + 0.0769213i
\(263\) 7.06231 + 12.2323i 0.435480 + 0.754274i 0.997335 0.0729620i \(-0.0232452\pi\)
−0.561854 + 0.827236i \(0.689912\pi\)
\(264\) −4.93769 + 8.55234i −0.303894 + 0.526360i
\(265\) 3.29180 0.202213
\(266\) 0 0
\(267\) −5.00000 −0.305995
\(268\) −2.78115 + 4.81710i −0.169886 + 0.294251i
\(269\) 2.26393 + 3.92125i 0.138034 + 0.239083i 0.926753 0.375672i \(-0.122588\pi\)
−0.788718 + 0.614755i \(0.789255\pi\)
\(270\) 0.954915 + 1.65396i 0.0581143 + 0.100657i
\(271\) 3.20820 5.55677i 0.194885 0.337550i −0.751978 0.659188i \(-0.770900\pi\)
0.946863 + 0.321638i \(0.104233\pi\)
\(272\) 23.5066 1.42530
\(273\) 0 0
\(274\) 1.43769 0.0868543
\(275\) 0 0
\(276\) 7.80244 + 13.5142i 0.469652 + 0.813461i
\(277\) −13.2082 22.8773i −0.793604 1.37456i −0.923722 0.383064i \(-0.874869\pi\)
0.130118 0.991499i \(-0.458464\pi\)
\(278\) −0.652476 + 1.13012i −0.0391329 + 0.0677802i
\(279\) −10.0000 −0.598684
\(280\) 0 0
\(281\) 9.05573 0.540219 0.270110 0.962830i \(-0.412940\pi\)
0.270110 + 0.962830i \(0.412940\pi\)
\(282\) 0.628677 1.08890i 0.0374372 0.0648431i
\(283\) −7.06231 12.2323i −0.419811 0.727133i 0.576110 0.817372i \(-0.304570\pi\)
−0.995920 + 0.0902393i \(0.971237\pi\)
\(284\) 8.29180 + 14.3618i 0.492028 + 0.852217i
\(285\) −7.50000 + 12.9904i −0.444262 + 0.769484i
\(286\) 1.14590 0.0677584
\(287\) 0 0
\(288\) −8.29180 −0.488599
\(289\) −19.4164 + 33.6302i −1.14214 + 1.97825i
\(290\) −1.90983 3.30792i −0.112149 0.194248i
\(291\) 19.4721 + 33.7267i 1.14148 + 1.97710i
\(292\) −9.92705 + 17.1942i −0.580937 + 1.00621i
\(293\) −2.94427 −0.172006 −0.0860031 0.996295i \(-0.527409\pi\)
−0.0860031 + 0.996295i \(0.527409\pi\)
\(294\) 0 0
\(295\) −16.7082 −0.972789
\(296\) 6.40983 11.1022i 0.372564 0.645299i
\(297\) 3.35410 + 5.80948i 0.194625 + 0.337100i
\(298\) −2.42705 4.20378i −0.140595 0.243518i
\(299\) 1.88197 3.25966i 0.108837 0.188511i
\(300\) 0 0
\(301\) 0 0
\(302\) 2.45085 0.141031
\(303\) 10.0623 17.4284i 0.578064 1.00124i
\(304\) 4.71885 + 8.17328i 0.270644 + 0.468770i
\(305\) 3.35410 + 5.80948i 0.192055 + 0.332650i
\(306\) 2.85410 4.94345i 0.163158 0.282598i
\(307\) 7.41641 0.423277 0.211638 0.977348i \(-0.432120\pi\)
0.211638 + 0.977348i \(0.432120\pi\)
\(308\) 0 0
\(309\) 23.9443 1.36214
\(310\) −2.13525 + 3.69837i −0.121274 + 0.210053i
\(311\) −16.1180 27.9173i −0.913970 1.58304i −0.808403 0.588630i \(-0.799667\pi\)
−0.105567 0.994412i \(-0.533666\pi\)
\(312\) 1.64590 + 2.85078i 0.0931806 + 0.161394i
\(313\) −16.2082 + 28.0734i −0.916142 + 1.58680i −0.110921 + 0.993829i \(0.535380\pi\)
−0.805221 + 0.592975i \(0.797953\pi\)
\(314\) 2.67376 0.150889
\(315\) 0 0
\(316\) −19.8541 −1.11688
\(317\) 1.88197 3.25966i 0.105702 0.183081i −0.808323 0.588739i \(-0.799624\pi\)
0.914025 + 0.405659i \(0.132958\pi\)
\(318\) −0.628677 1.08890i −0.0352545 0.0610625i
\(319\) −6.70820 11.6190i −0.375587 0.650536i
\(320\) 5.26393 9.11740i 0.294263 0.509678i
\(321\) 31.8328 1.77673
\(322\) 0 0
\(323\) −22.4164 −1.24728
\(324\) −10.1976 + 17.6627i −0.566531 + 0.981261i
\(325\) 0 0
