Properties

Label 637.2.a.m.1.2
Level $637$
Weight $2$
Character 637.1
Self dual yes
Analytic conductor $5.086$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(1,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.08647060876\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.4507648.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 8x^{3} + 7x^{2} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.35100\) of defining polynomial
Character \(\chi\) \(=\) 637.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.17619 q^{2} -3.35100 q^{3} -0.616586 q^{4} -3.14862 q^{5} +3.94140 q^{6} +3.07759 q^{8} +8.22917 q^{9} +O(q^{10})\) \(q-1.17619 q^{2} -3.35100 q^{3} -0.616586 q^{4} -3.14862 q^{5} +3.94140 q^{6} +3.07759 q^{8} +8.22917 q^{9} +3.70337 q^{10} -0.773390 q^{11} +2.06618 q^{12} -1.00000 q^{13} +10.5510 q^{15} -2.38665 q^{16} +5.75340 q^{17} -9.67904 q^{18} +1.22298 q^{19} +1.94140 q^{20} +0.909650 q^{22} -2.99182 q^{23} -10.3130 q^{24} +4.91383 q^{25} +1.17619 q^{26} -17.5229 q^{27} -2.46882 q^{29} -12.4100 q^{30} +6.13487 q^{31} -3.34804 q^{32} +2.59163 q^{33} -6.76707 q^{34} -5.07399 q^{36} +4.99933 q^{37} -1.43845 q^{38} +3.35100 q^{39} -9.69018 q^{40} +2.55981 q^{41} -2.73150 q^{43} +0.476861 q^{44} -25.9106 q^{45} +3.51894 q^{46} -5.37169 q^{47} +7.99766 q^{48} -5.77958 q^{50} -19.2796 q^{51} +0.616586 q^{52} -9.79015 q^{53} +20.6102 q^{54} +2.43511 q^{55} -4.09820 q^{57} +2.90379 q^{58} -2.50456 q^{59} -6.50561 q^{60} +10.9167 q^{61} -7.21575 q^{62} +8.71122 q^{64} +3.14862 q^{65} -3.04823 q^{66} +4.32518 q^{67} -3.54746 q^{68} +10.0256 q^{69} +10.6649 q^{71} +25.3260 q^{72} +5.17450 q^{73} -5.88014 q^{74} -16.4662 q^{75} -0.754072 q^{76} -3.94140 q^{78} -0.542038 q^{79} +7.51467 q^{80} +34.0318 q^{81} -3.01081 q^{82} -15.2259 q^{83} -18.1153 q^{85} +3.21275 q^{86} +8.27301 q^{87} -2.38018 q^{88} -9.23208 q^{89} +30.4757 q^{90} +1.84471 q^{92} -20.5579 q^{93} +6.31811 q^{94} -3.85070 q^{95} +11.2193 q^{96} +1.26291 q^{97} -6.36436 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{3} + 4 q^{4} - 6 q^{5} - 4 q^{6} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 8 q^{3} + 4 q^{4} - 6 q^{5} - 4 q^{6} + 6 q^{9} - 4 q^{10} + 4 q^{11} + 4 q^{12} - 6 q^{13} + 12 q^{15} - 16 q^{17} - 4 q^{18} - 2 q^{19} - 16 q^{20} - 12 q^{22} - 6 q^{23} - 12 q^{24} - 4 q^{25} - 20 q^{27} - 6 q^{29} - 6 q^{31} - 20 q^{32} - 4 q^{33} - 24 q^{36} - 8 q^{38} + 8 q^{39} - 4 q^{40} + 8 q^{41} + 2 q^{43} - 4 q^{44} - 14 q^{45} + 8 q^{46} - 30 q^{47} + 8 q^{48} + 8 q^{50} - 4 q^{51} - 4 q^{52} - 14 q^{53} + 48 q^{54} + 8 q^{55} + 4 q^{57} - 8 q^{58} - 24 q^{59} + 12 q^{60} - 28 q^{62} - 20 q^{64} + 6 q^{65} + 4 q^{66} + 16 q^{67} - 28 q^{68} + 20 q^{69} + 8 q^{71} + 28 q^{72} + 6 q^{73} - 12 q^{74} - 12 q^{75} + 16 q^{76} + 4 q^{78} - 22 q^{79} + 28 q^{80} + 46 q^{81} + 40 q^{82} - 50 q^{83} - 8 q^{85} - 16 q^{86} + 16 q^{87} - 44 q^{88} - 26 q^{89} + 40 q^{90} + 20 q^{92} + 16 q^{93} + 32 q^{94} - 6 q^{95} + 20 q^{96} + 14 q^{97} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.17619 −0.831689 −0.415845 0.909436i \(-0.636514\pi\)
−0.415845 + 0.909436i \(0.636514\pi\)
\(3\) −3.35100 −1.93470 −0.967349 0.253447i \(-0.918436\pi\)
−0.967349 + 0.253447i \(0.918436\pi\)
\(4\) −0.616586 −0.308293
\(5\) −3.14862 −1.40811 −0.704054 0.710147i \(-0.748629\pi\)
−0.704054 + 0.710147i \(0.748629\pi\)
\(6\) 3.94140 1.60907
\(7\) 0 0
\(8\) 3.07759 1.08809
\(9\) 8.22917 2.74306
\(10\) 3.70337 1.17111
\(11\) −0.773390 −0.233186 −0.116593 0.993180i \(-0.537197\pi\)
−0.116593 + 0.993180i \(0.537197\pi\)
\(12\) 2.06618 0.596454
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 10.5510 2.72426
\(16\) −2.38665 −0.596663
\(17\) 5.75340 1.39540 0.697702 0.716388i \(-0.254206\pi\)
0.697702 + 0.716388i \(0.254206\pi\)
\(18\) −9.67904 −2.28137
\(19\) 1.22298 0.280571 0.140285 0.990111i \(-0.455198\pi\)
0.140285 + 0.990111i \(0.455198\pi\)
\(20\) 1.94140 0.434109
\(21\) 0 0
\(22\) 0.909650 0.193938
\(23\) −2.99182 −0.623838 −0.311919 0.950109i \(-0.600972\pi\)
−0.311919 + 0.950109i \(0.600972\pi\)
\(24\) −10.3130 −2.10513
\(25\) 4.91383 0.982767
\(26\) 1.17619 0.230669
\(27\) −17.5229 −3.37229
\(28\) 0 0
\(29\) −2.46882 −0.458449 −0.229224 0.973374i \(-0.573619\pi\)
−0.229224 + 0.973374i \(0.573619\pi\)
\(30\) −12.4100 −2.26574
\(31\) 6.13487 1.10185 0.550927 0.834553i \(-0.314274\pi\)
0.550927 + 0.834553i \(0.314274\pi\)
\(32\) −3.34804 −0.591855
\(33\) 2.59163 0.451144
\(34\) −6.76707 −1.16054
\(35\) 0 0
\(36\) −5.07399 −0.845665
\(37\) 4.99933 0.821884 0.410942 0.911661i \(-0.365200\pi\)
0.410942 + 0.911661i \(0.365200\pi\)
\(38\) −1.43845 −0.233348
\(39\) 3.35100 0.536589
\(40\) −9.69018 −1.53215
\(41\) 2.55981 0.399774 0.199887 0.979819i \(-0.435942\pi\)
0.199887 + 0.979819i \(0.435942\pi\)
\(42\) 0 0
