Properties

Label 637.2.e.a.79.1
Level $637$
Weight $2$
Character 637.79
Analytic conductor $5.086$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 637.79
Dual form 637.2.e.a.508.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{4} -3.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{4} -3.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +(1.50000 + 2.59808i) q^{11} +1.00000 q^{13} +(0.500000 - 0.866025i) q^{16} +(3.50000 + 6.06218i) q^{17} +(1.50000 + 2.59808i) q^{18} +(-3.50000 + 6.06218i) q^{19} -3.00000 q^{22} +(3.00000 - 5.19615i) q^{23} +(2.50000 + 4.33013i) q^{25} +(-0.500000 + 0.866025i) q^{26} -5.00000 q^{29} +(-2.50000 - 4.33013i) q^{32} -7.00000 q^{34} +3.00000 q^{36} +(-4.00000 + 6.92820i) q^{37} +(-3.50000 - 6.06218i) q^{38} +2.00000 q^{43} +(-1.50000 + 2.59808i) q^{44} +(3.00000 + 5.19615i) q^{46} +(3.50000 - 6.06218i) q^{47} -5.00000 q^{50} +(0.500000 + 0.866025i) q^{52} +(1.50000 + 2.59808i) q^{53} +(2.50000 - 4.33013i) q^{58} +(-3.50000 - 6.06218i) q^{59} +(-3.50000 + 6.06218i) q^{61} +7.00000 q^{64} +(1.50000 + 2.59808i) q^{67} +(-3.50000 + 6.06218i) q^{68} -5.00000 q^{71} +(-4.50000 + 7.79423i) q^{72} +(7.00000 + 12.1244i) q^{73} +(-4.00000 - 6.92820i) q^{74} -7.00000 q^{76} +(3.00000 - 5.19615i) q^{79} +(-4.50000 - 7.79423i) q^{81} +(-1.00000 + 1.73205i) q^{86} +(-4.50000 - 7.79423i) q^{88} +6.00000 q^{92} +(3.50000 + 6.06218i) q^{94} +14.0000 q^{97} +9.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} + q^{4} - 6q^{8} + 3q^{9} + O(q^{10}) \) \( 2q - q^{2} + q^{4} - 6q^{8} + 3q^{9} + 3q^{11} + 2q^{13} + q^{16} + 7q^{17} + 3q^{18} - 7q^{19} - 6q^{22} + 6q^{23} + 5q^{25} - q^{26} - 10q^{29} - 5q^{32} - 14q^{34} + 6q^{36} - 8q^{37} - 7q^{38} + 4q^{43} - 3q^{44} + 6q^{46} + 7q^{47} - 10q^{50} + q^{52} + 3q^{53} + 5q^{58} - 7q^{59} - 7q^{61} + 14q^{64} + 3q^{67} - 7q^{68} - 10q^{71} - 9q^{72} + 14q^{73} - 8q^{74} - 14q^{76} + 6q^{79} - 9q^{81} - 2q^{86} - 9q^{88} + 12q^{92} + 7q^{94} + 28q^{97} + 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i −0.986869 0.161521i \(-0.948360\pi\)
0.633316 + 0.773893i \(0.281693\pi\)
\(3\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −3.00000 −1.06066
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0 0
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 3.50000 + 6.06218i 0.848875 + 1.47029i 0.882213 + 0.470850i \(0.156053\pi\)
−0.0333386 + 0.999444i \(0.510614\pi\)
\(18\) 1.50000 + 2.59808i 0.353553 + 0.612372i
\(19\) −3.50000 + 6.06218i −0.802955 + 1.39076i 0.114708 + 0.993399i \(0.463407\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) −0.500000 + 0.866025i −0.0980581 + 0.169842i
\(27\) 0 0
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) −2.50000 4.33013i −0.441942 0.765466i
\(33\) 0 0
\(34\) −7.00000 −1.20049
\(35\) 0 0
\(36\) 3.00000 0.500000
\(37\) −4.00000 + 6.92820i −0.657596 + 1.13899i 0.323640 + 0.946180i \(0.395093\pi\)
−0.981236 + 0.192809i \(0.938240\pi\)
\(38\) −3.50000 6.06218i −0.567775 0.983415i
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) −1.50000 + 2.59808i −0.226134 + 0.391675i
\(45\) 0 0
\(46\) 3.00000 + 5.19615i 0.442326 + 0.766131i
\(47\) 3.50000 6.06218i 0.510527 0.884260i −0.489398 0.872060i \(-0.662783\pi\)
0.999926 0.0121990i \(-0.00388317\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −5.00000 −0.707107
\(51\) 0 0
\(52\) 0.500000 + 0.866025i 0.0693375 + 0.120096i
\(53\) 1.50000 + 2.59808i 0.206041 + 0.356873i 0.950464 0.310835i \(-0.100609\pi\)
−0.744423 + 0.667708i \(0.767275\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 2.50000 4.33013i 0.328266 0.568574i
\(59\) −3.50000 6.06218i −0.455661 0.789228i 0.543065 0.839691i \(-0.317264\pi\)