\(326\) 1.98936 + 3.44567i 0.110180 + 0.190838i
\(327\) 11.9721 20.7363i 0.662061 1.14672i
\(328\) −6.58359 −0.363518
\(329\) 0 0
\(330\) −5.72949 −0.315398
\(331\) 14.2082 24.6093i 0.780954 1.35265i −0.150433 0.988620i \(-0.548067\pi\)
0.931387 0.364031i \(-0.118600\pi\)
\(332\) 0 0
\(333\) 8.70820 + 15.0831i 0.477207 + 0.826546i
\(334\) −2.58359 + 4.47491i −0.141368 + 0.244856i
\(335\) −6.70820 −0.366508
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 0.190983 0.330792i 0.0103881 0.0179927i
\(339\) −16.7082 28.9395i −0.907465 1.57178i
\(340\) 15.4894 + 26.8284i 0.840028 + 1.45497i
\(341\) −7.50000 + 12.9904i −0.406148 + 0.703469i
\(342\) 2.29180 0.123926
\(343\) 0 0
\(344\) −11.7771 −0.634978
\(345\) −9.40983 + 16.2983i −0.506608 + 0.877471i
\(346\) −1.98936 3.44567i −0.106948 0.185240i
\(347\) 17.5344 + 30.3705i 0.941298 + 1.63038i 0.762999 + 0.646400i \(0.223726\pi\)
0.178299 + 0.983976i \(0.442940\pi\)
\(348\) 9.27051 16.0570i 0.496951 0.860745i
\(349\) 2.58359 0.138297 0.0691483 0.997606i \(-0.477972\pi\)
0.0691483 + 0.997606i \(0.477972\pi\)
\(350\) 0 0
\(351\) 2.23607 0.119352
\(352\) −6.21885 + 10.7714i −0.331466 + 0.574115i
\(353\) 15.3541 + 26.5941i 0.817216 + 1.41546i 0.907725 + 0.419565i \(0.137817\pi\)
−0.0905091 + 0.995896i \(0.528849\pi\)
\(354\) 3.19098 + 5.52694i 0.169599 + 0.293754i
\(355\) −10.0000 + 17.3205i −0.530745 + 0.919277i
\(356\) −4.14590 −0.219732
\(357\) 0 0
\(358\) −7.68692 −0.406266
\(359\) 2.97214 5.14789i 0.156863 0.271695i −0.776873 0.629658i \(-0.783195\pi\)
0.933736 + 0.357963i \(0.116528\pi\)
\(360\) −3.29180 5.70156i −0.173493 0.300498i
\(361\) 5.00000 + 8.66025i 0.263158 + 0.455803i
\(362\) −0.270510 + 0.468537i −0.0142177 + 0.0246257i
\(363\) 4.47214 0.234726
\(364\) 0 0
\(365\) −23.9443 −1.25330
\(366\) 1.28115 2.21902i 0.0669669 0.115990i
\(367\) 0.354102 + 0.613323i 0.0184840 + 0.0320152i 0.875119 0.483907i \(-0.160783\pi\)
−0.856635 + 0.515922i \(0.827449\pi\)
\(368\) 5.92047 + 10.2546i 0.308626 + 0.534556i
\(369\) 4.47214 7.74597i 0.232810 0.403239i
\(370\) 7.43769 0.386667
\(371\) 0 0
\(372\) −20.7295 −1.07477
\(373\) 14.2082 24.6093i 0.735673 1.27422i −0.218755 0.975780i \(-0.570199\pi\)
0.954427 0.298443i \(-0.0964673\pi\)
\(374\) −4.28115 7.41517i −0.221373 0.383430i
\(375\) −12.5000 21.6506i −0.645497 1.11803i
\(376\) 1.08359 1.87684i 0.0558820 0.0967905i
\(377\) −4.47214 −0.230327
\(378\) 0 0
\(379\) 11.4164 0.586421 0.293211 0.956048i \(-0.405276\pi\)
0.293211 + 0.956048i \(0.405276\pi\)
\(380\) −6.21885 + 10.7714i −0.319020 + 0.552559i
\(381\) 17.2361 + 29.8537i 0.883031 + 1.52945i
\(382\) −2.13525 3.69837i −0.109249 0.189225i
\(383\) 7.50000 12.9904i 0.383232 0.663777i −0.608290 0.793715i \(-0.708144\pi\)
0.991522 + 0.129937i \(0.0414776\pi\)
\(384\) −22.5623 −1.15138
\(385\) 0 0
\(386\) 4.85410 0.247067
\(387\) 8.00000 13.8564i 0.406663 0.704361i
\(388\) 16.1459 + 27.9655i 0.819684 + 1.41973i
\(389\) 3.73607 + 6.47106i 0.189426 + 0.328096i 0.945059 0.326900i \(-0.106004\pi\)
−0.755633 + 0.654995i \(0.772671\pi\)