\(43\) −2.73150 −0.416550 −0.208275 0.978070i \(-0.566785\pi\)
−0.208275 + 0.978070i \(0.566785\pi\)
\(44\) 0.476861 0.0718895
\(45\) −25.9106 −3.86252
\(46\) 3.51894 0.518839
\(47\) −5.37169 −0.783542 −0.391771 0.920063i \(-0.628137\pi\)
−0.391771 + 0.920063i \(0.628137\pi\)
\(48\) 7.99766 1.15436
\(49\) 0 0
\(50\) −5.77958 −0.817357
\(51\) −19.2796 −2.69969
\(52\) 0.616586 0.0855050
\(53\) −9.79015 −1.34478 −0.672390 0.740197i \(-0.734732\pi\)
−0.672390 + 0.740197i \(0.734732\pi\)
\(54\) 20.6102 2.80470
\(55\) 2.43511 0.328351
\(56\) 0 0
\(57\) −4.09820 −0.542820
\(58\) 2.90379 0.381287
\(59\) −2.50456 −0.326066 −0.163033 0.986621i \(-0.552128\pi\)
−0.163033 + 0.986621i \(0.552128\pi\)
\(60\) −6.50561 −0.839871
\(61\) 10.9167 1.39774 0.698870 0.715248i \(-0.253686\pi\)
0.698870 + 0.715248i \(0.253686\pi\)
\(62\) −7.21575 −0.916401
\(63\) 0 0
\(64\) 8.71122 1.08890
\(65\) 3.14862 0.390539
\(66\) −3.04823 −0.375212
\(67\) 4.32518 0.528404 0.264202 0.964467i \(-0.414891\pi\)
0.264202 + 0.964467i \(0.414891\pi\)
\(68\) −3.54746 −0.430193
\(69\) 10.0256 1.20694
\(70\) 0 0
\(71\) 10.6649 1.26570 0.632848 0.774276i \(-0.281886\pi\)
0.632848 + 0.774276i \(0.281886\pi\)
\(72\) 25.3260 2.98470
\(73\) 5.17450 0.605630 0.302815 0.953049i \(-0.402074\pi\)
0.302815 + 0.953049i \(0.402074\pi\)
\(74\) −5.88014 −0.683552
\(75\) −16.4662 −1.90136
\(76\) −0.754072 −0.0864979
\(77\) 0 0
\(78\) −3.94140 −0.446275
\(79\) −0.542038 −0.0609841 −0.0304920 0.999535i \(-0.509707\pi\)
−0.0304920 + 0.999535i \(0.509707\pi\)
\(80\) 7.51467 0.840165
\(81\) 34.0318 3.78131
\(82\) −3.01081 −0.332488
\(83\) −15.2259 −1.67125 −0.835627 0.549297i \(-0.814896\pi\)
−0.835627 + 0.549297i \(0.814896\pi\)
\(84\) 0 0
\(85\) −18.1153 −1.96488
\(86\) 3.21275 0.346440
\(87\) 8.27301 0.886960
\(88\) −2.38018 −0.253728
\(89\) −9.23208 −0.978599 −0.489299 0.872116i \(-0.662747\pi\)
−0.489299 + 0.872116i \(0.662747\pi\)
\(90\) 30.4757 3.21242
\(91\) 0 0
\(92\) 1.84471 0.192325
\(93\) −20.5579 −2.13176
\(94\) 6.31811 0.651663
\(95\) −3.85070 −0.395074
\(96\) 11.2193 1.14506
\(97\) 1.26291 0.128229 0.0641145 0.997943i \(-0.479578\pi\)
0.0641145 + 0.997943i \(0.479578\pi\)
\(98\) 0 0
\(99\) −6.36436 −0.639642
\(100\) −3.02980 −0.302980
\(101\) −0.605447 −0.0602443 −0.0301221 0.999546i \(-0.509590\pi\)
−0.0301221 + 0.999546i \(0.509590\pi\)
\(102\) 22.6764 2.24530
\(103\) −7.64804 −0.753584 −0.376792 0.926298i \(-0.622973\pi\)
−0.376792 + 0.926298i \(0.622973\pi\)
\(104\) −3.07759 −0.301783
\(105\) 0 0
\(106\) 11.5150 1.11844
\(107\) 4.82965 0.466900 0.233450 0.972369i \(-0.424999\pi\)
0.233450 + 0.972369i \(0.424999\pi\)
\(108\) 10.8044 1.03965
\(109\) 7.23092 0.692596 0.346298 0.938125i \(-0.387439\pi\)
0.346298 + 0.938125i \(0.387439\pi\)
\(110\) −2.86415 −0.273086
\(111\) −16.7527 −1.59010
\(112\) 0 0
\(113\) −9.19375 −0.864875 −0.432438 0.901664i \(-0.642346\pi\)
−0.432438 + 0.901664i \(0.642346\pi\)
\(114\) 4.82025 0.451458
\(115\) 9.42012 0.878430
\(116\) 1.52224 0.141336
\(117\) −8.22917 −0.760787
\(118\) 2.94583 0.271186
\(119\) 0 0
\(120\) 32.4718 2.96425
\(121\) −10.4019 −0.945624
\(122\) −12.8401 −1.16249
\(123\) −8.57790 −0.773443
\(124\) −3.78267 −0.339694
\(125\) 0.271305 0.0242663
\(126\) 0 0
\(127\) −11.2118 −0.994888 −0.497444 0.867496i \(-0.665728\pi\)
−0.497444 + 0.867496i \(0.665728\pi\)
\(128\) −3.54994 −0.313773
\(129\) 9.15325 0.805899
\(130\) −3.70337 −0.324807
\(131\) −15.7380 −1.37503 −0.687517 0.726169i \(-0.741299\pi\)
−0.687517 + 0.726169i \(0.741299\pi\)
\(132\) −1.59796 −0.139084
\(133\) 0 0
\(134\) −5.08721 −0.439468
\(135\) 55.1732 4.74855
\(136\) 17.7066 1.51833
\(137\) −18.6210 −1.59090 −0.795449 0.606020i \(-0.792765\pi\)
−0.795449 + 0.606020i \(0.792765\pi\)
\(138\) −11.7919 −1.00380
\(139\) 11.9137 1.01050 0.505252 0.862972i \(-0.331399\pi\)
0.505252 + 0.862972i \(0.331399\pi\)
\(140\) 0 0
\(141\) 18.0005 1.51592
\(142\) −12.5440 −1.05267
\(143\) 0.773390 0.0646741
\(144\) −19.6402 −1.63668
\(145\) 7.77339 0.645545
\(146\) −6.08618 −0.503696
\(147\) 0 0
\(148\) −3.08251 −0.253381
\(149\) 11.3753 0.931904 0.465952 0.884810i \(-0.345712\pi\)
0.465952 + 0.884810i \(0.345712\pi\)
\(150\) 19.3674 1.58134
\(151\) −3.69250 −0.300492 −0.150246 0.988649i \(-0.548007\pi\)
−0.150246 + 0.988649i \(0.548007\pi\)
\(152\) 3.76383 0.305287
\(153\) 47.3457 3.82767
\(154\) 0 0
\(155\) −19.3164 −1.55153
\(156\) −2.06618 −0.165426
\(157\) −1.12065 −0.0894374 −0.0447187 0.999000i \(-0.514239\pi\)
−0.0447187 + 0.999000i \(0.514239\pi\)
\(158\) 0.637538 0.0507198
\(159\) 32.8068 2.60175
\(160\) 10.5417 0.833396
\(161\) 0 0
\(162\) −40.0277 −3.14488
\(163\) −20.3435 −1.59342 −0.796712 0.604359i \(-0.793429\pi\)
−0.796712 + 0.604359i \(0.793429\pi\)
\(164\) −1.57834 −0.123248
\(165\) −8.16005 −0.635259
\(166\) 17.9084 1.38996
\(167\) −13.0063 −1.00646 −0.503228 0.864154i \(-0.667854\pi\)