−0.998726 + 0.0504625i \(0.983930\pi\)
\(60\) 0 0
\(61\) −3.50000 + 6.06218i −0.448129 + 0.776182i −0.998264 0.0588933i \(-0.981243\pi\)
0.550135 + 0.835076i \(0.314576\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) 1.50000 + 2.59808i 0.183254 + 0.317406i 0.942987 0.332830i \(-0.108004\pi\)
−0.759733 + 0.650236i \(0.774670\pi\)
\(68\) −3.50000 + 6.06218i −0.424437 + 0.735147i
\(69\) 0 0
\(70\) 0 0
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) −4.50000 + 7.79423i −0.530330 + 0.918559i
\(73\) 7.00000 + 12.1244i 0.819288 + 1.41905i 0.906208 + 0.422833i \(0.138964\pi\)
−0.0869195 + 0.996215i \(0.527702\pi\)
\(74\) −4.00000 6.92820i −0.464991 0.805387i
\(75\) 0 0
\(76\) −7.00000 −0.802955
\(77\) 0 0
\(78\) 0 0
\(79\) 3.00000 5.19615i 0.337526 0.584613i −0.646440 0.762964i \(-0.723743\pi\)
0.983967 + 0.178352i \(0.0570765\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.00000 + 1.73205i −0.107833 + 0.186772i
\(87\) 0 0
\(88\) −4.50000 7.79423i −0.479702 0.830868i
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) 3.50000 + 6.06218i 0.360997 + 0.625266i
\(95\) 0 0
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 9.00000 0.904534
\(100\) −2.50000 + 4.33013i −0.250000 + 0.433013i
\(101\) −7.00000 12.1244i −0.696526 1.20642i −0.969664 0.244443i \(-0.921395\pi\)
0.273138 0.961975i \(-0.411939\pi\)
\(102\) 0 0
\(103\) 7.00000 12.1244i 0.689730 1.19465i −0.282194 0.959357i \(-0.591062\pi\)
0.971925 0.235291i \(-0.0756043\pi\)
\(104\) −3.00000 −0.294174
\(105\) 0 0
\(106\) −3.00000 −0.291386
\(107\) −4.00000 + 6.92820i −0.386695 + 0.669775i −0.992003 0.126217i \(-0.959717\pi\)
0.605308 + 0.795991i \(0.293050\pi\)
\(108\) 0 0
\(109\) −2.00000 3.46410i −0.191565 0.331801i 0.754204 0.656640i \(-0.228023\pi\)
−0.945769 + 0.324840i \(0.894690\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.00000 0.846649 0.423324 0.905978i \(-0.360863\pi\)
0.423324 + 0.905978i \(0.360863\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.50000 4.33013i −0.232119 0.402042i
\(117\) 1.50000 2.59808i 0.138675 0.240192i
\(118\) 7.00000 0.644402
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) −3.50000 6.06218i −0.316875 0.548844i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 1.50000 2.59808i 0.132583 0.229640i
\(129\) 0 0
\(130\) 0 0
\(131\) 7.00000 12.1244i 0.611593 1.05931i −0.379379 0.925241i \(-0.623862\pi\)
0.990972 0.134069i \(-0.0428042\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3.00000 −0.259161
\(135\) 0 0
\(136\) −10.5000 18.1865i −0.900368 1.55948i
\(137\) −2.00000 3.46410i −0.170872 0.295958i 0.767853 0.640626i \(-0.221325\pi\)
−0.938725 + 0.344668i \(0.887992\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.50000 4.33013i 0.209795 0.363376i
\(143\) 1.50000 + 2.59808i 0.125436 + 0.217262i
\(144\) −1.50000 2.59808i −0.125000 0.216506i
\(145\) 0 0
\(146\) −14.0000 −1.15865
\(147\) 0 0
\(148\) −8.00000 −0.657596
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) 0 0
\(151\) 1.50000 + 2.59808i 0.122068 + 0.211428i 0.920583 0.390547i \(-0.127714\pi\)
−0.798515 + 0.601975i \(0.794381\pi\)
\(152\) 10.5000 18.1865i 0.851662 1.47512i
\(153\) 21.0000 1.69775
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3.50000 + 6.06218i 0.279330 + 0.483814i 0.971219 0.238190i \(-0.0765542\pi\)
−0.691888 + 0.722005i \(0.743221\pi\)
\(158\) 3.00000 + 5.19615i 0.238667 + 0.413384i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 9.00000 0.707107
\(163\) 6.50000 11.2583i 0.509119 0.881820i −0.490825 0.871258i \(-0.663305\pi\)
0.999944 0.0105623i \(-0.00336213\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.00000 0.541676 0.270838 0.962625i \(-0.412699\pi\)