\(390\) −0.954915 + 1.65396i −0.0483540 + 0.0837516i
\(391\) −28.1246 −1.42232
\(392\) 0 0
\(393\) −8.41641 −0.424552
\(394\) −5.14590 + 8.91296i −0.259247 + 0.449028i
\(395\) −11.9721 20.7363i −0.602384 1.04336i
\(396\) −5.56231 9.63420i −0.279516 0.484137i
\(397\) 7.06231 12.2323i 0.354447 0.613920i −0.632576 0.774498i \(-0.718002\pi\)
0.987023 + 0.160578i \(0.0513358\pi\)
\(398\) −2.78522 −0.139610
\(399\) 0 0
\(400\) 0 0
\(401\) −4.88197 + 8.45581i −0.243794 + 0.422263i −0.961792 0.273782i \(-0.911725\pi\)
0.717998 + 0.696045i \(0.245059\pi\)
\(402\) 1.28115 + 2.21902i 0.0638981 + 0.110675i
\(403\) 2.50000 + 4.33013i 0.124534 + 0.215699i
\(404\) 8.34346 14.4513i 0.415103 0.718979i
\(405\) −24.5967 −1.22222
\(406\) 0 0
\(407\) 26.1246 1.29495
\(408\) 12.2984 21.3014i 0.608860 1.05458i
\(409\) −2.35410 4.07742i −0.116403 0.201616i 0.801937 0.597409i \(-0.203803\pi\)
−0.918340 + 0.395793i \(0.870470\pi\)
\(410\) −1.90983 3.30792i −0.0943198 0.163367i
\(411\) −4.20820 + 7.28882i −0.207575 + 0.359531i
\(412\) 19.8541 0.978141
\(413\) 0 0
\(414\) 2.87539 0.141318
\(415\) 0 0
\(416\) 2.07295 + 3.59045i 0.101635 + 0.176036i
\(417\) −3.81966 6.61585i −0.187050 0.323979i
\(418\) 1.71885 2.97713i 0.0840716 0.145616i
\(419\) −15.0557 −0.735520 −0.367760 0.929921i \(-0.619875\pi\)
−0.367760 + 0.929921i \(0.619875\pi\)
\(420\) 0 0
\(421\) −13.4164 −0.653876 −0.326938 0.945046i \(-0.606017\pi\)
−0.326938 + 0.945046i \(0.606017\pi\)
\(422\) 0.763932 1.32317i 0.0371876 0.0644109i
\(423\) 1.47214 + 2.54981i 0.0715777 + 0.123976i
\(424\) −1.08359 1.87684i −0.0526239 0.0911472i
\(425\) 0 0
\(426\) 7.63932 0.370126
\(427\) 0 0
\(428\) 26.3951 1.27586
\(429\) −3.35410 + 5.80948i −0.161938 + 0.280484i
\(430\) −3.41641 5.91739i −0.164754 0.285362i
\(431\) −6.68034 11.5707i −0.321781 0.557340i 0.659075 0.752077i \(-0.270948\pi\)
−0.980856 + 0.194737i \(0.937615\pi\)
\(432\) −3.51722 + 6.09201i −0.169222 + 0.293102i
\(433\) −2.58359 −0.124160 −0.0620798 0.998071i \(-0.519773\pi\)
−0.0620798 + 0.998071i \(0.519773\pi\)
\(434\) 0 0
\(435\) 22.3607 1.07211
\(436\) 9.92705 17.1942i 0.475420 0.823451i
\(437\) −5.64590 9.77898i −0.270080 0.467792i
\(438\) 4.57295 + 7.92058i 0.218504 + 0.378460i
\(439\) −8.06231 + 13.9643i −0.384793 + 0.666481i −0.991740 0.128261i \(-0.959060\pi\)
0.606948 + 0.794742i \(0.292394\pi\)
\(440\) −9.87539 −0.470791
\(441\) 0 0
\(442\) −2.85410 −0.135756
\(443\) 1.11803 1.93649i 0.0531194 0.0920055i −0.838243 0.545297i \(-0.816417\pi\)
0.891362 + 0.453291i \(0.149750\pi\)
\(444\) 18.0517 + 31.2664i 0.856694 + 1.48384i
\(445\) −2.50000 4.33013i −0.118511 0.205268i
\(446\) 0.763932 1.32317i 0.0361732 0.0626539i
\(447\) 28.4164 1.34405
\(448\) 0 0
\(449\) 10.3607 0.488951 0.244475 0.969656i \(-0.421384\pi\)
0.244475 + 0.969656i \(0.421384\pi\)
\(450\) 0 0
\(451\) −6.70820 11.6190i −0.315877 0.547115i
\(452\) −13.8541 23.9960i −0.651642 1.12868i
\(453\) −7.17376 + 12.4253i −0.337053 + 0.583792i
\(454\) −4.56231 −0.214120
\(455\) 0 0
\(456\) 9.87539 0.462457