−0.503228 + 0.864154i \(0.667854\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 21.3070 1.63417
\(171\) 10.0641 0.769622
\(172\) 1.68420 0.128419
\(173\) 25.9110 1.96998 0.984989 0.172616i \(-0.0552221\pi\)
0.984989 + 0.172616i \(0.0552221\pi\)
\(174\) −9.73060 −0.737675
\(175\) 0 0
\(176\) 1.84581 0.139133
\(177\) 8.39278 0.630840
\(178\) 10.8587 0.813890
\(179\) 9.64163 0.720649 0.360325 0.932827i \(-0.382666\pi\)
0.360325 + 0.932827i \(0.382666\pi\)
\(180\) 15.9761 1.19079
\(181\) 2.92683 0.217550 0.108775 0.994066i \(-0.465307\pi\)
0.108775 + 0.994066i \(0.465307\pi\)
\(182\) 0 0
\(183\) −36.5818 −2.70421
\(184\) −9.20760 −0.678793
\(185\) −15.7410 −1.15730
\(186\) 24.1799 1.77296
\(187\) −4.44962 −0.325388
\(188\) 3.31211 0.241560
\(189\) 0 0
\(190\) 4.52914 0.328579
\(191\) −16.1364 −1.16759 −0.583796 0.811901i \(-0.698433\pi\)
−0.583796 + 0.811901i \(0.698433\pi\)
\(192\) −29.1913 −2.10670
\(193\) −0.0863817 −0.00621789 −0.00310894 0.999995i \(-0.500990\pi\)
−0.00310894 + 0.999995i \(0.500990\pi\)
\(194\) −1.48542 −0.106647
\(195\) −10.5510 −0.755575
\(196\) 0 0
\(197\) 15.0589 1.07290 0.536451 0.843932i \(-0.319765\pi\)
0.536451 + 0.843932i \(0.319765\pi\)
\(198\) 7.48567 0.531983
\(199\) −15.4466 −1.09498 −0.547492 0.836811i \(-0.684417\pi\)
−0.547492 + 0.836811i \(0.684417\pi\)
\(200\) 15.1228 1.06934
\(201\) −14.4936 −1.02230
\(202\) 0.712119 0.0501045
\(203\) 0 0
\(204\) 11.8875 0.832294
\(205\) −8.05987 −0.562925
\(206\) 8.99552 0.626748
\(207\) −24.6202 −1.71122
\(208\) 2.38665 0.165484
\(209\) −0.945840 −0.0654251
\(210\) 0 0
\(211\) −25.0561 −1.72493 −0.862466 0.506115i \(-0.831081\pi\)
−0.862466 + 0.506115i \(0.831081\pi\)
\(212\) 6.03647 0.414586
\(213\) −35.7382 −2.44874
\(214\) −5.68057 −0.388316
\(215\) 8.60047 0.586547
\(216\) −53.9285 −3.66937
\(217\) 0 0
\(218\) −8.50491 −0.576025
\(219\) −17.3397 −1.17171
\(220\) −1.50146 −0.101228
\(221\) −5.75340 −0.387015
\(222\) 19.7043 1.32247
\(223\) 20.6640 1.38376 0.691881 0.722012i \(-0.256782\pi\)
0.691881 + 0.722012i \(0.256782\pi\)
\(224\) 0 0
\(225\) 40.4368 2.69579
\(226\) 10.8136 0.719307
\(227\) −0.982378 −0.0652027 −0.0326013 0.999468i \(-0.510379\pi\)
−0.0326013 + 0.999468i \(0.510379\pi\)
\(228\) 2.52689 0.167347
\(229\) 14.2742 0.943269 0.471634 0.881794i \(-0.343664\pi\)
0.471634 + 0.881794i \(0.343664\pi\)
\(230\) −11.0798 −0.730581
\(231\) 0 0
\(232\) −7.59802 −0.498835
\(233\) 1.39534 0.0914119 0.0457060 0.998955i \(-0.485446\pi\)
0.0457060 + 0.998955i \(0.485446\pi\)
\(234\) 9.67904 0.632739
\(235\) 16.9134 1.10331
\(236\) 1.54428 0.100524
\(237\) 1.81637 0.117986
\(238\) 0 0
\(239\) 2.54875 0.164865 0.0824326 0.996597i \(-0.473731\pi\)
0.0824326 + 0.996597i \(0.473731\pi\)
\(240\) −25.1816 −1.62547
\(241\) −29.6746 −1.91151 −0.955755 0.294164i \(-0.904959\pi\)
−0.955755 + 0.294164i \(0.904959\pi\)
\(242\) 12.2345 0.786466
\(243\) −61.4716 −3.94340
\(244\) −6.73108 −0.430913
\(245\) 0 0
\(246\) 10.0892 0.643264
\(247\) −1.22298 −0.0778163
\(248\) 18.8806 1.19892
\(249\) 51.0218 3.23337
\(250\) −0.319106 −0.0201820
\(251\) −18.0858 −1.14157 −0.570784 0.821100i \(-0.693361\pi\)
−0.570784 + 0.821100i \(0.693361\pi\)
\(252\) 0 0
\(253\) 2.31384 0.145470
\(254\) 13.1872 0.827437
\(255\) 60.7043 3.80145
\(256\) −13.2470 −0.827940
\(257\) −14.7403 −0.919473 −0.459737 0.888055i \(-0.652056\pi\)
−0.459737 + 0.888055i \(0.652056\pi\)
\(258\) −10.7659 −0.670257
\(259\) 0 0
\(260\) −1.94140 −0.120400
\(261\) −20.3164 −1.25755
\(262\) 18.5108 1.14360
\(263\) −8.15922 −0.503119 −0.251560 0.967842i \(-0.580943\pi\)
−0.251560 + 0.967842i \(0.580943\pi\)
\(264\) 7.97597 0.490887
\(265\) 30.8255 1.89360
\(266\) 0 0
\(267\) 30.9367 1.89329
\(268\) −2.66684 −0.162903
\(269\) −0.442582 −0.0269847 −0.0134924 0.999909i \(-0.504295\pi\)
−0.0134924 + 0.999909i \(0.504295\pi\)
\(270\) −64.8939 −3.94932
\(271\) 21.0831 1.28071 0.640354 0.768080i \(-0.278788\pi\)
0.640354 + 0.768080i \(0.278788\pi\)
\(272\) −13.7314 −0.832586
\(273\) 0 0
\(274\) 21.9018 1.32313
\(275\) −3.80031 −0.229167
\(276\) −6.18163 −0.372090
\(277\) 3.59421 0.215955 0.107977 0.994153i \(-0.465563\pi\)
0.107977 + 0.994153i \(0.465563\pi\)
\(278\) −14.0127 −0.840426
\(279\) 50.4849 3.02245
\(280\) 0 0
\(281\) −9.01252 −0.537642 −0.268821 0.963190i \(-0.586634\pi\)
−0.268821 + 0.963190i \(0.586634\pi\)
\(282\) −21.1720 −1.26077
\(283\) −27.7411 −1.64904 −0.824520 0.565833i \(-0.808555\pi\)
−0.824520 + 0.565833i \(0.808555\pi\)
\(284\) −6.57585 −0.390205
\(285\) 12.9037 0.764349
\(286\) −0.909650 −0.0537887
\(287\) 0 0
\(288\) −27.5516 −1.62349
\(289\) 16.1016 0.947153
\(290\) −9.14296 −0.536893
\(291\) −4.23201 −0.248085
\(292\) −3.19052 −0.186711
\(293\) −12.7409 −0.744333 −0.372167 0.928166i \(-0.621385\pi\)
−0.372167 + 0.928166i \(0.621385\pi\)
\(294\) 0 0