0.270838 + 0.962625i \(0.412699\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 10.5000 + 18.1865i 0.802955 + 1.39076i
\(172\) 1.00000 + 1.73205i 0.0762493 + 0.132068i
\(173\) 3.50000 6.06218i 0.266100 0.460899i −0.701751 0.712422i \(-0.747598\pi\)
0.967851 + 0.251523i \(0.0809315\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) 0 0
\(178\) 0 0
\(179\) 5.00000 + 8.66025i 0.373718 + 0.647298i 0.990134 0.140122i \(-0.0447496\pi\)
−0.616417 + 0.787420i \(0.711416\pi\)
\(180\) 0 0
\(181\) 7.00000 0.520306 0.260153 0.965567i \(-0.416227\pi\)
0.260153 + 0.965567i \(0.416227\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −9.00000 + 15.5885i −0.663489 + 1.14920i
\(185\) 0 0
\(186\) 0 0
\(187\) −10.5000 + 18.1865i −0.767836 + 1.32993i
\(188\) 7.00000 0.510527
\(189\) 0 0
\(190\) 0 0
\(191\) 10.0000 17.3205i 0.723575 1.25327i −0.235983 0.971757i \(-0.575831\pi\)
0.959558 0.281511i \(-0.0908356\pi\)
\(192\) 0 0
\(193\) −2.00000 3.46410i −0.143963 0.249351i 0.785022 0.619467i \(-0.212651\pi\)
−0.928986 + 0.370116i \(0.879318\pi\)
\(194\) −7.00000 + 12.1244i −0.502571 + 0.870478i
\(195\) 0 0
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) −4.50000 + 7.79423i −0.319801 + 0.553912i
\(199\) −7.00000 12.1244i −0.496217 0.859473i 0.503774 0.863836i \(-0.331945\pi\)
−0.999990 + 0.00436292i \(0.998611\pi\)
\(200\) −7.50000 12.9904i −0.530330 0.918559i
\(201\) 0 0
\(202\) 14.0000 0.985037
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 7.00000 + 12.1244i 0.487713 + 0.844744i
\(207\) −9.00000 15.5885i −0.625543 1.08347i
\(208\) 0.500000 0.866025i 0.0346688 0.0600481i
\(209\) −21.0000 −1.45260
\(210\) 0 0
\(211\) −26.0000 −1.78991 −0.894957 0.446153i \(-0.852794\pi\)
−0.894957 + 0.446153i \(0.852794\pi\)
\(212\) −1.50000 + 2.59808i −0.103020 + 0.178437i
\(213\) 0 0
\(214\) −4.00000 6.92820i −0.273434 0.473602i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 4.00000 0.270914
\(219\) 0 0
\(220\) 0 0
\(221\) 3.50000 + 6.06218i 0.235435 + 0.407786i
\(222\) 0 0
\(223\) −21.0000 −1.40626 −0.703132 0.711059i \(-0.748216\pi\)
−0.703132 + 0.711059i \(0.748216\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) −4.50000 + 7.79423i −0.299336 + 0.518464i
\(227\) −14.0000 24.2487i −0.929213 1.60944i −0.784642 0.619949i \(-0.787153\pi\)
−0.144571 0.989494i \(-0.546180\pi\)
\(228\) 0 0
\(229\) 7.00000 12.1244i 0.462573 0.801200i −0.536515 0.843891i \(-0.680260\pi\)
0.999088 + 0.0426906i \(0.0135930\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 15.0000 0.984798
\(233\) 13.5000 23.3827i 0.884414 1.53185i 0.0380310 0.999277i \(-0.487891\pi\)
0.846383 0.532574i \(-0.178775\pi\)
\(234\) 1.50000 + 2.59808i 0.0980581 + 0.169842i
\(235\) 0 0
\(236\) 3.50000 6.06218i 0.227831 0.394614i
\(237\) 0 0
\(238\) 0 0
\(239\) −19.0000 −1.22901 −0.614504 0.788914i \(-0.710644\pi\)
−0.614504 + 0.788914i \(0.710644\pi\)
\(240\) 0 0
\(241\) 14.0000 + 24.2487i 0.901819 + 1.56200i 0.825131 + 0.564942i \(0.191101\pi\)
0.0766885 + 0.997055i \(0.475565\pi\)
\(242\) 1.00000 + 1.73205i 0.0642824 + 0.111340i
\(243\) 0 0
\(244\) −7.00000 −0.448129
\(245\) 0 0
\(246\) 0 0
\(247\) −3.50000 + 6.06218i −0.222700 + 0.385727i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.0000 0.883672 0.441836 0.897096i \(-0.354327\pi\)
0.441836 + 0.897096i \(0.354327\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) −1.00000 + 1.73205i −0.0627456 + 0.108679i
\(255\) 0 0
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) −7.00000 + 12.1244i −0.436648 + 0.756297i −0.997429 0.0716680i \(-0.977168\pi\)
0.560781 + 0.827964i \(0.310501\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −7.50000 + 12.9904i −0.464238 + 0.804084i