\(457\) −17.0623 + 29.5528i −0.798141 + 1.38242i 0.122684 + 0.992446i \(0.460850\pi\)
−0.920825 + 0.389975i \(0.872484\pi\)
\(458\) 3.07953 + 5.33390i 0.143897 + 0.249237i
\(459\) −8.35410 14.4697i −0.389936 0.675389i
\(460\) −7.80244 + 13.5142i −0.363791 + 0.630104i
\(461\) 10.3607 0.482545 0.241272 0.970457i \(-0.422435\pi\)
0.241272 + 0.970457i \(0.422435\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 7.03444 12.1840i 0.326566 0.565628i
\(465\) −12.5000 21.6506i −0.579674 1.00402i
\(466\) −1.13525 1.96632i −0.0525897 0.0910880i
\(467\) −10.8262 + 18.7516i −0.500979 + 0.867720i 0.499021 + 0.866590i \(0.333693\pi\)
−0.999999 + 0.00113029i \(0.999640\pi\)
\(468\) −3.70820 −0.171412
\(469\) 0 0
\(470\) 1.25735 0.0579974
\(471\) −7.82624 + 13.5554i −0.360614 + 0.624602i
\(472\) 5.50000 + 9.52628i 0.253158 + 0.438483i
\(473\) −12.0000 20.7846i −0.551761 0.955677i
\(474\) −4.57295 + 7.92058i −0.210043 + 0.363804i
\(475\) 0 0
\(476\) 0 0
\(477\) 2.94427 0.134809
\(478\) −1.41641 + 2.45329i −0.0647850 + 0.112211i
\(479\) −14.9164 25.8360i −0.681548 1.18048i −0.974508 0.224351i \(-0.927974\pi\)
0.292960 0.956125i \(-0.405360\pi\)
\(480\) −10.3647 17.9523i −0.473084 0.819405i
\(481\) 4.35410 7.54153i 0.198530 0.343864i
\(482\) −3.32624 −0.151506
\(483\) 0 0
\(484\) 3.70820 0.168555
\(485\) −19.4721 + 33.7267i −0.884184 + 1.53145i
\(486\) 3.41641 + 5.91739i 0.154971 + 0.268418i
\(487\) −15.9164 27.5680i −0.721241 1.24923i −0.960503 0.278271i \(-0.910239\pi\)
0.239261 0.970955i \(-0.423095\pi\)
\(488\) 2.20820 3.82472i 0.0999607 0.173137i
\(489\) −23.2918 −1.05329
\(490\) 0 0
\(491\) −34.4721 −1.55571 −0.777853 0.628446i \(-0.783691\pi\)
−0.777853 + 0.628446i \(0.783691\pi\)
\(492\) 9.27051 16.0570i 0.417947 0.723905i
\(493\) 16.7082 + 28.9395i 0.752500 + 1.30337i
\(494\) −0.572949 0.992377i −0.0257782 0.0446491i
\(495\) 6.70820 11.6190i 0.301511 0.522233i
\(496\) −15.7295 −0.706275
\(497\) 0 0
\(498\) 0 0
\(499\) 0.208204 0.360620i 0.00932049 0.0161436i −0.861328 0.508050i \(-0.830366\pi\)
0.870648 + 0.491907i \(0.163700\pi\)
\(500\) −10.3647 17.9523i −0.463525 0.802850i
\(501\) −15.1246 26.1966i −0.675718 1.17038i
\(502\) −2.00000 + 3.46410i −0.0892644 + 0.154610i
\(503\) −3.05573 −0.136248 −0.0681241 0.997677i \(-0.521701\pi\)
−0.0681241 + 0.997677i \(0.521701\pi\)
\(504\) 0 0
\(505\) 20.1246 0.895533
\(506\) 2.15654 3.73524i 0.0958699 0.166052i
\(507\) 1.11803 + 1.93649i 0.0496536 + 0.0860026i
\(508\) 14.2918 + 24.7541i 0.634096 + 1.09829i
\(509\) −7.88197 + 13.6520i −0.349362 + 0.605113i −0.986136 0.165938i \(-0.946935\pi\)
0.636774 + 0.771050i \(0.280268\pi\)
\(510\) 14.2705 0.631909
\(511\) 0 0
\(512\) −22.3050 −0.985749
\(513\) 3.35410 5.80948i 0.148087 0.256495i
\(514\) 3.42705 + 5.93583i 0.151161 + 0.261818i
\(515\) 11.9721 + 20.7363i 0.527555 + 0.913753i
\(516\) 16.5836 28.7236i 0.730052 1.26449i
\(517\) 4.41641 0.194233
\(518\) 0 0
\(519\) 23.2918 1.02240
\(520\) −1.64590 + 2.85078i −0.0721774 + 0.125015i
\(521\) −0.0278640 0.0482619i −0.00122075 0.00211439i 0.865414 0.501057i \(-0.167055\pi\)