\(295\) 7.88593 0.459137
\(296\) 15.3859 0.894287
\(297\) 13.5521 0.786370
\(298\) −13.3795 −0.775055
\(299\) 2.99182 0.173021
\(300\) 10.1528 0.586175
\(301\) 0 0
\(302\) 4.34307 0.249916
\(303\) 2.02885 0.116555
\(304\) −2.91883 −0.167406
\(305\) −34.3726 −1.96817
\(306\) −55.6874 −3.18344
\(307\) −10.1384 −0.578626 −0.289313 0.957235i \(-0.593427\pi\)
−0.289313 + 0.957235i \(0.593427\pi\)
\(308\) 0 0
\(309\) 25.6286 1.45796
\(310\) 22.7197 1.29039
\(311\) −20.6013 −1.16819 −0.584096 0.811685i \(-0.698551\pi\)
−0.584096 + 0.811685i \(0.698551\pi\)
\(312\) 10.3130 0.583859
\(313\) −16.5456 −0.935213 −0.467606 0.883937i \(-0.654883\pi\)
−0.467606 + 0.883937i \(0.654883\pi\)
\(314\) 1.31809 0.0743841
\(315\) 0 0
\(316\) 0.334213 0.0188010
\(317\) −21.2340 −1.19262 −0.596310 0.802754i \(-0.703367\pi\)
−0.596310 + 0.802754i \(0.703367\pi\)
\(318\) −38.5869 −2.16384
\(319\) 1.90936 0.106904
\(320\) −27.4284 −1.53329
\(321\) −16.1841 −0.903310
\(322\) 0 0
\(323\) 7.03629 0.391510
\(324\) −20.9835 −1.16575
\(325\) −4.91383 −0.272570
\(326\) 23.9277 1.32523
\(327\) −24.2308 −1.33996
\(328\) 7.87804 0.434992
\(329\) 0 0
\(330\) 9.59774 0.528338
\(331\) 16.2415 0.892712 0.446356 0.894855i \(-0.352721\pi\)
0.446356 + 0.894855i \(0.352721\pi\)
\(332\) 9.38804 0.515236
\(333\) 41.1403 2.25448
\(334\) 15.2978 0.837058
\(335\) −13.6184 −0.744050
\(336\) 0 0
\(337\) 6.42141 0.349797 0.174898 0.984586i \(-0.444040\pi\)
0.174898 + 0.984586i \(0.444040\pi\)
\(338\) −1.17619 −0.0639761
\(339\) 30.8082 1.67327
\(340\) 11.1696 0.605758
\(341\) −4.74464 −0.256937
\(342\) −11.8373 −0.640086
\(343\) 0 0
\(344\) −8.40645 −0.453245
\(345\) −31.5668 −1.69950
\(346\) −30.4762 −1.63841
\(347\) 14.4809 0.777376 0.388688 0.921369i \(-0.372928\pi\)
0.388688 + 0.921369i \(0.372928\pi\)
\(348\) −5.10102 −0.273443
\(349\) −1.74500 −0.0934079 −0.0467040 0.998909i \(-0.514872\pi\)
−0.0467040 + 0.998909i \(0.514872\pi\)
\(350\) 0 0
\(351\) 17.5229 0.935306
\(352\) 2.58934 0.138012
\(353\) −15.9580 −0.849358 −0.424679 0.905344i \(-0.639613\pi\)
−0.424679 + 0.905344i \(0.639613\pi\)
\(354\) −9.87148 −0.524663
\(355\) −33.5799 −1.78224
\(356\) 5.69237 0.301695
\(357\) 0 0
\(358\) −11.3404 −0.599356
\(359\) 8.81400 0.465185 0.232593 0.972574i \(-0.425279\pi\)
0.232593 + 0.972574i \(0.425279\pi\)
\(360\) −79.7422 −4.20278
\(361\) −17.5043 −0.921280
\(362\) −3.44250 −0.180934
\(363\) 34.8566 1.82950
\(364\) 0 0
\(365\) −16.2926 −0.852792
\(366\) 43.0271 2.24906
\(367\) 19.7080 1.02875 0.514374 0.857566i \(-0.328024\pi\)
0.514374 + 0.857566i \(0.328024\pi\)
\(368\) 7.14043 0.372221
\(369\) 21.0651 1.09660
\(370\) 18.5144 0.962515
\(371\) 0 0
\(372\) 12.6757 0.657205
\(373\) −0.365792 −0.0189400 −0.00947000 0.999955i \(-0.503014\pi\)
−0.00947000 + 0.999955i \(0.503014\pi\)
\(374\) 5.23358 0.270622
\(375\) −0.909143 −0.0469479
\(376\) −16.5319 −0.852566
\(377\) 2.46882 0.127151
\(378\) 0 0
\(379\) 7.39215 0.379709 0.189855 0.981812i \(-0.439198\pi\)
0.189855 + 0.981812i \(0.439198\pi\)
\(380\) 2.37429 0.121798
\(381\) 37.5707 1.92481
\(382\) 18.9795 0.971073
\(383\) 3.35364 0.171363 0.0856814 0.996323i \(-0.472693\pi\)
0.0856814 + 0.996323i \(0.472693\pi\)
\(384\) 11.8958 0.607057
\(385\) 0 0
\(386\) 0.101601 0.00517135
\(387\) −22.4780 −1.14262
\(388\) −0.778692 −0.0395321
\(389\) −2.59344 −0.131492 −0.0657462 0.997836i \(-0.520943\pi\)
−0.0657462 + 0.997836i \(0.520943\pi\)
\(390\) 12.4100 0.628403
\(391\) −17.2131 −0.870506
\(392\) 0 0
\(393\) 52.7379 2.66027
\(394\) −17.7121 −0.892321
\(395\) 1.70668 0.0858721
\(396\) 3.92417 0.197197
\(397\) 33.4914 1.68088 0.840441 0.541902i \(-0.182296\pi\)
0.840441 + 0.541902i \(0.182296\pi\)
\(398\) 18.1681 0.910686
\(399\) 0 0
\(400\) −11.7276 −0.586380
\(401\) 39.5156 1.97331 0.986657 0.162811i \(-0.0520561\pi\)
0.986657 + 0.162811i \(0.0520561\pi\)
\(402\) 17.0472 0.850239
\(403\) −6.13487 −0.305599
\(404\) 0.373310 0.0185729
\(405\) −107.153 −5.32449
\(406\) 0 0
\(407\) −3.86643 −0.191652
\(408\) −59.3348 −2.93751
\(409\) 10.9799 0.542922 0.271461 0.962449i \(-0.412493\pi\)
0.271461 + 0.962449i \(0.412493\pi\)
\(410\) 9.47990 0.468179
\(411\) 62.3989 3.07791
\(412\) 4.71567 0.232324
\(413\) 0 0
\(414\) 28.9580 1.42321
\(415\) 47.9405 2.35331
\(416\) 3.34804 0.164151
\(417\) −39.9227 −1.95502
\(418\) 1.11248 0.0544134
\(419\) −31.5621 −1.54191 −0.770954 0.636891i \(-0.780220\pi\)
−0.770954 + 0.636891i \(0.780220\pi\)
\(420\) 0 0
\(421\) −17.7055 −0.862914 −0.431457 0.902134i \(-0.642000\pi\)
−0.431457 + 0.902134i \(0.642000\pi\)
\(422\) 29.4706 1.43461
\(423\) −44.2046 −2.14930
\(424\) −30.1301 −1.46325
\(425\) 28.2712 1.37136
\(426\) 42.0348 2.03659
\(427\) 0 0
\(428\) −2.97789 −0.143942
\(429\) −2.59163 −0.125125
\(430\) −10.1158 −0.487825
\(431\) −21.4816 −1.03473 −0.517367 0.855764i \(-0.673088\pi\)