\(262\) 7.00000 + 12.1244i 0.432461 + 0.749045i
\(263\) 12.0000 + 20.7846i 0.739952 + 1.28163i 0.952517 + 0.304487i \(0.0984850\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −1.50000 + 2.59808i −0.0916271 + 0.158703i
\(269\) −10.5000 18.1865i −0.640196 1.10885i −0.985389 0.170321i \(-0.945520\pi\)
0.345192 0.938532i \(-0.387814\pi\)
\(270\) 0 0
\(271\) −3.50000 + 6.06218i −0.212610 + 0.368251i −0.952531 0.304443i \(-0.901530\pi\)
0.739921 + 0.672694i \(0.234863\pi\)
\(272\) 7.00000 0.424437
\(273\) 0 0
\(274\) 4.00000 0.241649
\(275\) −7.50000 + 12.9904i −0.452267 + 0.783349i
\(276\) 0 0
\(277\) 8.50000 + 14.7224i 0.510716 + 0.884585i 0.999923 + 0.0124177i \(0.00395278\pi\)
−0.489207 + 0.872167i \(0.662714\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) −7.00000 12.1244i −0.416107 0.720718i 0.579437 0.815017i \(-0.303272\pi\)
−0.995544 + 0.0942988i \(0.969939\pi\)
\(284\) −2.50000 4.33013i −0.148348 0.256946i
\(285\) 0 0
\(286\) −3.00000 −0.177394
\(287\) 0 0
\(288\) −15.0000 −0.883883
\(289\) −16.0000 + 27.7128i −0.941176 + 1.63017i
\(290\) 0 0
\(291\) 0 0
\(292\) −7.00000 + 12.1244i −0.409644 + 0.709524i
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 12.0000 20.7846i 0.697486 1.20808i
\(297\) 0 0
\(298\) 3.00000 + 5.19615i 0.173785 + 0.301005i
\(299\) 3.00000 5.19615i 0.173494 0.300501i
\(300\) 0 0
\(301\) 0 0
\(302\) −3.00000 −0.172631
\(303\) 0 0
\(304\) 3.50000 + 6.06218i 0.200739 + 0.347690i
\(305\) 0 0
\(306\) −10.5000 + 18.1865i −0.600245 + 1.03965i
\(307\) −21.0000 −1.19853 −0.599267 0.800549i \(-0.704541\pi\)
−0.599267 + 0.800549i \(0.704541\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) −7.00000 + 12.1244i −0.395663 + 0.685309i −0.993186 0.116543i \(-0.962819\pi\)
0.597522 + 0.801852i \(0.296152\pi\)
\(314\) −7.00000 −0.395033
\(315\) 0 0
\(316\) 6.00000 0.337526
\(317\) 3.00000 5.19615i 0.168497 0.291845i −0.769395 0.638774i \(-0.779442\pi\)
0.937892 + 0.346929i \(0.112775\pi\)
\(318\) 0 0
\(319\) −7.50000 12.9904i −0.419919 0.727322i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −49.0000 −2.72643
\(324\) 4.50000 7.79423i 0.250000 0.433013i
\(325\) 2.50000 + 4.33013i 0.138675 + 0.240192i
\(326\) 6.50000 + 11.2583i 0.360002 + 0.623541i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.0000 17.3205i 0.549650 0.952021i −0.448649 0.893708i \(-0.648095\pi\)
0.998298 0.0583130i \(-0.0185721\pi\)
\(332\) 0 0
\(333\) 12.0000 + 20.7846i 0.657596 + 1.13899i
\(334\) −3.50000 + 6.06218i −0.191511 + 0.331708i
\(335\) 0 0
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) −0.500000 + 0.866025i −0.0271964 + 0.0471056i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) −21.0000 −1.13555
\(343\) 0 0
\(344\) −6.00000 −0.323498
\(345\) 0 0
\(346\) 3.50000 + 6.06218i 0.188161 + 0.325905i
\(347\) −2.00000 3.46410i −0.107366 0.185963i 0.807337 0.590091i \(-0.200908\pi\)
−0.914702 + 0.404128i \(0.867575\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 7.50000 12.9904i 0.399751 0.692390i
\(353\) 7.00000 + 12.1244i 0.372572 + 0.645314i 0.989960 0.141344i \(-0.0451425\pi\)
−0.617388 + 0.786659i \(0.711809\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −10.0000 −0.528516
\(359\) −4.00000 + 6.92820i −0.211112 + 0.365657i −0.952063 0.305903i \(-0.901042\pi\)
0.740951 + 0.671559i \(0.234375\pi\)
\(360\) 0 0
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) −3.50000 + 6.06218i −0.183956 + 0.318621i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7.00000 + 12.1244i 0.365397 + 0.632886i 0.988840 0.148983i \(-0.0475999\pi\)
−0.623443 + 0.781869i \(0.714267\pi\)