−0.866635 + 0.498942i \(0.833722\pi\)
\(522\) −1.70820 2.95870i −0.0747661 0.129499i
\(523\) 9.64590 16.7072i 0.421786 0.730554i −0.574329 0.818625i \(-0.694737\pi\)
0.996114 + 0.0880707i \(0.0280701\pi\)
\(524\) −6.97871 −0.304867
\(525\) 0 0
\(526\) 5.39512 0.235238
\(527\) 18.6803 32.3553i 0.813728 1.40942i
\(528\) −10.5517 18.2760i −0.459202 0.795362i
\(529\) 4.41641 + 7.64944i 0.192018 + 0.332584i
\(530\) 0.628677 1.08890i 0.0273080 0.0472988i
\(531\) −14.9443 −0.648526
\(532\) 0 0
\(533\) −4.47214 −0.193710
\(534\) −0.954915 + 1.65396i −0.0413232 + 0.0715739i
\(535\) 15.9164 + 27.5680i 0.688126 + 1.19187i
\(536\) 2.20820 + 3.82472i 0.0953799 + 0.165203i
\(537\) 22.5000 38.9711i 0.970947 1.68173i
\(538\) 1.72949 0.0745636
\(539\) 0 0
\(540\) −9.27051 −0.398939
\(541\) −7.35410 + 12.7377i −0.316178 + 0.547636i −0.979687 0.200532i \(-0.935733\pi\)
0.663510 + 0.748168i \(0.269066\pi\)
\(542\) −1.22542 2.12250i −0.0526365 0.0911691i
\(543\) −1.58359 2.74286i −0.0679584 0.117707i
\(544\) 15.4894 26.8284i 0.664101 1.15026i
\(545\) 23.9443 1.02566
\(546\) 0 0
\(547\) −31.4164 −1.34327 −0.671634 0.740883i \(-0.734407\pi\)
−0.671634 + 0.740883i \(0.734407\pi\)
\(548\) −3.48936 + 6.04374i −0.149058 + 0.258176i
\(549\) 3.00000 + 5.19615i 0.128037 + 0.221766i
\(550\) 0 0
\(551\) −6.70820 + 11.6190i −0.285779 + 0.494984i
\(552\) 12.3901 0.527358
\(553\) 0 0
\(554\) −10.0902 −0.428690
\(555\) −21.7705 + 37.7076i −0.924107 + 1.60060i
\(556\) −3.16718 5.48572i −0.134319 0.232647i
\(557\) 2.64590 + 4.58283i 0.112110 + 0.194181i 0.916621 0.399758i \(-0.130906\pi\)
−0.804511 + 0.593938i \(0.797572\pi\)
\(558\) −1.90983 + 3.30792i −0.0808496 + 0.140036i
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 50.1246 2.11626
\(562\) 1.72949 2.99556i 0.0729541 0.126360i
\(563\) −18.2984 31.6937i −0.771185 1.33573i −0.936914 0.349560i \(-0.886331\pi\)
0.165730 0.986171i \(-0.447002\pi\)
\(564\) 3.05166 + 5.28563i 0.128498 + 0.222565i
\(565\) 16.7082 28.9395i 0.702919 1.21749i
\(566\) −5.39512 −0.226774
\(567\) 0 0
\(568\) 13.1672 0.552483
\(569\) −8.26393 + 14.3136i −0.346442 + 0.600055i −0.985615 0.169008i \(-0.945944\pi\)
0.639173 + 0.769063i \(0.279277\pi\)
\(570\) 2.86475 + 4.96188i 0.119991 + 0.207830i
\(571\) −2.06231 3.57202i −0.0863048 0.149484i 0.819642 0.572877i \(-0.194173\pi\)
−0.905946 + 0.423392i \(0.860839\pi\)
\(572\) −2.78115 + 4.81710i −0.116286 + 0.201413i
\(573\) 25.0000 1.04439
\(574\) 0 0
\(575\) 0 0
\(576\) 4.70820 8.15485i 0.196175 0.339785i
\(577\) −16.3541 28.3261i −0.680830 1.17923i −0.974728 0.223396i \(-0.928286\pi\)
0.293898 0.955837i \(-0.405047\pi\)
\(578\) 7.41641 + 12.8456i 0.308482 + 0.534306i
\(579\) −14.2082 + 24.6093i −0.590473 + 1.02273i
\(580\) 18.5410 0.769874
\(581\) 0 0
\(582\) 14.8754 0.616605
\(583\) 2.20820 3.82472i 0.0914545 0.158404i
\(584\) 7.88197 + 13.6520i 0.326158 + 0.564922i
\(585\) −2.23607 3.87298i −0.0924500 0.160128i
\(586\) −0.562306 + 0.973942i −0.0232286 + 0.0402332i
\(587\) 41.8885 1.72893 0.864463 0.502697i \(-0.167659\pi\)