−0.517367 + 0.855764i \(0.673088\pi\)
\(432\) 41.8212 2.01212
\(433\) −34.7200 −1.66854 −0.834269 0.551358i \(-0.814110\pi\)
−0.834269 + 0.551358i \(0.814110\pi\)
\(434\) 0 0
\(435\) −26.0486 −1.24893
\(436\) −4.45848 −0.213522
\(437\) −3.65894 −0.175031
\(438\) 20.3948 0.974500
\(439\) −0.728505 −0.0347697 −0.0173848 0.999849i \(-0.505534\pi\)
−0.0173848 + 0.999849i \(0.505534\pi\)
\(440\) 7.49428 0.357276
\(441\) 0 0
\(442\) 6.76707 0.321877
\(443\) 0.837291 0.0397809 0.0198904 0.999802i \(-0.493668\pi\)
0.0198904 + 0.999802i \(0.493668\pi\)
\(444\) 10.3295 0.490216
\(445\) 29.0684 1.37797
\(446\) −24.3047 −1.15086
\(447\) −38.1187 −1.80295
\(448\) 0 0
\(449\) 26.4312 1.24737 0.623683 0.781677i \(-0.285635\pi\)
0.623683 + 0.781677i \(0.285635\pi\)
\(450\) −47.5612 −2.24206
\(451\) −1.97973 −0.0932217
\(452\) 5.66873 0.266635
\(453\) 12.3736 0.581361
\(454\) 1.15546 0.0542284
\(455\) 0 0
\(456\) −12.6126 −0.590639
\(457\) −2.40475 −0.112489 −0.0562447 0.998417i \(-0.517913\pi\)
−0.0562447 + 0.998417i \(0.517913\pi\)
\(458\) −16.7892 −0.784507
\(459\) −100.816 −4.70571
\(460\) −5.80831 −0.270814
\(461\) 22.2702 1.03722 0.518612 0.855010i \(-0.326449\pi\)
0.518612 + 0.855010i \(0.326449\pi\)
\(462\) 0 0
\(463\) 32.3085 1.50151 0.750753 0.660583i \(-0.229691\pi\)
0.750753 + 0.660583i \(0.229691\pi\)
\(464\) 5.89221 0.273539
\(465\) 64.7291 3.00174
\(466\) −1.64118 −0.0760263
\(467\) 12.8744 0.595756 0.297878 0.954604i \(-0.403721\pi\)
0.297878 + 0.954604i \(0.403721\pi\)
\(468\) 5.07399 0.234545
\(469\) 0 0
\(470\) −19.8934 −0.917612
\(471\) 3.75528 0.173034
\(472\) −7.70802 −0.354791
\(473\) 2.11251 0.0971335
\(474\) −2.13639 −0.0981275
\(475\) 6.00952 0.275736
\(476\) 0 0
\(477\) −80.5649 −3.68881
\(478\) −2.99781 −0.137117
\(479\) −10.5419 −0.481670 −0.240835 0.970566i \(-0.577421\pi\)
−0.240835 + 0.970566i \(0.577421\pi\)
\(480\) −35.3252 −1.61237
\(481\) −4.99933 −0.227950
\(482\) 34.9029 1.58978
\(483\) 0 0
\(484\) 6.41364 0.291529
\(485\) −3.97643 −0.180560
\(486\) 72.3020 3.27969
\(487\) 38.2416 1.73289 0.866446 0.499271i \(-0.166399\pi\)
0.866446 + 0.499271i \(0.166399\pi\)
\(488\) 33.5972 1.52087
\(489\) 68.1709 3.08280
\(490\) 0 0
\(491\) −15.4291 −0.696306 −0.348153 0.937438i \(-0.613191\pi\)
−0.348153 + 0.937438i \(0.613191\pi\)
\(492\) 5.28901 0.238447
\(493\) −14.2041 −0.639721
\(494\) 1.43845 0.0647190
\(495\) 20.0390 0.900685
\(496\) −14.6418 −0.657436
\(497\) 0 0
\(498\) −60.0111 −2.68916
\(499\) −38.8212 −1.73788 −0.868938 0.494921i \(-0.835197\pi\)
−0.868938 + 0.494921i \(0.835197\pi\)
\(500\) −0.167283 −0.00748112
\(501\) 43.5840 1.94719
\(502\) 21.2723 0.949430
\(503\) 27.0935 1.20804 0.604020 0.796969i \(-0.293565\pi\)
0.604020 + 0.796969i \(0.293565\pi\)
\(504\) 0 0
\(505\) 1.90633 0.0848304
\(506\) −2.72151 −0.120986
\(507\) −3.35100 −0.148823
\(508\) 6.91304 0.306717
\(509\) 15.7693 0.698961 0.349480 0.936944i \(-0.386358\pi\)
0.349480 + 0.936944i \(0.386358\pi\)
\(510\) −71.3995 −3.16162
\(511\) 0 0
\(512\) 22.6809 1.00236
\(513\) −21.4302 −0.946167
\(514\) 17.3373 0.764716
\(515\) 24.0808 1.06113
\(516\) −5.64376 −0.248453
\(517\) 4.15441 0.182711
\(518\) 0 0
\(519\) −86.8277 −3.81131
\(520\) 9.69018 0.424943
\(521\) −7.30737 −0.320142 −0.160071 0.987106i \(-0.551172\pi\)
−0.160071 + 0.987106i \(0.551172\pi\)
\(522\) 23.8958 1.04589
\(523\) −14.0826 −0.615788 −0.307894 0.951421i \(-0.599624\pi\)
−0.307894 + 0.951421i \(0.599624\pi\)
\(524\) 9.70381 0.423913
\(525\) 0 0
\(526\) 9.59677 0.418439
\(527\) 35.2963 1.53753
\(528\) −6.18531 −0.269181
\(529\) −14.0490 −0.610827
\(530\) −36.2565 −1.57488
\(531\) −20.6105 −0.894419
\(532\) 0 0
\(533\) −2.55981 −0.110877
\(534\) −36.3873 −1.57463
\(535\) −15.2067 −0.657445
\(536\) 13.3111 0.574953
\(537\) −32.3091 −1.39424
\(538\) 0.520559 0.0224429
\(539\) 0 0
\(540\) −34.0190 −1.46394
\(541\) −39.1750 −1.68426 −0.842132 0.539271i \(-0.818700\pi\)
−0.842132 + 0.539271i \(0.818700\pi\)
\(542\) −24.7977 −1.06515
\(543\) −9.80781 −0.420893
\(544\) −19.2626 −0.825877
\(545\) −22.7674 −0.975250
\(546\) 0 0
\(547\) 38.7917 1.65862 0.829308 0.558792i \(-0.188735\pi\)
0.829308 + 0.558792i \(0.188735\pi\)
\(548\) 11.4814 0.490463
\(549\) 89.8355 3.83408
\(550\) 4.46987 0.190596
\(551\) −3.01932 −0.128627
\(552\) 30.8546 1.31326
\(553\) 0 0
\(554\) −4.22746 −0.179607
\(555\) 52.7480 2.23903
\(556\) −7.34580 −0.311531
\(557\) −27.4693 −1.16391 −0.581956 0.813220i \(-0.697713\pi\)
−0.581956 + 0.813220i \(0.697713\pi\)
\(558\) −59.3796 −2.51374
\(559\) 2.73150 0.115530
\(560\) 0 0
\(561\) 14.9107 0.629528
\(562\) 10.6004 0.447151
\(563\) −14.1210 −0.595129 −0.297565 0.954702i \(-0.596174\pi\)
−0.297565 + 0.954702i \(0.596174\pi\)
\(564\) −11.0989 −0.467346
\(565\) 28.9477 1.21784
\(566\) 32.6288 1.37149
\(567\) 0 0
\(568\) 32.8223 1.37720
\(569\) −8.28649 −0.347388 −0.173694 0.984800i \(-0.555570\pi\)