\(368\) −3.00000 5.19615i −0.156386 0.270868i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −7.50000 + 12.9904i −0.388335 + 0.672616i −0.992226 0.124451i \(-0.960283\pi\)
0.603890 + 0.797067i \(0.293616\pi\)
\(374\) −10.5000 18.1865i −0.542942 0.940403i
\(375\) 0 0
\(376\) −10.5000 + 18.1865i −0.541496 + 0.937899i
\(377\) −5.00000 −0.257513
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 10.0000 + 17.3205i 0.511645 + 0.886194i
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.00000 0.203595
\(387\) 3.00000 5.19615i 0.152499 0.264135i
\(388\) 7.00000 + 12.1244i 0.355371 + 0.615521i
\(389\) 1.50000 + 2.59808i 0.0760530 + 0.131728i 0.901544 0.432688i \(-0.142435\pi\)
−0.825491 + 0.564416i \(0.809102\pi\)
\(390\) 0 0
\(391\) 42.0000 2.12403
\(392\) 0 0
\(393\) 0 0
\(394\) −1.00000 + 1.73205i −0.0503793 + 0.0872595i
\(395\) 0 0
\(396\) 4.50000 + 7.79423i 0.226134 + 0.391675i
\(397\) 7.00000 12.1244i 0.351320 0.608504i −0.635161 0.772380i \(-0.719066\pi\)
0.986481 + 0.163876i \(0.0523996\pi\)
\(398\) 14.0000 0.701757
\(399\) 0 0
\(400\) 5.00000 0.250000
\(401\) −11.0000 + 19.0526i −0.549314 + 0.951439i 0.449008 + 0.893528i \(0.351777\pi\)
−0.998322 + 0.0579116i \(0.981556\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 7.00000 12.1244i 0.348263 0.603209i
\(405\) 0 0
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) −14.0000 24.2487i −0.692255 1.19902i −0.971097 0.238685i \(-0.923284\pi\)
0.278842 0.960337i \(-0.410050\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 14.0000 0.689730
\(413\) 0 0
\(414\) 18.0000 0.884652
\(415\) 0 0
\(416\) −2.50000 4.33013i −0.122573 0.212302i
\(417\) 0 0
\(418\) 10.5000 18.1865i 0.513572 0.889532i
\(419\) −14.0000 −0.683945 −0.341972 0.939710i \(-0.611095\pi\)
−0.341972 + 0.939710i \(0.611095\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 13.0000 22.5167i 0.632830 1.09609i
\(423\) −10.5000 18.1865i −0.510527 0.884260i
\(424\) −4.50000 7.79423i −0.218539 0.378521i
\(425\) −17.5000 + 30.3109i −0.848875 + 1.47029i
\(426\) 0 0
\(427\) 0 0
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 + 20.7846i 0.578020 + 1.00116i 0.995706 + 0.0925683i \(0.0295076\pi\)
−0.417687 + 0.908591i \(0.637159\pi\)
\(432\) 0 0
\(433\) −21.0000 −1.00920 −0.504598 0.863355i \(-0.668359\pi\)
−0.504598 + 0.863355i \(0.668359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.00000 3.46410i 0.0957826 0.165900i
\(437\) 21.0000 + 36.3731i 1.00457 + 1.73996i
\(438\) 0 0
\(439\) 7.00000 12.1244i 0.334092 0.578664i −0.649218 0.760602i \(-0.724904\pi\)
0.983310 + 0.181938i \(0.0582371\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −7.00000 −0.332956
\(443\) 10.0000 17.3205i 0.475114 0.822922i −0.524479 0.851423i \(-0.675740\pi\)
0.999594 + 0.0285009i \(0.00907336\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 10.5000 18.1865i 0.497189 0.861157i
\(447\) 0 0
\(448\) 0 0
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) −7.50000 + 12.9904i −0.353553 + 0.612372i
\(451\) 0 0
\(452\) 4.50000 + 7.79423i 0.211662 + 0.366610i
\(453\) 0 0
\(454\) 28.0000 1.31411
\(455\) 0 0
\(456\) 0 0
\(457\) 3.00000 5.19615i 0.140334 0.243066i −0.787288 0.616585i \(-0.788516\pi\)
0.927622 + 0.373519i \(0.121849\pi\)
\(458\) 7.00000 + 12.1244i 0.327089 + 0.566534i
\(459\) 0 0
\(460\) 0 0
\(461\) 28.0000 1.30409 0.652045 0.758180i \(-0.273911\pi\)
0.652045 + 0.758180i \(0.273911\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) −2.50000 + 4.33013i −0.116060 + 0.201021i
\(465\) 0 0
\(466\) 13.5000 + 23.3827i 0.625375 + 1.08318i
\(467\) 7.00000 12.1244i 0.323921 0.561048i −0.657372 0.753566i \(-0.728332\pi\)
0.981293 + 0.192518i \(0.0616653\pi\)
\(468\) 3.00000 0.138675