0.864463 + 0.502697i \(0.167659\pi\)
\(588\) 0 0
\(589\) 15.0000 0.618064
\(590\) −3.19098 + 5.52694i −0.131371 + 0.227541i
\(591\) −30.1246 52.1774i −1.23916 2.14629i
\(592\) 13.6976 + 23.7249i 0.562966 + 0.975086i
\(593\) 16.1180 27.9173i 0.661888 1.14642i −0.318231 0.948013i \(-0.603089\pi\)
0.980119 0.198411i \(-0.0635780\pi\)
\(594\) 2.56231 0.105133
\(595\) 0 0
\(596\) 23.5623 0.965150
\(597\) 8.15248 14.1205i 0.333659 0.577914i
\(598\) −0.718847 1.24508i −0.0293958 0.0509151i
\(599\) −20.5344 35.5667i −0.839015 1.45322i −0.890719 0.454553i \(-0.849799\pi\)
0.0517049 0.998662i \(-0.483534\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 0 0
\(603\) −6.00000 −0.244339
\(604\) −5.94834 + 10.3028i −0.242034 + 0.419216i
\(605\) 2.23607 + 3.87298i 0.0909091 + 0.157459i
\(606\) −3.84346 6.65707i −0.156130 0.270425i
\(607\) −8.06231 + 13.9643i −0.327239 + 0.566794i −0.981963 0.189074i \(-0.939452\pi\)
0.654724 + 0.755868i \(0.272785\pi\)
\(608\) 12.4377 0.504415
\(609\) 0 0
\(610\) 2.56231 0.103745
\(611\) 0.736068 1.27491i 0.0297781 0.0515772i
\(612\) 13.8541 + 23.9960i 0.560019 + 0.969981i
\(613\) −11.0623 19.1605i −0.446802 0.773884i 0.551373 0.834259i \(-0.314104\pi\)
−0.998176 + 0.0603742i \(0.980771\pi\)
\(614\) 1.41641 2.45329i 0.0571616 0.0990067i
\(615\) 22.3607 0.901670
\(616\) 0 0
\(617\) 4.47214 0.180041 0.0900207 0.995940i \(-0.471307\pi\)
0.0900207 + 0.995940i \(0.471307\pi\)
\(618\) 4.57295 7.92058i 0.183951 0.318612i
\(619\) 8.50000 + 14.7224i 0.341644 + 0.591744i 0.984738 0.174042i \(-0.0556830\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) −10.3647 17.9523i −0.416258 0.720980i
\(621\) 4.20820 7.28882i 0.168869 0.292490i
\(622\) −12.3131 −0.493710
\(623\) 0 0
\(624\) −7.03444 −0.281603
\(625\) 12.5000 21.6506i 0.500000 0.866025i
\(626\) 6.19098 + 10.7231i 0.247441 + 0.428581i
\(627\) 10.0623 + 17.4284i 0.401850 + 0.696024i
\(628\) −6.48936 + 11.2399i −0.258954 + 0.448521i
\(629\) −65.0689 −2.59447
\(630\) 0 0
\(631\) −30.8328 −1.22744 −0.613718 0.789526i \(-0.710327\pi\)
−0.613718 + 0.789526i \(0.710327\pi\)
\(632\) −7.88197 + 13.6520i −0.313528 + 0.543046i
\(633\) 4.47214 + 7.74597i 0.177751 + 0.307875i
\(634\) −0.718847 1.24508i −0.0285491 0.0494484i
\(635\) −17.2361 + 29.8537i −0.683992 + 1.18471i
\(636\) 6.10333 0.242013
\(637\) 0 0
\(638\) −5.12461 −0.202885
\(639\) −8.94427 + 15.4919i −0.353830 + 0.612851i
\(640\) −11.2812 19.5395i −0.445927 0.772368i
\(641\) 2.97214 + 5.14789i 0.117392 + 0.203329i 0.918734 0.394878i \(-0.129213\pi\)
−0.801341 + 0.598208i \(0.795880\pi\)
\(642\) 6.07953 10.5300i 0.239940 0.415588i
\(643\) 18.8328 0.742694 0.371347 0.928494i \(-0.378896\pi\)
0.371347 + 0.928494i \(0.378896\pi\)
\(644\) 0 0
\(645\) 40.0000 1.57500
\(646\) −4.28115 + 7.41517i −0.168440 + 0.291746i
\(647\) 7.88197 + 13.6520i 0.309872 + 0.536714i 0.978334 0.207032i \(-0.0663804\pi\)
−0.668462 + 0.743746i \(0.733047\pi\)
\(648\) 8.09675 + 14.0240i 0.318070 + 0.550914i
\(649\) −11.2082 + 19.4132i −0.439960 + 0.762034i
\(650\) 0 0