−0.173694 + 0.984800i \(0.555570\pi\)
\(570\) −15.1771 −0.635701
\(571\) −23.5274 −0.984591 −0.492295 0.870428i \(-0.663842\pi\)
−0.492295 + 0.870428i \(0.663842\pi\)
\(572\) −0.476861 −0.0199386
\(573\) 54.0731 2.25894
\(574\) 0 0
\(575\) −14.7013 −0.613087
\(576\) 71.6861 2.98692
\(577\) 17.7732 0.739906 0.369953 0.929050i \(-0.379374\pi\)
0.369953 + 0.929050i \(0.379374\pi\)
\(578\) −18.9385 −0.787737
\(579\) 0.289465 0.0120297
\(580\) −4.79296 −0.199017
\(581\) 0 0
\(582\) 4.97763 0.206329
\(583\) 7.57160 0.313584
\(584\) 15.9250 0.658982
\(585\) 25.9106 1.07127
\(586\) 14.9857 0.619054
\(587\) 6.64096 0.274102 0.137051 0.990564i \(-0.456238\pi\)
0.137051 + 0.990564i \(0.456238\pi\)
\(588\) 0 0
\(589\) 7.50282 0.309148
\(590\) −9.27532 −0.381859
\(591\) −50.4623 −2.07574
\(592\) −11.9317 −0.490388
\(593\) −34.0504 −1.39828 −0.699141 0.714984i \(-0.746434\pi\)
−0.699141 + 0.714984i \(0.746434\pi\)
\(594\) −15.9398 −0.654016
\(595\) 0 0
\(596\) −7.01387 −0.287299
\(597\) 51.7616 2.11846
\(598\) −3.51894 −0.143900
\(599\) 9.38441 0.383437 0.191718 0.981450i \(-0.438594\pi\)
0.191718 + 0.981450i \(0.438594\pi\)
\(600\) −50.6764 −2.06885
\(601\) −8.80294 −0.359079 −0.179540 0.983751i \(-0.557461\pi\)
−0.179540 + 0.983751i \(0.557461\pi\)
\(602\) 0 0
\(603\) 35.5926 1.44944
\(604\) 2.27675 0.0926394
\(605\) 32.7516 1.33154
\(606\) −2.38631 −0.0969371
\(607\) −17.7720 −0.721342 −0.360671 0.932693i \(-0.617452\pi\)
−0.360671 + 0.932693i \(0.617452\pi\)
\(608\) −4.09458 −0.166057
\(609\) 0 0
\(610\) 40.4286 1.63691
\(611\) 5.37169 0.217315
\(612\) −29.1927 −1.18004
\(613\) 10.6081 0.428457 0.214228 0.976784i \(-0.431276\pi\)
0.214228 + 0.976784i \(0.431276\pi\)
\(614\) 11.9246 0.481237
\(615\) 27.0086 1.08909
\(616\) 0 0
\(617\) 49.3483 1.98669 0.993344 0.115188i \(-0.0367469\pi\)
0.993344 + 0.115188i \(0.0367469\pi\)
\(618\) −30.1440 −1.21257
\(619\) −7.42203 −0.298317 −0.149158 0.988813i \(-0.547656\pi\)
−0.149158 + 0.988813i \(0.547656\pi\)
\(620\) 11.9102 0.478325
\(621\) 52.4255 2.10376
\(622\) 24.2309 0.971573
\(623\) 0 0
\(624\) −7.99766 −0.320163
\(625\) −25.4234 −1.01694
\(626\) 19.4607 0.777806
\(627\) 3.16951 0.126578
\(628\) 0.690975 0.0275729
\(629\) 28.7631 1.14686
\(630\) 0 0
\(631\) 35.5184 1.41396 0.706982 0.707231i \(-0.250056\pi\)
0.706982 + 0.707231i \(0.250056\pi\)
\(632\) −1.66817 −0.0663564
\(633\) 83.9628 3.33722
\(634\) 24.9752 0.991890
\(635\) 35.3018 1.40091
\(636\) −20.2282 −0.802099
\(637\) 0 0
\(638\) −2.24576 −0.0889106
\(639\) 87.7637 3.47188
\(640\) 11.1774 0.441827
\(641\) 37.1554 1.46755 0.733775 0.679393i \(-0.237757\pi\)
0.733775 + 0.679393i \(0.237757\pi\)
\(642\) 19.0356 0.751274
\(643\) −39.7694 −1.56835 −0.784176 0.620538i \(-0.786914\pi\)
−0.784176 + 0.620538i \(0.786914\pi\)
\(644\) 0 0
\(645\) −28.8201 −1.13479
\(646\) −8.27599 −0.325614
\(647\) −22.9754 −0.903256 −0.451628 0.892206i \(-0.649157\pi\)
−0.451628 + 0.892206i \(0.649157\pi\)
\(648\) 104.736 4.11442
\(649\) 1.93700 0.0760340
\(650\) 5.77958 0.226694
\(651\) 0 0
\(652\) 12.5435 0.491241
\(653\) 18.1757 0.711268 0.355634 0.934625i \(-0.384265\pi\)
0.355634 + 0.934625i \(0.384265\pi\)
\(654\) 28.4999 1.11443
\(655\) 49.5530 1.93619
\(656\) −6.10936 −0.238531
\(657\) 42.5819 1.66128
\(658\) 0 0
\(659\) 14.1044 0.549431 0.274716 0.961526i \(-0.411416\pi\)
0.274716 + 0.961526i \(0.411416\pi\)
\(660\) 5.03137 0.195846
\(661\) 12.8557 0.500027 0.250013 0.968242i \(-0.419565\pi\)
0.250013 + 0.968242i \(0.419565\pi\)
\(662\) −19.1030 −0.742459
\(663\) 19.2796 0.748758
\(664\) −46.8590 −1.81848
\(665\) 0 0
\(666\) −48.3887 −1.87502
\(667\) 7.38627 0.285997
\(668\) 8.01948 0.310283
\(669\) −69.2449 −2.67716
\(670\) 16.0177 0.618819
\(671\) −8.44287 −0.325933
\(672\) 0 0
\(673\) −45.6138 −1.75828 −0.879141 0.476561i \(-0.841883\pi\)
−0.879141 + 0.476561i \(0.841883\pi\)
\(674\) −7.55278 −0.290922
\(675\) −86.1048 −3.31418
\(676\) −0.616586 −0.0237148
\(677\) −10.2469 −0.393821 −0.196910 0.980421i \(-0.563091\pi\)
−0.196910 + 0.980421i \(0.563091\pi\)
\(678\) −36.2362 −1.39164
\(679\) 0 0
\(680\) −55.7515 −2.13797
\(681\) 3.29194 0.126148
\(682\) 5.58058 0.213692
\(683\) 2.90040 0.110981 0.0554904 0.998459i \(-0.482328\pi\)
0.0554904 + 0.998459i \(0.482328\pi\)
\(684\) −6.20539 −0.237269
\(685\) 58.6305 2.24016
\(686\) 0 0
\(687\) −47.8329 −1.82494
\(688\) 6.51914 0.248540
\(689\) 9.79015 0.372975
\(690\) 37.1284 1.41345
\(691\) −6.91470 −0.263048 −0.131524 0.991313i \(-0.541987\pi\)
−0.131524 + 0.991313i \(0.541987\pi\)
\(692\) −15.9764 −0.607330
\(693\) 0 0
\(694\) −17.0323 −0.646536
\(695\) −37.5117 −1.42290
\(696\) 25.4610 0.965095
\(697\) 14.7276 0.557847
\(698\) 2.05245 0.0776864
\(699\) −4.67579 −0.176855
\(700\) 0 0
\(701\) −26.0973 −0.985682 −0.492841 0.870119i \(-0.664042\pi\)