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 10.5000 + 18.1865i 0.483302 + 0.837103i
\(473\) 3.00000 + 5.19615i 0.137940 + 0.238919i
\(474\) 0 0
\(475\) −35.0000 −1.60591
\(476\) 0 0
\(477\) 9.00000 0.412082
\(478\) 9.50000 16.4545i 0.434520 0.752611i
\(479\) 3.50000 + 6.06218i 0.159919 + 0.276988i 0.934839 0.355071i \(-0.115543\pi\)
−0.774920 + 0.632059i \(0.782210\pi\)
\(480\) 0 0
\(481\) −4.00000 + 6.92820i −0.182384 + 0.315899i
\(482\) −28.0000 −1.27537
\(483\) 0 0
\(484\) 2.00000 0.0909091
\(485\) 0 0
\(486\) 0 0
\(487\) −12.5000 21.6506i −0.566429 0.981084i −0.996915 0.0784867i \(-0.974991\pi\)
0.430486 0.902597i \(-0.358342\pi\)
\(488\) 10.5000 18.1865i 0.475313 0.823266i
\(489\) 0 0
\(490\) 0 0
\(491\) 30.0000 1.35388 0.676941 0.736038i \(-0.263305\pi\)
0.676941 + 0.736038i \(0.263305\pi\)
\(492\) 0 0
\(493\) −17.5000 30.3109i −0.788160 1.36513i
\(494\) −3.50000 6.06218i −0.157472 0.272750i
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −4.00000 + 6.92820i −0.179065 + 0.310149i −0.941560 0.336844i \(-0.890640\pi\)
0.762496 + 0.646993i \(0.223974\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −7.00000 + 12.1244i −0.312425 + 0.541136i
\(503\) 28.0000 1.24846 0.624229 0.781241i \(-0.285413\pi\)
0.624229 + 0.781241i \(0.285413\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −9.00000 + 15.5885i −0.400099 + 0.692991i
\(507\) 0 0
\(508\) 1.00000 + 1.73205i 0.0443678 + 0.0768473i
\(509\) −14.0000 + 24.2487i −0.620539 + 1.07481i 0.368846 + 0.929490i \(0.379753\pi\)
−0.989385 + 0.145315i \(0.953580\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) −7.00000 12.1244i −0.308757 0.534782i
\(515\) 0 0
\(516\) 0 0
\(517\) 21.0000 0.923579
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.00000 12.1244i −0.306676 0.531178i 0.670957 0.741496i \(-0.265883\pi\)
−0.977633 + 0.210318i \(0.932550\pi\)
\(522\) −7.50000 12.9904i −0.328266 0.568574i
\(523\) −7.00000 + 12.1244i −0.306089 + 0.530161i −0.977503 0.210921i \(-0.932354\pi\)
0.671414 + 0.741082i \(0.265687\pi\)
\(524\) 14.0000 0.611593
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 0 0
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) −21.0000 −0.911322
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −4.50000 7.79423i −0.194370 0.336659i
\(537\) 0 0
\(538\) 21.0000 0.905374
\(539\) 0 0
\(540\) 0 0
\(541\) −4.00000 + 6.92820i −0.171973 + 0.297867i −0.939110 0.343617i \(-0.888348\pi\)
0.767136 + 0.641484i \(0.221681\pi\)
\(542\) −3.50000 6.06218i −0.150338 0.260393i
\(543\) 0 0
\(544\) 17.5000 30.3109i 0.750306 1.29957i
\(545\) 0 0
\(546\) 0 0
\(547\) 2.00000 0.0855138 0.0427569 0.999086i \(-0.486386\pi\)
0.0427569 + 0.999086i \(0.486386\pi\)
\(548\) 2.00000 3.46410i 0.0854358 0.147979i
\(549\) 10.5000 + 18.1865i 0.448129 + 0.776182i
\(550\) −7.50000 12.9904i −0.319801 0.553912i
\(551\) 17.5000 30.3109i 0.745525 1.29129i
\(552\) 0 0
\(553\) 0 0
\(554\) −17.0000 −0.722261
\(555\) 0 0
\(556\) 0 0
\(557\) −9.00000 15.5885i −0.381342 0.660504i 0.609912 0.792469i \(-0.291205\pi\)
−0.991254 + 0.131965i \(0.957871\pi\)
\(558\) 0 0
\(559\) 2.00000 0.0845910
\(560\) 0 0
\(561\) 0 0
\(562\) 6.00000 10.3923i 0.253095 0.438373i
\(563\) 14.0000 + 24.2487i 0.590030 + 1.02196i 0.994228 + 0.107290i \(0.0342173\pi\)
−0.404198 + 0.914671i \(0.632449\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 14.0000 0.588464
\(567\) 0 0
\(568\) 15.0000 0.629386
\(569\) −0.500000 + 0.866025i −0.0209611 + 0.0363057i −0.876316 0.481737i \(-0.840006\pi\)
0.855355 + 0.518043i \(0.173339\pi\)
\(570\) 0 0
\(571\) −2.00000 3.46410i −0.0836974 0.144968i 0.821138 0.570730i \(-0.193340\pi\)
−0.904835 + 0.425762i \(0.860006\pi\)