\(651\) 0 0
\(652\) −19.3131 −0.756359
\(653\) −6.73607 + 11.6672i −0.263603 + 0.456573i −0.967197 0.254029i \(-0.918244\pi\)
0.703594 + 0.710602i \(0.251577\pi\)
\(654\) −4.57295 7.92058i −0.178816 0.309719i
\(655\) −4.20820 7.28882i −0.164428 0.284798i
\(656\) 7.03444 12.1840i 0.274649 0.475706i
\(657\) −21.4164 −0.835534
\(658\) 0 0
\(659\) 8.94427 0.348419 0.174210 0.984709i \(-0.444263\pi\)
0.174210 + 0.984709i \(0.444263\pi\)
\(660\) 13.9058 24.0855i 0.541281 0.937526i
\(661\) 3.35410 + 5.80948i 0.130459 + 0.225962i 0.923854 0.382746i \(-0.125021\pi\)
−0.793394 + 0.608708i \(0.791688\pi\)
\(662\) −5.42705 9.39993i −0.210928 0.365339i
\(663\) 8.35410 14.4697i 0.324446 0.561958i
\(664\) 0 0
\(665\) 0 0
\(666\) 6.65248 0.257778
\(667\) −8.41641 + 14.5776i −0.325885 + 0.564449i
\(668\) −12.5410 21.7217i −0.485227 0.840437i
\(669\) 4.47214 + 7.74597i 0.172903 + 0.299476i
\(670\) −1.28115 + 2.21902i −0.0494953 + 0.0857283i
\(671\) 9.00000 0.347441
\(672\) 0 0
\(673\) 17.4164 0.671353 0.335677 0.941977i \(-0.391035\pi\)
0.335677 + 0.941977i \(0.391035\pi\)
\(674\) 3.43769 5.95426i 0.132415 0.229350i
\(675\) 0 0
\(676\) 0.927051 + 1.60570i 0.0356558 + 0.0617577i
\(677\) 16.4443 28.4823i 0.632005 1.09466i −0.355137 0.934814i \(-0.615566\pi\)
0.987141 0.159850i \(-0.0511010\pi\)
\(678\) −12.7639 −0.490196
\(679\) 0 0
\(680\) 24.5967 0.943242
\(681\) 13.3541 23.1300i 0.511730 0.886343i
\(682\) 2.86475 + 4.96188i 0.109697 + 0.190000i
\(683\) 2.26393 + 3.92125i 0.0866270 + 0.150042i 0.906083 0.423099i \(-0.139058\pi\)
−0.819456 + 0.573142i \(0.805725\pi\)
\(684\) −5.56231 + 9.63420i −0.212680 + 0.368373i
\(685\) −8.41641 −0.321574
\(686\) 0 0
\(687\) −36.0557 −1.37561
\(688\) 12.5836 21.7954i 0.479745 0.830943i
\(689\) −0.736068 1.27491i −0.0280420 0.0485701i
\(690\) 3.59424 + 6.22540i 0.136830 + 0.236997i
\(691\) 0.916408 1.58726i 0.0348618 0.0603824i −0.848068 0.529887i \(-0.822234\pi\)
0.882930 + 0.469505i \(0.155568\pi\)
\(692\) 19.3131 0.734173
\(693\) 0 0
\(694\) 13.3951 0.508472
\(695\) 3.81966 6.61585i 0.144888 0.250953i
\(696\) −7.36068 12.7491i −0.279006 0.483252i
\(697\) 16.7082 + 28.9395i 0.632868 + 1.09616i
\(698\) 0.493422 0.854632i 0.0186763 0.0323483i
\(699\) 13.2918 0.502742
\(700\) 0 0
\(701\) 22.3607 0.844551 0.422276 0.906467i \(-0.361231\pi\)
0.422276 + 0.906467i \(0.361231\pi\)
\(702\) 0.427051 0.739674i 0.0161180 0.0279172i
\(703\) −13.0623 22.6246i −0.492654 0.853302i
\(704\) −7.06231 12.2323i −0.266171 0.461021i
\(705\) −3.68034 + 6.37454i −0.138610 + 0.240079i
\(706\) 11.7295 0.441445
\(707\) 0 0
\(708\) −30.9787 −1.16425
\(709\) 4.93769 8.55234i 0.185439 0.321190i −0.758285 0.651923i \(-0.773963\pi\)
0.943724 + 0.330733i \(0.107296\pi\)
\(710\) 3.81966 + 6.61585i 0.143349 + 0.248288i
\(711\) −10.7082 18.5472i −0.401589 0.695573i
\(712\) −1.64590 + 2.85078i −0.0616826 + 0.106837i
\(713\) 18.8197 0.704802
\(714\) 0 0
\(715\) −6.70820 −0.250873
\(716\) 18.6565 32.3141i 0.697228 1.20763i
\(717\) −8.29180 14.3618i −0.309663 0.536352i
