Properties

Label 637.2.c.d.246.1
Level $637$
Weight $2$
Character 637.246
Analytic conductor $5.086$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(246,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.246");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 246.1
Root \(0.403032 + 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 637.246
Dual form 637.2.c.d.246.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.48119i q^{2} -1.67513 q^{3} -4.15633 q^{4} -0.675131i q^{5} +4.15633i q^{6} +5.35026i q^{8} -0.193937 q^{9} +O(q^{10})\) \(q-2.48119i q^{2} -1.67513 q^{3} -4.15633 q^{4} -0.675131i q^{5} +4.15633i q^{6} +5.35026i q^{8} -0.193937 q^{9} -1.67513 q^{10} +4.48119i q^{11} +6.96239 q^{12} +(-3.28726 - 1.48119i) q^{13} +1.13093i q^{15} +4.96239 q^{16} +3.28726 q^{17} +0.481194i q^{18} +5.21933i q^{19} +2.80606i q^{20} +11.1187 q^{22} +4.76845 q^{23} -8.96239i q^{24} +4.54420 q^{25} +(-3.67513 + 8.15633i) q^{26} +5.35026 q^{27} -9.31265 q^{29} +2.80606 q^{30} -1.63752i q^{31} -1.61213i q^{32} -7.50659i q^{33} -8.15633i q^{34} +0.806063 q^{36} -1.44358i q^{37} +12.9502 q^{38} +(5.50659 + 2.48119i) q^{39} +3.61213 q^{40} +7.92478i q^{41} -4.61213 q^{43} -18.6253i q^{44} +0.130933i q^{45} -11.8315i q^{46} -7.86907i q^{47} -8.31265 q^{48} -11.2750i q^{50} -5.50659 q^{51} +(13.6629 + 6.15633i) q^{52} -3.15633 q^{53} -13.2750i q^{54} +3.02539 q^{55} -8.74306i q^{57} +23.1065i q^{58} +2.54420i q^{59} -4.70052i q^{60} +2.31265 q^{61} -4.06300 q^{62} +5.92478 q^{64} +(-1.00000 + 2.21933i) q^{65} -18.6253 q^{66} +7.35026i q^{67} -13.6629 q^{68} -7.98778 q^{69} +7.75623i q^{71} -1.03761i q^{72} +15.1441i q^{73} -3.58181 q^{74} -7.61213 q^{75} -21.6932i q^{76} +(6.15633 - 13.6629i) q^{78} +14.6629 q^{79} -3.35026i q^{80} -8.38058 q^{81} +19.6629 q^{82} +1.45088i q^{83} -2.21933i q^{85} +11.4436i q^{86} +15.5999 q^{87} -23.9756 q^{88} +7.79384i q^{89} +0.324869 q^{90} -19.8192 q^{92} +2.74306i q^{93} -19.5247 q^{94} +3.52373 q^{95} +2.70052i q^{96} +17.9805i q^{97} -0.869067i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{4} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 4 q^{4} - 2 q^{9} + 20 q^{12} - 8 q^{13} + 8 q^{16} + 8 q^{17} + 24 q^{22} + 6 q^{23} + 8 q^{25} - 12 q^{26} + 12 q^{27} - 14 q^{29} + 16 q^{30} + 4 q^{36} + 4 q^{38} - 8 q^{39} + 20 q^{40} - 26 q^{43} - 8 q^{48} + 8 q^{51} + 20 q^{52} + 2 q^{53} - 12 q^{55} - 28 q^{61} - 16 q^{62} - 8 q^{64} - 6 q^{65} - 28 q^{66} - 20 q^{68} + 4 q^{69} - 24 q^{74} - 44 q^{75} + 16 q^{78} + 26 q^{79} - 26 q^{81} + 56 q^{82} + 40 q^{87} - 40 q^{88} + 12 q^{90} - 36 q^{92} - 20 q^{94} + 58 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.48119i 1.75447i −0.480062 0.877235i \(-0.659386\pi\)
0.480062 0.877235i \(-0.340614\pi\)
\(3\) −1.67513 −0.967137 −0.483569 0.875306i \(-0.660660\pi\)
−0.483569 + 0.875306i \(0.660660\pi\)
\(4\) −4.15633 −2.07816
\(5\) 0.675131i 0.301928i −0.988539 0.150964i \(-0.951762\pi\)
0.988539 0.150964i \(-0.0482377\pi\)
\(6\) 4.15633i 1.69681i
\(7\) 0 0
\(8\) 5.35026i 1.89160i
\(9\) −0.193937 −0.0646455
\(10\) −1.67513 −0.529723
\(11\) 4.48119i 1.35113i 0.737300 + 0.675565i \(0.236100\pi\)
−0.737300 + 0.675565i \(0.763900\pi\)
\(12\) 6.96239 2.00987
\(13\) −3.28726 1.48119i −0.911721 0.410809i
\(14\) 0 0
\(15\) 1.13093i 0.292006i
\(16\) 4.96239 1.24060
\(17\) 3.28726 0.797277 0.398639 0.917108i \(-0.369483\pi\)
0.398639 + 0.917108i \(0.369483\pi\)
\(18\) 0.481194i 0.113419i
\(19\) 5.21933i 1.19740i 0.800975 + 0.598698i \(0.204315\pi\)
−0.800975 + 0.598698i \(0.795685\pi\)
\(20\) 2.80606i 0.627455i
\(21\) 0 0
\(22\) 11.1187 2.37052
\(23\) 4.76845 0.994291 0.497145 0.867667i \(-0.334382\pi\)
0.497145 + 0.867667i \(0.334382\pi\)
\(24\) 8.96239i 1.82944i
\(25\) 4.54420 0.908840
\(26\) −3.67513 + 8.15633i −0.720752 + 1.59959i
\(27\) 5.35026 1.02966
\(28\) 0 0
\(29\) −9.31265 −1.72932 −0.864658 0.502361i \(-0.832465\pi\)
−0.864658 + 0.502361i \(0.832465\pi\)
\(30\) 2.80606 0.512315
\(31\) 1.63752i 0.294107i −0.989129 0.147054i \(-0.953021\pi\)
0.989129 0.147054i \(-0.0469790\pi\)
\(32\) 1.61213i 0.284986i
\(33\) 7.50659i 1.30673i