\(572\) −1.50000 + 2.59808i −0.0627182 + 0.108631i
\(573\) 0 0
\(574\) 0 0
\(575\) 30.0000 1.25109
\(576\) 10.5000 18.1865i 0.437500 0.757772i
\(577\) 7.00000 + 12.1244i 0.291414 + 0.504744i 0.974144 0.225927i \(-0.0725410\pi\)
−0.682730 + 0.730670i \(0.739208\pi\)
\(578\) −16.0000 27.7128i −0.665512 1.15270i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.50000 + 7.79423i −0.186371 + 0.322804i
\(584\) −21.0000 36.3731i −0.868986 1.50513i
\(585\) 0 0
\(586\) 7.00000 12.1244i 0.289167 0.500853i
\(587\) −21.0000 −0.866763 −0.433381 0.901211i \(-0.642680\pi\)
−0.433381 + 0.901211i \(0.642680\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 4.00000 + 6.92820i 0.164399 + 0.284747i
\(593\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) 3.00000 + 5.19615i 0.122679 + 0.212486i
\(599\) −16.0000 27.7128i −0.653742 1.13231i −0.982208 0.187799i \(-0.939865\pi\)
0.328465 0.944516i \(-0.393469\pi\)
\(600\) 0 0
\(601\) 7.00000 0.285536 0.142768 0.989756i \(-0.454400\pi\)
0.142768 + 0.989756i \(0.454400\pi\)
\(602\) 0 0
\(603\) 9.00000 0.366508
\(604\) −1.50000 + 2.59808i −0.0610341 + 0.105714i
\(605\) 0 0
\(606\) 0 0
\(607\) 7.00000 12.1244i 0.284121 0.492112i −0.688274 0.725450i \(-0.741632\pi\)
0.972396 + 0.233338i \(0.0749648\pi\)
\(608\) 35.0000 1.41944
\(609\) 0 0
\(610\) 0 0
\(611\) 3.50000 6.06218i 0.141595 0.245249i
\(612\) 10.5000 + 18.1865i 0.424437 + 0.735147i
\(613\) −16.0000 27.7128i −0.646234 1.11931i −0.984015 0.178085i \(-0.943010\pi\)
0.337781 0.941225i \(-0.390324\pi\)
\(614\) 10.5000 18.1865i 0.423746 0.733949i
\(615\) 0 0
\(616\) 0 0
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) 0 0
\(619\) −14.0000 24.2487i −0.562708 0.974638i −0.997259 0.0739910i \(-0.976426\pi\)
0.434551 0.900647i \(-0.356907\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) −7.00000 12.1244i −0.279776 0.484587i
\(627\) 0 0
\(628\) −3.50000 + 6.06218i −0.139665 + 0.241907i
\(629\) −56.0000 −2.23287
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) −9.00000 + 15.5885i −0.358001 + 0.620076i
\(633\) 0 0
\(634\) 3.00000 + 5.19615i 0.119145 + 0.206366i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 15.0000 0.593856
\(639\) −7.50000 + 12.9904i −0.296695 + 0.513892i
\(640\) 0 0
\(641\) −9.00000 15.5885i −0.355479 0.615707i 0.631721 0.775196i \(-0.282349\pi\)
−0.987200 + 0.159489i \(0.949015\pi\)
\(642\) 0 0
\(643\) 7.00000 0.276053 0.138027 0.990429i \(-0.455924\pi\)
0.138027 + 0.990429i \(0.455924\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 24.5000 42.4352i 0.963940 1.66959i
\(647\) −21.0000 36.3731i −0.825595 1.42997i −0.901464 0.432855i \(-0.857506\pi\)
0.0758684 0.997118i \(-0.475827\pi\)
\(648\) 13.5000 + 23.3827i 0.530330 + 0.918559i
\(649\) 10.5000 18.1865i 0.412161 0.713884i
\(650\) −5.00000 −0.196116
\(651\) 0 0
\(652\) 13.0000 0.509119
\(653\) 3.00000 5.19615i 0.117399 0.203341i −0.801337 0.598213i \(-0.795878\pi\)
0.918736 + 0.394872i \(0.129211\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 42.0000 1.63858
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(662\) 10.0000 + 17.3205i 0.388661 + 0.673181i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −24.0000 −0.929981
\(667\) −15.0000 + 25.9808i −0.580802 + 1.00598i
\(668\) 3.50000 + 6.06218i 0.135419 + 0.234553i
\(669\) 0 0
\(670\) 0 0
\(671\) −21.0000 −0.810696
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) −11.5000 + 19.9186i −0.442963 + 0.767235i
\(675\) 0 0
\(676\) 0.500000 + 0.866025i 0.0192308 + 0.0333087i
\(677\) −17.5000 + 30.3109i −0.672580 + 1.16494i 0.304590 + 0.952483i \(0.401480\pi\)
−0.977170 + 0.212459i \(0.931853\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.0000 + 20.7846i 0.459167 + 0.795301i 0.998917 0.0465244i \(-0.0148145\pi\)