−0.492841 + 0.870119i \(0.664042\pi\)
\(702\) −20.6102 −0.777884
\(703\) 6.11408 0.230597
\(704\) −6.73717 −0.253916
\(705\) −56.6769 −2.13457
\(706\) 18.7696 0.706402
\(707\) 0 0
\(708\) −5.17487 −0.194483
\(709\) −3.38472 −0.127116 −0.0635580 0.997978i \(-0.520245\pi\)
−0.0635580 + 0.997978i \(0.520245\pi\)
\(710\) 39.4962 1.48227
\(711\) −4.46053 −0.167283
\(712\) −28.4126 −1.06481
\(713\) −18.3544 −0.687378
\(714\) 0 0
\(715\) −2.43511 −0.0910681
\(716\) −5.94489 −0.222171
\(717\) −8.54087 −0.318964
\(718\) −10.3669 −0.386890
\(719\) 2.41574 0.0900918 0.0450459 0.998985i \(-0.485657\pi\)
0.0450459 + 0.998985i \(0.485657\pi\)
\(720\) 61.8395 2.30462
\(721\) 0 0
\(722\) 20.5883 0.766219
\(723\) 99.4395 3.69819
\(724\) −1.80464 −0.0670691
\(725\) −12.1314 −0.450548
\(726\) −40.9979 −1.52157
\(727\) −17.0150 −0.631050 −0.315525 0.948917i \(-0.602181\pi\)
−0.315525 + 0.948917i \(0.602181\pi\)
\(728\) 0 0
\(729\) 103.896 3.84799
\(730\) 19.1631 0.709258
\(731\) −15.7154 −0.581256
\(732\) 22.5558 0.833687
\(733\) −4.18453 −0.154559 −0.0772795 0.997009i \(-0.524623\pi\)
−0.0772795 + 0.997009i \(0.524623\pi\)
\(734\) −23.1803 −0.855599
\(735\) 0 0
\(736\) 10.0167 0.369221
\(737\) −3.34505 −0.123216
\(738\) −24.7765 −0.912034
\(739\) −28.0794 −1.03292 −0.516458 0.856312i \(-0.672750\pi\)
−0.516458 + 0.856312i \(0.672750\pi\)
\(740\) 9.70567 0.356788
\(741\) 4.09820 0.150551
\(742\) 0 0
\(743\) −26.5210 −0.972961 −0.486481 0.873691i \(-0.661720\pi\)
−0.486481 + 0.873691i \(0.661720\pi\)
\(744\) −63.2689 −2.31955
\(745\) −35.8167 −1.31222
\(746\) 0.430240 0.0157522
\(747\) −125.296 −4.58435
\(748\) 2.74357 0.100315
\(749\) 0 0
\(750\) 1.06932 0.0390461
\(751\) −23.7162 −0.865418 −0.432709 0.901534i \(-0.642442\pi\)
−0.432709 + 0.901534i \(0.642442\pi\)
\(752\) 12.8204 0.467510
\(753\) 60.6056 2.20859
\(754\) −2.90379 −0.105750
\(755\) 11.6263 0.423125
\(756\) 0 0
\(757\) −52.3661 −1.90328 −0.951639 0.307219i \(-0.900602\pi\)
−0.951639 + 0.307219i \(0.900602\pi\)
\(758\) −8.69454 −0.315800
\(759\) −7.75368 −0.281441
\(760\) −11.8509 −0.429877
\(761\) −23.8695 −0.865268 −0.432634 0.901570i \(-0.642416\pi\)
−0.432634 + 0.901570i \(0.642416\pi\)
\(762\) −44.1902 −1.60084
\(763\) 0 0
\(764\) 9.94949 0.359960
\(765\) −149.074 −5.38978
\(766\) −3.94450 −0.142521
\(767\) 2.50456 0.0904345
\(768\) 44.3908 1.60181
\(769\) −41.7599 −1.50590 −0.752950 0.658077i \(-0.771370\pi\)
−0.752950 + 0.658077i \(0.771370\pi\)
\(770\) 0 0
\(771\) 49.3946 1.77890
\(772\) 0.0532617 0.00191693
\(773\) −2.97178 −0.106888 −0.0534438 0.998571i \(-0.517020\pi\)
−0.0534438 + 0.998571i \(0.517020\pi\)
\(774\) 26.4383 0.950306
\(775\) 30.1457 1.08287
\(776\) 3.88672 0.139525
\(777\) 0 0
\(778\) 3.05037 0.109361
\(779\) 3.13059 0.112165
\(780\) 6.50561 0.232938
\(781\) −8.24815 −0.295142
\(782\) 20.2459 0.723990
\(783\) 43.2610 1.54602
\(784\) 0 0
\(785\) 3.52850 0.125937
\(786\) −62.0296 −2.21252
\(787\) 48.6142 1.73291 0.866454 0.499256i \(-0.166393\pi\)
0.866454 + 0.499256i \(0.166393\pi\)
\(788\) −9.28509 −0.330768
\(789\) 27.3415 0.973384
\(790\) −2.00737 −0.0714189
\(791\) 0 0
\(792\) −19.5869 −0.695990
\(793\) −10.9167 −0.387664
\(794\) −39.3921 −1.39797
\(795\) −103.296 −3.66354
\(796\) 9.52418 0.337576
\(797\) −25.6470 −0.908463 −0.454232 0.890884i \(-0.650086\pi\)
−0.454232 + 0.890884i \(0.650086\pi\)
\(798\) 0 0
\(799\) −30.9055 −1.09336
\(800\) −16.4517 −0.581655
\(801\) −75.9724 −2.68435
\(802\) −46.4777 −1.64118
\(803\) −4.00191 −0.141224
\(804\) 8.93657 0.315169
\(805\) 0 0
\(806\) 7.21575 0.254164
\(807\) 1.48309 0.0522073
\(808\) −1.86332 −0.0655514
\(809\) −11.9205 −0.419101 −0.209550 0.977798i \(-0.567200\pi\)
−0.209550 + 0.977798i \(0.567200\pi\)
\(810\) 126.032 4.42832
\(811\) 10.5564 0.370685 0.185343 0.982674i \(-0.440661\pi\)
0.185343 + 0.982674i \(0.440661\pi\)
\(812\) 0 0
\(813\) −70.6494 −2.47778
\(814\) 4.54764 0.159395
\(815\) 64.0540 2.24371
\(816\) 46.0137 1.61080
\(817\) −3.34057 −0.116872
\(818\) −12.9144 −0.451543
\(819\) 0 0
\(820\) 4.96960 0.173546
\(821\) −46.2139 −1.61288 −0.806438 0.591319i \(-0.798607\pi\)
−0.806438 + 0.591319i \(0.798607\pi\)
\(822\) −73.3927 −2.55986
\(823\) 41.2171 1.43674 0.718368 0.695663i \(-0.244889\pi\)
0.718368 + 0.695663i \(0.244889\pi\)
\(824\) −23.5375 −0.819969
\(825\) 12.7348 0.443369
\(826\) 0 0
\(827\) 5.94430 0.206704 0.103352 0.994645i \(-0.467043\pi\)
0.103352 + 0.994645i \(0.467043\pi\)
\(828\) 15.1805 0.527558
\(829\) −34.8106 −1.20902 −0.604511 0.796596i \(-0.706632\pi\)
−0.604511 + 0.796596i \(0.706632\pi\)
\(830\) −56.3869 −1.95722
\(831\) −12.0442 −0.417808
\(832\) −8.71122 −0.302007
\(833\) 0 0
\(834\) 46.9565 1.62597
\(835\) 40.9519 1.41720
\(836\) 0.583191 0.0201701
\(837\) −107.501 −3.71578
\(838\) 37.1229 1.28239
\(839\) −10.7896 −0.372500 −0.186250 0.982502i \(-0.559633\pi\)