\(34\) 8.15633i 1.39880i
\(35\) 0 0
\(36\) 0.806063 0.134344
\(37\) 1.44358i 0.237324i −0.992935 0.118662i \(-0.962140\pi\)
0.992935 0.118662i \(-0.0378604\pi\)
\(38\) 12.9502 2.10079
\(39\) 5.50659 + 2.48119i 0.881760 + 0.397309i
\(40\) 3.61213 0.571127
\(41\) 7.92478i 1.23764i 0.785532 + 0.618821i \(0.212389\pi\)
−0.785532 + 0.618821i \(0.787611\pi\)
\(42\) 0 0
\(43\) −4.61213 −0.703343 −0.351671 0.936124i \(-0.614387\pi\)
−0.351671 + 0.936124i \(0.614387\pi\)
\(44\) 18.6253i 2.80787i
\(45\) 0.130933i 0.0195183i
\(46\) 11.8315i 1.74445i
\(47\) 7.86907i 1.14782i −0.818918 0.573911i \(-0.805426\pi\)
0.818918 0.573911i \(-0.194574\pi\)
\(48\) −8.31265 −1.19983
\(49\) 0 0
\(50\) 11.2750i 1.59453i
\(51\) −5.50659 −0.771076
\(52\) 13.6629 + 6.15633i 1.89471 + 0.853729i
\(53\) −3.15633 −0.433555 −0.216777 0.976221i \(-0.569555\pi\)
−0.216777 + 0.976221i \(0.569555\pi\)
\(54\) 13.2750i 1.80650i
\(55\) 3.02539 0.407944
\(56\) 0 0
\(57\) 8.74306i 1.15805i
\(58\) 23.1065i 3.03403i
\(59\) 2.54420i 0.331226i 0.986191 + 0.165613i \(0.0529603\pi\)
−0.986191 + 0.165613i \(0.947040\pi\)
\(60\) 4.70052i 0.606835i
\(61\) 2.31265 0.296105 0.148052 0.988980i \(-0.452700\pi\)
0.148052 + 0.988980i \(0.452700\pi\)
\(62\) −4.06300 −0.516002
\(63\) 0 0
\(64\) 5.92478 0.740597
\(65\) −1.00000 + 2.21933i −0.124035 + 0.275274i
\(66\) −18.6253 −2.29262
\(67\) 7.35026i 0.897977i 0.893537 + 0.448989i \(0.148216\pi\)
−0.893537 + 0.448989i \(0.851784\pi\)
\(68\) −13.6629 −1.65687
\(69\) −7.98778 −0.961616
\(70\) 0 0
\(71\) 7.75623i 0.920496i 0.887791 + 0.460248i \(0.152239\pi\)
−0.887791 + 0.460248i \(0.847761\pi\)
\(72\) 1.03761i 0.122284i
\(73\) 15.1441i 1.77248i 0.463223 + 0.886242i \(0.346693\pi\)
−0.463223 + 0.886242i \(0.653307\pi\)
\(74\) −3.58181 −0.416377
\(75\) −7.61213 −0.878973
\(76\) 21.6932i 2.48838i
\(77\) 0 0
\(78\) 6.15633 13.6629i 0.697067 1.54702i
\(79\) 14.6629 1.64971 0.824853 0.565347i \(-0.191258\pi\)
0.824853 + 0.565347i \(0.191258\pi\)
\(80\) 3.35026i 0.374571i
\(81\) −8.38058 −0.931175
\(82\) 19.6629 2.17141
\(83\) 1.45088i 0.159254i 0.996825 + 0.0796272i \(0.0253730\pi\)
−0.996825 + 0.0796272i \(0.974627\pi\)
\(84\) 0 0
\(85\) 2.21933i 0.240720i
\(86\) 11.4436i 1.23399i
\(87\) 15.5999 1.67249
\(88\) −23.9756 −2.55580
\(89\) 7.79384i 0.826146i 0.910698 + 0.413073i \(0.135545\pi\)
−0.910698 + 0.413073i \(0.864455\pi\)
\(90\) 0.324869 0.0342442
\(91\) 0 0
\(92\) −19.8192 −2.06630
\(93\) 2.74306i 0.284442i
\(94\) −19.5247 −2.01382
\(95\) 3.52373 0.361527
\(96\) 2.70052i 0.275621i
\(97\) 17.9805i 1.82564i 0.408360 + 0.912821i \(0.366101\pi\)
−0.408360 + 0.912821i \(0.633899\pi\)
\(98\) 0 0
\(99\) 0.869067i 0.0873446i
\(100\) −18.8872 −1.88872
\(101\) −9.33804 −0.929170 −0.464585 0.885529i \(-0.653796\pi\)
−0.464585 + 0.885529i \(0.653796\pi\)
\(102\) 13.6629i 1.35283i
\(103\) −6.23743 −0.614592 −0.307296 0.951614i \(-0.599424\pi\)
−0.307296 + 0.951614i \(0.599424\pi\)
\(104\) 7.92478 17.5877i 0.777088 1.72461i
\(105\) 0 0
\(106\) 7.83146i 0.760658i
\(107\) 7.24472 0.700374 0.350187 0.936680i \(-0.386118\pi\)
0.350187 + 0.936680i \(0.386118\pi\)
\(108\) −22.2374 −2.13980
\(109\) 4.79384i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(110\) 7.50659i 0.715725i
\(111\) 2.41819i 0.229524i
\(112\) 0 0
\(113\) −9.34297 −0.878912 −0.439456 0.898264i \(-0.644829\pi\)
−0.439456 + 0.898264i \(0.644829\pi\)
\(114\) −21.6932 −2.03176
\(115\) 3.21933i 0.300204i
\(116\) 38.7064 3.59380
\(117\) 0.637519 + 0.287258i 0.0589387 + 0.0265570i
\(118\) 6.31265 0.581127
\(119\) 0 0
\(120\) −6.05079 −0.552359
\(121\) −9.08110 −0.825555
\(122\) 5.73813i 0.519506i
\(123\) 13.2750i 1.19697i
\(124\) 6.80606i 0.611203i
\(125\) 6.44358i 0.576332i
\(126\) 0 0
\(127\) −1.38058 −0.122507 −0.0612533 0.998122i \(-0.519510\pi\)
−0.0612533 + 0.998122i \(0.519510\pi\)
\(128\) 17.9248i 1.58434i
\(129\) 7.72592 0.680229
\(130\) 5.50659 + 2.48119i 0.482960 + 0.217615i
\(131\) −12.4993 −1.09207 −0.546034 0.837763i \(-0.683863\pi\)
−0.546034 + 0.837763i \(0.683863\pi\)
\(132\) 31.1998i 2.71560i
\(133\) 0 0
\(134\) 18.2374 1.57547
\(135\) 3.61213i 0.310882i
\(136\) 17.5877i 1.50813i