−0.539750 + 0.841825i \(0.681481\pi\)
\(684\) −10.5000 + 18.1865i −0.401478 + 0.695379i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 1.00000 1.73205i 0.0381246 0.0660338i
\(689\) 1.50000 + 2.59808i 0.0571454 + 0.0989788i
\(690\) 0 0
\(691\) 17.5000 30.3109i 0.665731 1.15308i −0.313355 0.949636i \(-0.601453\pi\)
0.979086 0.203445i \(-0.0652137\pi\)
\(692\) 7.00000 0.266100
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 7.00000 12.1244i 0.264954 0.458914i
\(699\) 0 0
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) −28.0000 48.4974i −1.05604 1.82911i
\(704\) 10.5000 + 18.1865i 0.395734 + 0.685431i
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) 0 0
\(708\) 0 0
\(709\) −25.0000 + 43.3013i −0.938895 + 1.62621i −0.171358 + 0.985209i \(0.554815\pi\)
−0.767537 + 0.641004i \(0.778518\pi\)
\(710\) 0 0
\(711\) −9.00000 15.5885i −0.337526 0.584613i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −5.00000 + 8.66025i −0.186859 + 0.323649i
\(717\) 0 0
\(718\) −4.00000 6.92820i −0.149279 0.258558i
\(719\) −21.0000 + 36.3731i −0.783168 + 1.35649i 0.146920 + 0.989148i \(0.453064\pi\)
−0.930087 + 0.367338i \(0.880269\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 30.0000 1.11648
\(723\) 0 0
\(724\) 3.50000 + 6.06218i 0.130076 + 0.225299i
\(725\) −12.5000 21.6506i −0.464238 0.804084i
\(726\) 0 0
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 7.00000 + 12.1244i 0.258904 + 0.448435i
\(732\) 0 0
\(733\) 21.0000 36.3731i 0.775653 1.34347i −0.158774 0.987315i \(-0.550754\pi\)
0.934427 0.356155i \(-0.115912\pi\)
\(734\) −14.0000 −0.516749
\(735\) 0 0
\(736\) −30.0000 −1.10581
\(737\) −4.50000 + 7.79423i −0.165760 + 0.287104i
\(738\) 0 0
\(739\) −2.00000 3.46410i −0.0735712 0.127429i 0.826893 0.562360i \(-0.190106\pi\)
−0.900464 + 0.434930i \(0.856773\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 9.00000 0.330178 0.165089 0.986279i \(-0.447209\pi\)
0.165089 + 0.986279i \(0.447209\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −7.50000 12.9904i −0.274595 0.475612i
\(747\) 0 0
\(748\) −21.0000 −0.767836
\(749\) 0 0
\(750\) 0 0
\(751\) 10.0000 17.3205i 0.364905 0.632034i −0.623856 0.781540i \(-0.714435\pi\)
0.988761 + 0.149505i \(0.0477681\pi\)
\(752\) −3.50000 6.06218i −0.127632 0.221065i
\(753\) 0 0
\(754\) 2.50000 4.33013i 0.0910446 0.157694i
\(755\) 0 0
\(756\) 0 0
\(757\) 9.00000 0.327111 0.163555 0.986534i \(-0.447704\pi\)
0.163555 + 0.986534i \(0.447704\pi\)
\(758\) 6.00000 10.3923i 0.217930 0.377466i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 20.0000 0.723575
\(765\) 0 0
\(766\) 0 0
\(767\) −3.50000 6.06218i −0.126378 0.218893i
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.00000 3.46410i 0.0719816 0.124676i
\(773\) 21.0000 + 36.3731i 0.755318 + 1.30825i 0.945216 + 0.326445i \(0.105851\pi\)
−0.189899 + 0.981804i \(0.560816\pi\)
\(774\) 3.00000 + 5.19615i 0.107833 + 0.186772i
\(775\) 0 0
\(776\) −42.0000 −1.50771
\(777\) 0 0
\(778\) −3.00000 −0.107555
\(779\) 0 0
\(780\) 0 0
\(781\) −7.50000 12.9904i −0.268371 0.464832i
\(782\) −21.0000 + 36.3731i −0.750958 + 1.30070i
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 3.50000 + 6.06218i 0.124762 + 0.216093i 0.921640 0.388047i \(-0.126850\pi\)
−0.796878 + 0.604140i \(0.793517\pi\)
\(788\) 1.00000 + 1.73205i 0.0356235 + 0.0617018i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −27.0000 −0.959403
\(793\) −3.50000 + 6.06218i −0.124289 + 0.215274i
\(794\) 7.00000 + 12.1244i 0.248421 + 0.430277i
\(795\) 0 0
\(796\) 7.00000 12.1244i 0.248108 0.429736i
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858