\(718\) −1.13525 1.96632i −0.0423673 0.0733824i
\(719\) 5.64590 9.77898i 0.210556 0.364694i −0.741332 0.671138i \(-0.765806\pi\)
0.951889 + 0.306444i \(0.0991391\pi\)
\(720\) 14.0689 0.524316
\(721\) 0 0
\(722\) 3.81966 0.142153
\(723\) 9.73607 16.8634i 0.362088 0.627155i
\(724\) −1.31308 2.27433i −0.0488003 0.0845246i
\(725\) 0 0
\(726\) 0.854102 1.47935i 0.0316987 0.0549038i
\(727\) −14.8328 −0.550119 −0.275059 0.961427i \(-0.588698\pi\)
−0.275059 + 0.961427i \(0.588698\pi\)
\(728\) 0 0
\(729\) −7.00000 −0.259259
\(730\) −4.57295 + 7.92058i −0.169252 + 0.293154i
\(731\) 29.8885 + 51.7685i 1.10547 + 1.91473i
\(732\) 6.21885 + 10.7714i 0.229855 + 0.398121i
\(733\) 7.64590 13.2431i 0.282408 0.489144i −0.689570 0.724219i \(-0.742200\pi\)
0.971977 + 0.235075i \(0.0755336\pi\)
\(734\) 0.270510 0.00998470
\(735\) 0 0
\(736\) 15.6049 0.575203
\(737\) −4.50000 + 7.79423i −0.165760 + 0.287104i
\(738\) −1.70820 2.95870i −0.0628799 0.108911i
\(739\) −17.9164 31.0321i −0.659066 1.14154i −0.980858 0.194725i \(-0.937619\pi\)
0.321792 0.946810i \(-0.395715\pi\)
\(740\) −18.0517 + 31.2664i −0.663592 + 1.14938i
\(741\) 6.70820 0.246432
\(742\) 0 0
\(743\) 15.0557 0.552341 0.276171 0.961109i \(-0.410935\pi\)
0.276171 + 0.961109i \(0.410935\pi\)
\(744\) −8.22949 + 14.2539i −0.301708 + 0.522573i
\(745\) 14.2082 + 24.6093i 0.520548 + 0.901616i
\(746\) −5.42705 9.39993i −0.198698 0.344156i
\(747\) 0 0
\(748\) 41.5623 1.51967
\(749\) 0 0
\(750\) −9.54915 −0.348686
\(751\) −15.0623 + 26.0887i −0.549631 + 0.951989i 0.448668 + 0.893698i \(0.351898\pi\)
−0.998300 + 0.0582911i \(0.981435\pi\)
\(752\) 2.31559 + 4.01073i 0.0844411 + 0.146256i
\(753\) −11.7082 20.2792i −0.426671 0.739015i
\(754\) −0.854102 + 1.47935i −0.0311046 + 0.0538747i
\(755\) −14.3475 −0.522160
\(756\) 0 0
\(757\) 0.832816 0.0302692 0.0151346 0.999885i \(-0.495182\pi\)
0.0151346 + 0.999885i \(0.495182\pi\)
\(758\) 2.18034 3.77646i 0.0791935 0.137167i
\(759\) 12.6246 + 21.8665i 0.458244 + 0.793703i
\(760\) 4.93769 + 8.55234i 0.179109 + 0.310226i
\(761\) 16.7705 29.0474i 0.607931 1.05297i −0.383650 0.923478i \(-0.625333\pi\)
0.991581 0.129488i \(-0.0413334\pi\)
\(762\) 13.1672 0.476997
\(763\) 0 0
\(764\) 20.7295 0.749967
\(765\) −16.7082 + 28.9395i −0.604086 + 1.04631i
\(766\) −2.86475 4.96188i −0.103507 0.179280i
\(767\) 3.73607 + 6.47106i 0.134902 + 0.233656i
\(768\) 6.21885 10.7714i 0.224403 0.388678i
\(769\) −46.0000 −1.65880 −0.829401 0.558653i \(-0.811318\pi\)
−0.829401 + 0.558653i \(0.811318\pi\)
\(770\) 0 0
\(771\) −40.1246 −1.44505
\(772\) −11.7812 + 20.4056i −0.424013 + 0.734412i
\(773\) 5.53444 + 9.58593i 0.199060 + 0.344782i 0.948224 0.317603i \(-0.102878\pi\)
−0.749164 + 0.662385i \(0.769544\pi\)
\(774\) −3.05573 5.29268i −0.109836 0.190241i
\(775\) 0 0
\(776\) 25.6393 0.920398
\(777\) 0 0
\(778\) 2.85410 0.102325
\(779\) −6.70820 + 11.6190i −0.240346 + 0.416292i
\(780\) −4.63525 8.02850i −0.165969 0.287466i
\(781\) 13.4164 + 23.2379i 0.480077 + 0.831517i
\(782\) −5.37132 + 9.30340i −0.192078 + 0.332689i
\(783\) −10.0000 −0.357371
\(784\)