\(137\) 3.20616i 0.273920i 0.990577 + 0.136960i \(0.0437332\pi\)
−0.990577 + 0.136960i \(0.956267\pi\)
\(138\) 19.8192i 1.68713i
\(139\) 0.249646 0.0211747 0.0105874 0.999944i \(-0.496630\pi\)
0.0105874 + 0.999944i \(0.496630\pi\)
\(140\) 0 0
\(141\) 13.1817i 1.11010i
\(142\) 19.2447 1.61498
\(143\) 6.63752 14.7308i 0.555057 1.23185i
\(144\) −0.962389 −0.0801991
\(145\) 6.28726i 0.522128i
\(146\) 37.5755 3.10977
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) 4.03269i 0.330371i −0.986263 0.165185i \(-0.947178\pi\)
0.986263 0.165185i \(-0.0528222\pi\)
\(150\) 18.8872i 1.54213i
\(151\) 1.56959i 0.127731i 0.997958 + 0.0638657i \(0.0203429\pi\)
−0.997958 + 0.0638657i \(0.979657\pi\)
\(152\) −27.9248 −2.26500
\(153\) −0.637519 −0.0515404
\(154\) 0 0
\(155\) −1.10554 −0.0887991
\(156\) −22.8872 10.3127i −1.83244 0.825673i
\(157\) −2.89938 −0.231396 −0.115698 0.993284i \(-0.536910\pi\)
−0.115698 + 0.993284i \(0.536910\pi\)
\(158\) 36.3815i 2.89436i
\(159\) 5.28726 0.419307
\(160\) −1.08840 −0.0860453
\(161\) 0 0
\(162\) 20.7938i 1.63372i
\(163\) 17.2750i 1.35309i 0.736403 + 0.676543i \(0.236523\pi\)
−0.736403 + 0.676543i \(0.763477\pi\)
\(164\) 32.9380i 2.57202i
\(165\) −5.06793 −0.394538
\(166\) 3.59991 0.279407
\(167\) 16.2931i 1.26080i −0.776270 0.630400i \(-0.782891\pi\)
0.776270 0.630400i \(-0.217109\pi\)
\(168\) 0 0
\(169\) 8.61213 + 9.73813i 0.662471 + 0.749087i
\(170\) −5.50659 −0.422336
\(171\) 1.01222i 0.0774063i
\(172\) 19.1695 1.46166
\(173\) −2.17442 −0.165318 −0.0826592 0.996578i \(-0.526341\pi\)
−0.0826592 + 0.996578i \(0.526341\pi\)
\(174\) 38.7064i 2.93432i
\(175\) 0 0
\(176\) 22.2374i 1.67621i
\(177\) 4.26187i 0.320341i
\(178\) 19.3380 1.44945
\(179\) −0.551493 −0.0412205 −0.0206102 0.999788i \(-0.506561\pi\)
−0.0206102 + 0.999788i \(0.506561\pi\)
\(180\) 0.544198i 0.0405621i
\(181\) −0.511511 −0.0380203 −0.0190102 0.999819i \(-0.506051\pi\)
−0.0190102 + 0.999819i \(0.506051\pi\)
\(182\) 0 0
\(183\) −3.87399 −0.286374
\(184\) 25.5125i 1.88080i
\(185\) −0.974607 −0.0716546
\(186\) 6.80606 0.499045
\(187\) 14.7308i 1.07723i
\(188\) 32.7064i 2.38536i
\(189\) 0 0
\(190\) 8.74306i 0.634288i
\(191\) −16.5442 −1.19710 −0.598548 0.801087i \(-0.704255\pi\)
−0.598548 + 0.801087i \(0.704255\pi\)
\(192\) −9.92478 −0.716259
\(193\) 7.41090i 0.533448i 0.963773 + 0.266724i \(0.0859412\pi\)
−0.963773 + 0.266724i \(0.914059\pi\)
\(194\) 44.6131 3.20303
\(195\) 1.67513 3.71767i 0.119959 0.266228i
\(196\) 0 0
\(197\) 7.14903i 0.509347i 0.967027 + 0.254674i \(0.0819681\pi\)
−0.967027 + 0.254674i \(0.918032\pi\)
\(198\) −2.15633 −0.153243
\(199\) −5.10062 −0.361573 −0.180787 0.983522i \(-0.557864\pi\)
−0.180787 + 0.983522i \(0.557864\pi\)
\(200\) 24.3127i 1.71916i
\(201\) 12.3127i 0.868467i
\(202\) 23.1695i 1.63020i
\(203\) 0 0
\(204\) 22.8872 1.60242
\(205\) 5.35026 0.373678
\(206\) 15.4763i 1.07828i
\(207\) −0.924777 −0.0642765
\(208\) −16.3127 7.35026i −1.13108 0.509649i
\(209\) −23.3888 −1.61784
\(210\) 0 0
\(211\) 0.193937 0.0133511 0.00667557 0.999978i \(-0.497875\pi\)
0.00667557 + 0.999978i \(0.497875\pi\)
\(212\) 13.1187 0.900997
\(213\) 12.9927i 0.890246i
\(214\) 17.9756i 1.22878i
\(215\) 3.11379i 0.212359i
\(216\) 28.6253i 1.94771i
\(217\) 0 0
\(218\) 11.8945 0.805594
\(219\) 25.3684i 1.71423i
\(220\) −12.5745 −0.847774
\(221\) −10.8061 4.86907i −0.726894 0.327529i
\(222\) 6.00000 0.402694
\(223\) 5.83875i 0.390992i −0.980705 0.195496i \(-0.937368\pi\)
0.980705 0.195496i \(-0.0626316\pi\)
\(224\) 0 0
\(225\) −0.881286 −0.0587524
\(226\) 23.1817i 1.54202i
\(227\) 3.68735i 0.244738i 0.992485 + 0.122369i \(0.0390491\pi\)
−0.992485 + 0.122369i \(0.960951\pi\)
\(228\) 36.3390i 2.40661i
\(229\) 5.65703i 0.373827i 0.982376 + 0.186914i \(0.0598484\pi\)
−0.982376 + 0.186914i \(0.940152\pi\)
\(230\) −7.98778 −0.526699
\(231\) 0 0
\(232\) 49.8251i 3.27118i
\(233\) −10.3258 −0.676467 −0.338234 0.941062i \(-0.609829\pi\)
−0.338234 + 0.941062i \(0.609829\pi\)
\(234\) 0.712742 1.58181i 0.0465934 0.103406i
\(235\) −5.31265 −0.346559
\(236\) 10.5745i 0.688342i
\(237\) −24.5623 −1.59549
\(238\) 0 0
\(239\) 22.2882i 1.44170i −0.693089 0.720852i \(-0.743751\pi\)
0.693089 0.720852i \(-0.256249\pi\)
\(240\) 5.61213i 0.362261i
\(241\) 29.4264i 1.89552i −0.318979 0.947762i \(-0.603340\pi\)
0.318979 0.947762i \(-0.396660\pi\)
\(242\) 22.5320i 1.44841i
\(243\) −2.01222 −0.129084
\(244\) −9.61213 −0.615353
\(245\) 0 0
\(246\) −32.9380 −2.10005
\(247\) 7.73084 17.1573i 0.491902 1.09169i
\(248\) 8.76116 0.556334
\(249\) 2.43041i 0.154021i
\(250\) −15.9878 −1.01116
\(251\) 21.5247 1.35863 0.679313 0.733849i \(-0.262278\pi\)
0.679313 + 0.733849i \(0.262278\pi\)
\(252\) 0 0
\(253\) 21.3684i 1.34342i
\(254\) 3.42548i 0.214934i
\(255\) 3.71767i 0.232809i
\(256\) −32.6253 −2.03908
\(257\) −0.661957 −0.0412917 −0.0206459 0.999787i \(-0.506572\pi\)
−0.0206459 + 0.999787i \(0.506572\pi\)
\(258\) 19.1695i 1.19344i
\(259\) 0 0
\(260\) 4.15633 9.22425i 0.257764 0.572064i
\(261\) 1.80606 0.111793
\(262\) 31.0132i 1.91600i
\(263\) 5.18664 0.319822 0.159911 0.987131i \(-0.448879\pi\)
0.159911 + 0.987131i \(0.448879\pi\)
\(264\) 40.1622 2.47181
\(265\) 2.13093i 0.130902i
\(266\) 0 0
\(267\) 13.0557i 0.798996i
\(268\) 30.5501i 1.86614i
\(269\) −27.2506 −1.66150 −0.830749 0.556647i \(-0.812088\pi\)
−0.830749 + 0.556647i \(0.812088\pi\)
\(270\) −8.96239 −0.545434
\(271\) 18.7612i 1.13966i 0.821763 + 0.569830i \(0.192991\pi\)
−0.821763 + 0.569830i \(0.807009\pi\)
\(272\) 16.3127 0.989100
\(273\) 0 0
\(274\) 7.95509 0.480585
\(275\) 20.3634i 1.22796i
\(276\) 33.1998 1.99839
\(277\) −15.4241 −0.926743 −0.463371 0.886164i \(-0.653360\pi\)
−0.463371 + 0.886164i \(0.653360\pi\)
\(278\) 0.619421i 0.0371504i
\(279\) 0.317575i 0.0190127i
\(280\) 0 0
\(281\) 24.8446i 1.48211i −0.671446 0.741053i \(-0.734327\pi\)
0.671446 0.741053i \(-0.265673\pi\)
\(282\) 32.7064 1.94764
\(283\) 22.8872 1.36050 0.680250 0.732980i \(-0.261871\pi\)
0.680250 + 0.732980i \(0.261871\pi\)
\(284\) 32.2374i 1.91294i
\(285\) −5.90271 −0.349646
\(286\) −36.5501 16.4690i −2.16125 0.973831i
\(287\) 0 0
\(288\) 0.312650i 0.0184231i
\(289\) −6.19394 −0.364349
\(290\) 15.5999 0.916058
\(291\) 30.1197i 1.76565i
\(292\) 62.9438i 3.68351i
\(293\) 25.2193i 1.47333i −0.676258 0.736664i \(-0.736400\pi\)
0.676258 0.736664i \(-0.263600\pi\)
\(294\) 0 0
\(295\) 1.71767 0.100006
\(296\) 7.72355 0.448922
\(297\) 23.9756i 1.39120i
\(298\) −10.0059 −0.579625
\(299\) −15.6751 7.06300i −0.906516 0.408464i
\(300\) 31.6385 1.82665
\(301\) 0 0
\(302\) 3.89446 0.224101
\(303\) 15.6424 0.898635
\(304\) 25.9003i 1.48549i
\(305\) 1.56134i 0.0894022i
\(306\) 1.58181i 0.0904260i
\(307\) 7.24965i 0.413759i −0.978366 0.206880i \(-0.933669\pi\)
0.978366 0.206880i \(-0.0663308\pi\)
\(308\) 0 0
\(309\) 10.4485 0.594395
\(310\) 2.74306i 0.155795i
\(311\) −20.2398 −1.14769 −0.573847 0.818963i \(-0.694550\pi\)
−0.573847 + 0.818963i \(0.694550\pi\)
\(312\) −13.2750 + 29.4617i −0.751551 + 1.66794i
\(313\) 33.1368 1.87300 0.936502 0.350663i \(-0.114044\pi\)
0.936502 + 0.350663i \(0.114044\pi\)
\(314\) 7.19394i 0.405977i
\(315\) 0 0
\(316\) −60.9438 −3.42836
\(317\) 17.0132i 0.955555i 0.878481 + 0.477778i \(0.158557\pi\)
−0.878481 + 0.477778i \(0.841443\pi\)
\(318\) 13.1187i 0.735661i
\(319\) 41.7318i 2.33653i
\(320\) 4.00000i 0.223607i
\(321\) −12.1359 −0.677357
\(322\) 0 0
\(323\) 17.1573i 0.954657i
\(324\) 34.8324 1.93513
\(325\) −14.9380 6.73084i −0.828608 0.373360i
\(326\) 42.8627 2.37395
\(327\) 8.03032i 0.444078i
\(328\) −42.3996 −2.34113
\(329\) 0 0
\(330\) 12.5745i 0.692204i
\(331\) 10.8364i 0.595621i −0.954625 0.297811i \(-0.903744\pi\)
0.954625 0.297811i \(-0.0962564\pi\)
\(332\) 6.03032i 0.330957i
\(333\) 0.279964i 0.0153419i
\(334\) −40.4264 −2.21204
\(335\) 4.96239 0.271124
\(336\) 0 0
\(337\) −2.96968 −0.161769 −0.0808845 0.996723i \(-0.525774\pi\)
−0.0808845 + 0.996723i \(0.525774\pi\)
\(338\) 24.1622 21.3684i 1.31425 1.16229i
\(339\) 15.6507 0.850029
\(340\) 9.22425i 0.500255i
\(341\) 7.33804 0.397377
\(342\) −2.51151 −0.135807
\(343\) 0 0
\(344\) 24.6761i 1.33045i
\(345\) 5.39280i 0.290338i
\(346\) 5.39517i 0.290046i
\(347\) 30.7367 1.65003 0.825017 0.565108i \(-0.191166\pi\)
0.825017 + 0.565108i \(0.191166\pi\)
\(348\) −64.8383 −3.47570
\(349\) 2.00492i 0.107321i −0.998559 0.0536606i \(-0.982911\pi\)
0.998559 0.0536606i \(-0.0170889\pi\)
\(350\) 0 0
\(351\) −17.5877 7.92478i −0.938761 0.422993i
\(352\) 7.22425 0.385054
\(353\) 17.2546i 0.918368i 0.888341 + 0.459184i \(0.151858\pi\)
−0.888341 + 0.459184i \(0.848142\pi\)
\(354\) −10.5745 −0.562029
\(355\) 5.23647 0.277923
\(356\) 32.3938i 1.71687i
\(357\) 0 0
\(358\) 1.36836i 0.0723201i
\(359\) 7.10650i 0.375066i −0.982258 0.187533i \(-0.939951\pi\)
0.982258 0.187533i \(-0.0600492\pi\)
\(360\) −0.700523 −0.0369208
\(361\) −8.24140 −0.433758
\(362\) 1.26916i 0.0667055i
\(363\) 15.2120 0.798425
\(364\) 0 0
\(365\) 10.2243 0.535162
\(366\) 9.61213i 0.502434i
\(367\) 27.2628 1.42311 0.711554 0.702632i \(-0.247992\pi\)
0.711554 + 0.702632i \(0.247992\pi\)
\(368\) 23.6629 1.23351
\(369\) 1.53690i 0.0800080i
\(370\) 2.41819i 0.125716i
\(371\) 0 0
\(372\) 11.4010i 0.591117i
\(373\) −5.91890 −0.306469 −0.153234 0.988190i \(-0.548969\pi\)
−0.153234 + 0.988190i \(0.548969\pi\)
\(374\) 36.5501 1.88996
\(375\) 10.7938i 0.557392i
\(376\) 42.1016 2.17122
\(377\) 30.6131 + 13.7938i 1.57665 + 0.710419i
\(378\) 0 0
\(379\) 28.9706i 1.48812i 0.668112 + 0.744061i \(0.267103\pi\)
−0.668112 + 0.744061i \(0.732897\pi\)
\(380\) −14.6458 −0.751312
\(381\) 2.31265 0.118481
\(382\) 41.0494i 2.10027i
\(383\) 23.2243i 1.18670i 0.804943 + 0.593352i \(0.202196\pi\)
−0.804943 + 0.593352i \(0.797804\pi\)
\(384\) 30.0263i 1.53228i
\(385\) 0 0
\(386\) 18.3879 0.935918
\(387\) 0.894460 0.0454680
\(388\) 74.7328i 3.79398i
\(389\) −16.1319 −0.817919 −0.408960 0.912552i \(-0.634108\pi\)
−0.408960 + 0.912552i \(0.634108\pi\)
\(390\) −9.22425 4.15633i −0.467088 0.210464i
\(391\) 15.6751 0.792725
\(392\) 0 0
\(393\) 20.9380 1.05618
\(394\) 17.7381 0.893634
\(395\) 9.89938i 0.498092i
\(396\) 3.61213i 0.181516i
\(397\) 24.0557i 1.20732i −0.797241 0.603661i \(-0.793708\pi\)
0.797241 0.603661i \(-0.206292\pi\)
\(398\) 12.6556i 0.634369i
\(399\) 0 0
\(400\) 22.5501 1.12750
\(401\) 2.77575i 0.138614i 0.997595 + 0.0693071i \(0.0220788\pi\)
−0.997595 + 0.0693071i \(0.977921\pi\)
\(402\) −30.5501 −1.52370
\(403\) −2.42548 + 5.38295i −0.120822 + 0.268144i
\(404\) 38.8119 1.93097
\(405\) 5.65799i 0.281148i
\(406\) 0 0
\(407\) 6.46898 0.320655
\(408\) 29.4617i 1.45857i
\(409\) 20.1309i 0.995411i −0.867346 0.497705i \(-0.834176\pi\)
0.867346 0.497705i \(-0.165824\pi\)
\(410\) 13.2750i 0.655607i
\(411\) 5.37073i 0.264919i
\(412\) 25.9248 1.27722
\(413\) 0 0
\(414\) 2.29455i 0.112771i
\(415\) 0.979532 0.0480833
\(416\) −2.38787 + 5.29948i −0.117075 + 0.259828i
\(417\) −0.418190 −0.0204789
\(418\) 58.0322i 2.83845i
\(419\) 0.385503 0.0188331 0.00941654 0.999956i \(-0.497003\pi\)
0.00941654 + 0.999956i \(0.497003\pi\)
\(420\) 0 0
\(421\) 15.6810i 0.764246i −0.924112 0.382123i \(-0.875193\pi\)
0.924112 0.382123i \(-0.124807\pi\)
\(422\) 0.481194i 0.0234242i
\(423\) 1.52610i 0.0742015i
\(424\) 16.8872i 0.820113i
\(425\) 14.9380 0.724597
\(426\) −32.2374 −1.56191
\(427\) 0 0
\(428\) −30.1114 −1.45549
\(429\) −11.1187 + 24.6761i −0.536817 + 1.19137i
\(430\) 7.72592 0.372577
\(431\) 1.53690i 0.0740301i −0.999315 0.0370150i \(-0.988215\pi\)
0.999315 0.0370150i \(-0.0117849\pi\)
\(432\) 26.5501 1.27739
\(433\) −26.0362 −1.25122 −0.625610 0.780136i \(-0.715150\pi\)
−0.625610 + 0.780136i \(0.715150\pi\)
\(434\) 0 0
\(435\) 10.5320i 0.504970i
\(436\) 19.9248i 0.954224i
\(437\) 24.8881i 1.19056i
\(438\) −62.9438 −3.00757
\(439\) 19.1246 0.912767 0.456384 0.889783i \(-0.349145\pi\)
0.456384 + 0.889783i \(0.349145\pi\)
\(440\) 16.1866i 0.771668i
\(441\) 0 0
\(442\) −12.0811 + 26.8119i −0.574639 + 1.27531i
\(443\) −12.6180 −0.599500 −0.299750 0.954018i \(-0.596903\pi\)
−0.299750 + 0.954018i \(0.596903\pi\)
\(444\) 10.0508i 0.476989i
\(445\) 5.26187 0.249436
\(446\) −14.4871 −0.685983
\(447\) 6.75528i 0.319514i
\(448\) 0 0
\(449\) 1.02302i 0.0482794i −0.999709 0.0241397i \(-0.992315\pi\)
0.999709 0.0241397i \(-0.00768466\pi\)
\(450\) 2.18664i 0.103079i
\(451\) −35.5125 −1.67222
\(452\) 38.8324 1.82652
\(453\) 2.62927i 0.123534i
\(454\) 9.14903 0.429385
\(455\) 0 0
\(456\) 46.7777 2.19056
\(457\) 28.5320i 1.33467i −0.744758 0.667335i \(-0.767435\pi\)
0.744758 0.667335i \(-0.232565\pi\)
\(458\) 14.0362 0.655868
\(459\) 17.5877 0.820923
\(460\) 13.3806i 0.623873i
\(461\) 25.3503i 1.18068i 0.807155 + 0.590340i \(0.201006\pi\)
−0.807155 + 0.590340i \(0.798994\pi\)
\(462\) 0 0
\(463\) 39.6810i 1.84413i 0.387032 + 0.922066i \(0.373500\pi\)
−0.387032 + 0.922066i \(0.626500\pi\)
\(464\) −46.2130 −2.14538
\(465\) 1.85192 0.0858809
\(466\) 25.6204i 1.18684i
\(467\) 1.95158 0.0903086 0.0451543 0.998980i \(-0.485622\pi\)
0.0451543 + 0.998980i \(0.485622\pi\)
\(468\) −2.64974 1.19394i −0.122484 0.0551897i
\(469\) 0 0
\(470\) 13.1817i 0.608027i
\(471\) 4.85685 0.223792
\(472\) −13.6121 −0.626549
\(473\) 20.6678i 0.950308i
\(474\) 60.9438i 2.79924i
\(475\) 23.7177i 1.08824i
\(476\) 0 0
\(477\) 0.612127 0.0280274
\(478\) −55.3014 −2.52943
\(479\) 26.1368i 1.19422i 0.802159 + 0.597111i \(0.203685\pi\)
−0.802159 + 0.597111i \(0.796315\pi\)
\(480\) 1.82321 0.0832176
\(481\) −2.13823 + 4.74543i −0.0974947 + 0.216373i
\(482\) −73.0127 −3.32564
\(483\) 0 0
\(484\) 37.7440 1.71564
\(485\) 12.1392 0.551212
\(486\) 4.99271i 0.226474i
\(487\) 20.9624i 0.949896i 0.880014 + 0.474948i \(0.157533\pi\)
−0.880014 + 0.474948i \(0.842467\pi\)
\(488\) 12.3733i 0.560112i
\(489\) 28.9380i 1.30862i
\(490\) 0 0
\(491\) 2.95651 0.133425 0.0667127 0.997772i \(-0.478749\pi\)
0.0667127 + 0.997772i \(0.478749\pi\)
\(492\) 55.1754i 2.48750i
\(493\) −30.6131 −1.37874
\(494\) −42.5705 19.1817i −1.91534 0.863026i
\(495\) −0.586734 −0.0263717
\(496\) 8.12601i 0.364869i
\(497\) 0 0
\(498\) −6.03032 −0.270225
\(499\) 2.85448i 0.127784i 0.997957 + 0.0638920i \(0.0203513\pi\)
−0.997957 + 0.0638920i \(0.979649\pi\)
\(500\) 26.7816i 1.19771i
\(501\) 27.2931i 1.21937i
\(502\) 53.4069i 2.38367i
\(503\) −23.8641 −1.06405 −0.532025 0.846729i \(-0.678569\pi\)
−0.532025 + 0.846729i \(0.678569\pi\)
\(504\) 0 0
\(505\) 6.30440i 0.280542i
\(506\) 53.0191 2.35698
\(507\) −14.4264 16.3127i −0.640701 0.724470i
\(508\) 5.73813 0.254589
\(509\) 11.1949i 0.496205i −0.968734 0.248102i \(-0.920193\pi\)
0.968734 0.248102i \(-0.0798070\pi\)
\(510\) 9.22425 0.408457
\(511\) 0 0
\(512\) 45.1002i 1.99316i
\(513\) 27.9248i 1.23291i
\(514\) 1.64244i 0.0724451i
\(515\) 4.21108i 0.185562i
\(516\) −32.1114 −1.41363
\(517\) 35.2628 1.55086
\(518\) 0 0
\(519\) 3.64244 0.159886
\(520\) −11.8740 5.35026i −0.520709 0.234624i
\(521\) 26.4894 1.16052 0.580262 0.814430i \(-0.302950\pi\)
0.580262 + 0.814430i \(0.302950\pi\)
\(522\) 4.48119i 0.196137i
\(523\) 12.9525 0.566375 0.283188 0.959065i \(-0.408608\pi\)
0.283188 + 0.959065i \(0.408608\pi\)
\(524\) 51.9511 2.26950
\(525\) 0 0
\(526\) 12.8691i 0.561118i
\(527\) 5.38295i 0.234485i
\(528\) 37.2506i 1.62112i
\(529\) −0.261865 −0.0113854
\(530\) 5.28726 0.229664
\(531\) 0.493413i 0.0214123i
\(532\) 0 0
\(533\) 11.7381 26.0508i 0.508435 1.12838i
\(534\) −32.3938 −1.40181
\(535\) 4.89114i 0.211462i
\(536\) −39.3258 −1.69862
\(537\) 0.923822 0.0398659
\(538\) 67.6140i 2.91505i
\(539\) 0 0
\(540\) 15.0132i 0.646064i
\(541\) 28.0933i 1.20783i −0.797050 0.603913i \(-0.793607\pi\)
0.797050 0.603913i \(-0.206393\pi\)
\(542\) 46.5501 1.99950
\(543\) 0.856849 0.0367709
\(544\) 5.29948i 0.227213i
\(545\) 3.23647 0.138635
\(546\) 0 0
\(547\) 14.8192 0.633625 0.316812 0.948488i \(-0.397387\pi\)
0.316812 + 0.948488i \(0.397387\pi\)
\(548\) 13.3258i 0.569251i
\(549\) −0.448507 −0.0191418
\(550\) 50.5256 2.15442
\(551\) 48.6058i 2.07068i
\(552\) 42.7367i 1.81900i
\(553\) 0 0
\(554\) 38.2701i 1.62594i
\(555\) 1.63259 0.0692998
\(556\) −1.03761 −0.0440045
\(557\) 18.3879i 0.779119i 0.921001 + 0.389560i \(0.127373\pi\)
−0.921001 + 0.389560i \(0.872627\pi\)
\(558\) 0.787965 0.0333572
\(559\) 15.1612 + 6.83146i 0.641253 + 0.288940i
\(560\) 0 0
\(561\) 24.6761i 1.04183i
\(562\) −61.6444 −2.60031
\(563\) −15.3357 −0.646322 −0.323161 0.946344i \(-0.604745\pi\)
−0.323161 + 0.946344i \(0.604745\pi\)
\(564\) 54.7875i 2.30697i
\(565\) 6.30773i 0.265368i
\(566\) 56.7875i 2.38696i
\(567\) 0 0
\(568\) −41.4979 −1.74121
\(569\) −1.32250 −0.0554421 −0.0277210 0.999616i \(-0.508825\pi\)
−0.0277210 + 0.999616i \(0.508825\pi\)
\(570\) 14.6458i 0.613444i
\(571\) 37.9175 1.58680 0.793399 0.608702i \(-0.208310\pi\)
0.793399 + 0.608702i \(0.208310\pi\)
\(572\) −27.5877 + 61.2262i −1.15350 + 2.55999i
\(573\) 27.7137 1.15776
\(574\) 0 0
\(575\) 21.6688 0.903651
\(576\) −1.14903 −0.0478763
\(577\) 12.8627i 0.535482i −0.963491 0.267741i \(-0.913723\pi\)
0.963491 0.267741i \(-0.0862772\pi\)
\(578\) 15.3684i 0.639240i
\(579\) 12.4142i 0.515917i
\(580\) 26.1319i 1.08507i
\(581\) 0 0
\(582\) −74.7328 −3.09777
\(583\) 14.1441i 0.585789i
\(584\) −81.0249 −3.35284
\(585\) 0.193937 0.430409i 0.00801829 0.0177952i
\(586\) −62.5741 −2.58491
\(587\) 31.0240i 1.28050i −0.768168 0.640248i \(-0.778831\pi\)
0.768168 0.640248i \(-0.221169\pi\)
\(588\) 0 0
\(589\) 8.54675 0.352163
\(590\) 4.26187i 0.175458i
\(591\) 11.9756i 0.492609i
\(592\) 7.16362i 0.294423i
\(593\) 11.4119i 0.468629i 0.972161 + 0.234314i \(0.0752845\pi\)
−0.972161 + 0.234314i \(0.924716\pi\)
\(594\) 59.4880 2.44082
\(595\) 0 0
\(596\) 16.7612i 0.686564i
\(597\) 8.54420 0.349691
\(598\) −17.5247 + 38.8930i −0.716638 + 1.59045i
\(599\) 7.37328 0.301264 0.150632 0.988590i \(-0.451869\pi\)
0.150632 + 0.988590i \(0.451869\pi\)
\(600\) 40.7269i 1.66267i
\(601\) −17.2144 −0.702190 −0.351095 0.936340i \(-0.614191\pi\)
−0.351095 + 0.936340i \(0.614191\pi\)
\(602\) 0 0
\(603\) 1.42548i 0.0580502i
\(604\) 6.52373i 0.265447i
\(605\) 6.13093i 0.249258i
\(606\) 38.8119i 1.57663i
\(607\) −32.4264 −1.31615 −0.658074 0.752953i \(-0.728629\pi\)
−0.658074 + 0.752953i \(0.728629\pi\)
\(608\) 8.41422 0.341242
\(609\) 0 0
\(610\) −3.87399 −0.156853
\(611\) −11.6556 + 25.8677i −0.471536 + 1.04649i
\(612\) 2.64974 0.107109
\(613\) 35.6991i 1.44187i 0.693001 + 0.720937i \(0.256288\pi\)
−0.693001 + 0.720937i \(0.743712\pi\)
\(614\) −17.9878 −0.725928
\(615\) −8.96239 −0.361398
\(616\) 0 0
\(617\) 20.3733i 0.820198i −0.912041 0.410099i \(-0.865494\pi\)
0.912041 0.410099i \(-0.134506\pi\)
\(618\) 25.9248i 1.04285i
\(619\) 40.0118i 1.60821i 0.594488 + 0.804104i \(0.297355\pi\)
−0.594488 + 0.804104i \(0.702645\pi\)
\(620\) 4.59498 0.184539
\(621\) 25.5125 1.02378
\(622\) 50.2189i 2.01359i
\(623\) 0 0
\(624\) 27.3258 + 12.3127i 1.09391 + 0.492900i
\(625\) 18.3707 0.734829
\(626\) 82.2189i 3.28613i
\(627\) 39.1793 1.56467
\(628\) 12.0508 0.480879
\(629\) 4.74543i 0.189213i
\(630\) 0 0
\(631\) 16.3879i 0.652391i −0.945302 0.326195i \(-0.894233\pi\)
0.945302 0.326195i \(-0.105767\pi\)
\(632\) 78.4504i 3.12059i
\(633\) −0.324869 −0.0129124
\(634\) 42.2130 1.67649
\(635\) 0.932071i 0.0369881i
\(636\) −21.9756 −0.871388
\(637\) 0 0
\(638\) −103.545 −4.09937
\(639\) 1.50422i 0.0595059i
\(640\) −12.1016 −0.478357
\(641\) 8.23884 0.325415 0.162707 0.986674i \(-0.447977\pi\)
0.162707 + 0.986674i \(0.447977\pi\)
\(642\) 30.1114i 1.18840i
\(643\) 30.4847i 1.20220i −0.799174 0.601100i \(-0.794729\pi\)
0.799174 0.601100i \(-0.205271\pi\)
\(644\) 0 0
\(645\) 5.21600i 0.205380i
\(646\) 42.5705 1.67492
\(647\) 28.8388 1.13377 0.566884 0.823798i \(-0.308149\pi\)
0.566884 + 0.823798i \(0.308149\pi\)
\(648\) 44.8383i 1.76141i
\(649\) −11.4010 −0.447530
\(650\) −16.7005 + 37.0640i −0.655048 + 1.45377i
\(651\) 0 0
\(652\) 71.8007i 2.81193i
\(653\) 21.4518 0.839475 0.419738 0.907646i \(-0.362122\pi\)
0.419738 + 0.907646i \(0.362122\pi\)
\(654\) −19.9248 −0.779120
\(655\) 8.43866i 0.329726i
\(656\) 39.3258i 1.53542i
\(657\) 2.93700i 0.114583i
\(658\) 0 0
\(659\) −50.6589 −1.97339 −0.986696 0.162575i \(-0.948020\pi\)
−0.986696 + 0.162575i \(0.948020\pi\)
\(660\) 21.0640 0.819913
\(661\) 15.5477i 0.604736i 0.953191 + 0.302368i \(0.0977771\pi\)
−0.953191 + 0.302368i \(0.902223\pi\)
\(662\) −26.8872 −1.04500
\(663\) 18.1016 + 8.15633i 0.703007 + 0.316765i
\(664\) −7.76257 −0.301246
\(665\) 0 0
\(666\) 0.694644 0.0269169
\(667\) −44.4069 −1.71944
\(668\) 67.7196i 2.62015i
\(669\) 9.78067i 0.378143i
\(670\) 12.3127i 0.475679i
\(671\) 10.3634i 0.400076i
\(672\) 0 0
\(673\) 26.8700 1.03576 0.517882 0.855452i \(-0.326721\pi\)
0.517882 + 0.855452i \(0.326721\pi\)
\(674\) 7.36836i 0.283819i
\(675\) 24.3127 0.935794
\(676\) −35.7948 40.4749i −1.37672 1.55673i
\(677\) −16.3757 −0.629368 −0.314684 0.949197i \(-0.601898\pi\)
−0.314684 + 0.949197i \(0.601898\pi\)
\(678\) 38.8324i 1.49135i
\(679\) 0 0
\(680\) 11.8740 0.455347
\(681\) 6.17679i 0.236695i
\(682\) 18.2071i 0.697186i
\(683\) 15.7988i 0.604523i −0.953225 0.302262i \(-0.902258\pi\)
0.953225 0.302262i \(-0.0977416\pi\)
\(684\) 4.20711i 0.160863i
\(685\) 2.16457 0.0827041
\(686\) 0 0
\(687\) 9.47627i 0.361542i
\(688\) −22.8872 −0.872565
\(689\) 10.3757 + 4.67513i 0.395281 + 0.178108i
\(690\) 13.3806 0.509390
\(691\) 7.56818i 0.287907i 0.989584 + 0.143953i \(0.0459816\pi\)
−0.989584 + 0.143953i \(0.954018\pi\)
\(692\) 9.03761 0.343558
\(693\) 0 0
\(694\) 76.2638i 2.89493i
\(695\) 0.168544i 0.00639324i
\(696\) 83.4636i 3.16368i
\(697\) 26.0508i 0.986744i
\(698\) −4.97461 −0.188292
\(699\) 17.2971 0.654237
\(700\) 0 0
\(701\) −32.6629 −1.23366 −0.616831 0.787096i \(-0.711584\pi\)
−0.616831 + 0.787096i \(0.711584\pi\)
\(702\) −19.6629 + 43.6385i −0.742129 + 1.64703i
\(703\) 7.53453 0.284170
\(704\) 26.5501i 1.00064i
\(705\) 8.89938 0.335170
\(706\) 42.8119 1.61125
\(707\) 0 0
\(708\) 17.7137i 0.665722i
\(709\) 25.0214i 0.939699i 0.882746 + 0.469850i \(0.155692\pi\)
−0.882746 + 0.469850i \(0.844308\pi\)
\(710\) 12.9927i 0.487608i
\(711\) −2.84367 −0.106646
\(712\) −41.6991 −1.56274
\(713\) 7.80843i 0.292428i
\(714\) 0 0
\(715\) −9.94525 4.48119i −0.371931 0.167587i
\(716\) 2.29218 0.0856629
\(717\) 37.3357i 1.39433i
\(718\) −17.6326 −0.658043
\(719\) −1.85192 −0.0690651 −0.0345326 0.999404i \(-0.510994\pi\)
−0.0345326 + 0.999404i \(0.510994\pi\)
\(720\) 0.649738i 0.0242143i
\(721\) 0 0
\(722\) 20.4485i 0.761015i
\(723\) 49.2931i 1.83323i
\(724\) 2.12601 0.0790125
\(725\) −42.3185 −1.57167
\(726\) 37.7440i 1.40081i
\(727\) 10.8265 0.401534 0.200767 0.979639i \(-0.435657\pi\)
0.200767 + 0.979639i \(0.435657\pi\)
\(728\) 0 0
\(729\) 28.5125 1.05602
\(730\) 25.3684i 0.938925i
\(731\) −15.1612 −0.560759
\(732\) 16.1016 0.595131
\(733\) 23.4264i 0.865275i −0.901568 0.432638i \(-0.857583\pi\)
0.901568 0.432638i \(-0.142417\pi\)
\(734\) 67.6444i 2.49680i
\(735\) 0 0
\(736\) 7.68735i 0.283359i
\(737\) −32.9380 −1.21329
\(738\) −3.81336 −0.140372
\(739\) 0.481194i 0.0177010i 0.999961 + 0.00885051i \(0.00281724\pi\)
−0.999961 + 0.00885051i \(0.997183\pi\)
\(740\) 4.05079 0.148910
\(741\) −12.9502 + 28.7407i −0.475736 + 1.05582i
\(742\) 0 0
\(743\) 13.7889i 0.505866i −0.967484 0.252933i \(-0.918605\pi\)
0.967484 0.252933i \(-0.0813953\pi\)
\(744\) −14.6761 −0.538051
\(745\) −2.72259 −0.0997480
\(746\) 14.6859i 0.537690i
\(747\) 0.281378i 0.0102951i
\(748\) 61.2262i 2.23865i
\(749\) 0 0
\(750\) 26.7816 0.977927
\(751\) 26.4617 0.965600 0.482800 0.875731i \(-0.339620\pi\)
0.482800 + 0.875731i \(0.339620\pi\)
\(752\) 39.0494i 1.42398i
\(753\) −36.0567 −1.31398
\(754\) 34.2252 75.9570i 1.24641 2.76619i
\(755\) 1.05968 0.0385657
\(756\) 0 0
\(757\) −21.1114 −0.767308 −0.383654 0.923477i \(-0.625334\pi\)
−0.383654 + 0.923477i \(0.625334\pi\)
\(758\) 71.8818 2.61086
\(759\) 35.7948i 1.29927i
\(760\) 18.8529i 0.683866i
\(761\) 28.5247i 1.03402i 0.855980 + 0.517010i \(0.172955\pi\)
−0.855980 + 0.517010i \(0.827045\pi\)
\(762\) 5.73813i 0.207871i
\(763\) 0 0
\(764\) 68.7631 2.48776
\(765\) 0.430409i 0.0155615i
\(766\) 57.6239 2.08204
\(767\) 3.76845 8.36344i 0.136071 0.301986i
\(768\) 54.6516 1.97207
\(769\) 25.8388i 0.931769i 0.884845 + 0.465885i \(0.154264\pi\)
−0.884845 + 0.465885i \(0.845736\pi\)
\(770\) 0 0
\(771\) 1.10886 0.0399348
\(772\) 30.8021i 1.10859i
\(773\) 27.4010i 0.985547i 0.870158 + 0.492774i \(0.164017\pi\)
−0.870158 + 0.492774i \(0.835983\pi\)
\(774\) 2.21933i 0.0797721i
\(775\) 7.44121i 0.267296i
\(776\) −96.2003 −3.45339
\(777\) 0 0
\(778\) 40.0263i 1.43501i
\(779\) −41.3620 −1.48195
\(780\) −6.96239 + 15.4518i −0.249294 + 0.553264i
\(781\) −34.7572 −1.24371
\(782\) 38.8930i 1.39081i
\(783\) −49.8251 −1.78060
\(784\) 0 0
\(785\) 1.95746i 0.0698649i
\(786\) 51.9511i 1.85304i
\(787\) 31.0240i 1.10589i −0.833219 0.552943i \(-0.813505\pi\)
0.833219 0.552943i \(-0.186495\pi\)
\(788\)