−0.186250 + 0.982502i \(0.559633\pi\)
\(840\) 0 0
\(841\) −22.9049 −0.789825
\(842\) 20.8250 0.717676
\(843\) 30.2009 1.04018
\(844\) 15.4492 0.531784
\(845\) −3.14862 −0.108316
\(846\) 51.9928 1.78755
\(847\) 0 0
\(848\) 23.3657 0.802381
\(849\) 92.9605 3.19039
\(850\) −33.2523 −1.14054
\(851\) −14.9571 −0.512722
\(852\) 22.0356 0.754929
\(853\) −39.1053 −1.33894 −0.669470 0.742839i \(-0.733479\pi\)
−0.669470 + 0.742839i \(0.733479\pi\)
\(854\) 0 0
\(855\) −31.6881 −1.08371
\(856\) 14.8637 0.508030
\(857\) 33.3654 1.13974 0.569870 0.821735i \(-0.306994\pi\)
0.569870 + 0.821735i \(0.306994\pi\)
\(858\) 3.04823 0.104065
\(859\) 29.4914 1.00623 0.503116 0.864219i \(-0.332187\pi\)
0.503116 + 0.864219i \(0.332187\pi\)
\(860\) −5.30293 −0.180828
\(861\) 0 0
\(862\) 25.2664 0.860578
\(863\) −24.6224 −0.838157 −0.419079 0.907950i \(-0.637647\pi\)
−0.419079 + 0.907950i \(0.637647\pi\)
\(864\) 58.6675 1.99591
\(865\) −81.5841 −2.77394
\(866\) 40.8372 1.38771
\(867\) −53.9564 −1.83246
\(868\) 0 0
\(869\) 0.419207 0.0142206
\(870\) 30.6380 1.03873
\(871\) −4.32518 −0.146553
\(872\) 22.2538 0.753609
\(873\) 10.3927 0.351740
\(874\) 4.30359 0.145571
\(875\) 0 0
\(876\) 10.6914 0.361230
\(877\) −4.62556 −0.156194 −0.0780971 0.996946i \(-0.524884\pi\)
−0.0780971 + 0.996946i \(0.524884\pi\)
\(878\) 0.856858 0.0289176
\(879\) 42.6948 1.44006
\(880\) −5.81177 −0.195915
\(881\) 42.1720 1.42081 0.710405 0.703793i \(-0.248512\pi\)
0.710405 + 0.703793i \(0.248512\pi\)
\(882\) 0 0
\(883\) 20.7992 0.699950 0.349975 0.936759i \(-0.386190\pi\)
0.349975 + 0.936759i \(0.386190\pi\)
\(884\) 3.54746 0.119314
\(885\) −26.4257 −0.888291
\(886\) −0.984810 −0.0330853
\(887\) −34.4889 −1.15802 −0.579012 0.815319i \(-0.696562\pi\)
−0.579012 + 0.815319i \(0.696562\pi\)
\(888\) −51.5581 −1.73018
\(889\) 0 0
\(890\) −34.1898 −1.14605
\(891\) −26.3198 −0.881748
\(892\) −12.7411 −0.426604
\(893\) −6.56947 −0.219839
\(894\) 44.8347 1.49950
\(895\) −30.3579 −1.01475
\(896\) 0 0
\(897\) −10.0256 −0.334744
\(898\) −31.0880 −1.03742
\(899\) −15.1459 −0.505144
\(900\) −24.9327 −0.831091
\(901\) −56.3267 −1.87651
\(902\) 2.32853 0.0775315
\(903\) 0 0
\(904\) −28.2946 −0.941065
\(905\) −9.21550 −0.306334
\(906\) −14.5536 −0.483512
\(907\) 13.3619 0.443675 0.221838 0.975084i \(-0.428795\pi\)
0.221838 + 0.975084i \(0.428795\pi\)
\(908\) 0.605720 0.0201015
\(909\) −4.98233 −0.165254
\(910\) 0 0
\(911\) 5.29058 0.175285 0.0876424 0.996152i \(-0.472067\pi\)
0.0876424 + 0.996152i \(0.472067\pi\)
\(912\) 9.78097 0.323880
\(913\) 11.7755 0.389713
\(914\) 2.82843 0.0935562
\(915\) 115.182 3.80781
\(916\) −8.80129 −0.290803
\(917\) 0 0
\(918\) 118.579 3.91369
\(919\) −18.8306 −0.621164 −0.310582 0.950547i \(-0.600524\pi\)
−0.310582 + 0.950547i \(0.600524\pi\)
\(920\) 28.9913 0.955814
\(921\) 33.9736 1.11947
\(922\) −26.1939 −0.862649
\(923\) −10.6649 −0.351041
\(924\) 0 0
\(925\) 24.5659 0.807721
\(926\) −38.0009 −1.24879
\(927\) −62.9371 −2.06712
\(928\) 8.26571 0.271335
\(929\) 44.9537 1.47488 0.737442 0.675411i \(-0.236034\pi\)
0.737442 + 0.675411i \(0.236034\pi\)
\(930\) −76.1335 −2.49652
\(931\) 0 0
\(932\) −0.860348 −0.0281816
\(933\) 69.0348 2.26010
\(934\) −15.1427 −0.495484
\(935\) 14.0102 0.458182
\(936\) −25.3260 −0.827808
\(937\) −37.9272 −1.23903 −0.619514 0.784986i \(-0.712670\pi\)
−0.619514 + 0.784986i \(0.712670\pi\)
\(938\) 0 0
\(939\) 55.4442 1.80935
\(940\) −10.4286 −0.340143
\(941\) −35.7869 −1.16662 −0.583310 0.812250i \(-0.698243\pi\)
−0.583310 + 0.812250i \(0.698243\pi\)
\(942\) −4.41691 −0.143911
\(943\) −7.65848 −0.249394
\(944\) 5.97752 0.194552
\(945\) 0 0
\(946\) −2.48471 −0.0807849
\(947\) −14.7443 −0.479125 −0.239563 0.970881i \(-0.577004\pi\)
−0.239563 + 0.970881i \(0.577004\pi\)
\(948\) −1.11995 −0.0363742
\(949\) −5.17450 −0.167971
\(950\) −7.06831 −0.229326
\(951\) 71.1551 2.30736
\(952\) 0 0
\(953\) 0.649669 0.0210448 0.0105224 0.999945i \(-0.496651\pi\)
0.0105224 + 0.999945i \(0.496651\pi\)
\(954\) 94.7593 3.06795
\(955\) 50.8076 1.64409
\(956\) −1.57153 −0.0508268
\(957\) −6.39826 −0.206826
\(958\) 12.3992 0.400600
\(959\) 0 0
\(960\) 91.9123 2.96646
\(961\) 6.63659 0.214083
\(962\) 5.88014 0.189583
\(963\) 39.7440 1.28073
\(964\) 18.2969 0.589305
\(965\) 0.271983 0.00875545
\(966\) 0 0
\(967\) −13.0802 −0.420632 −0.210316 0.977633i \(-0.567449\pi\)
−0.210316 + 0.977633i \(0.567449\pi\)
\(968\) −32.0127 −1.02893
\(969\) −23.5786 −0.757453
\(970\) 4.67702 0.150170
\(971\) 29.1203 0.934515 0.467258 0.884121i \(-0.345242\pi\)
0.467258 + 0.884121i \(0.345242\pi\)
\(972\) 37.9025 1.21572
\(973\) 0 0
\(974\) −44.9792 −1.44123
\(975\) 16.4662 0.527342
\(976\) −26.0544 −0.833980
\(977\) −18.5000 −0.591868 −0.295934 0.955208i \(-0.595631\pi\)
−0.295934 + 0.955208i \(0.595631\pi\)
\(978\) −80.1817 −2.56393
\(979\) 7.14000 0.228195
\(980\) 0 0
\(981\) 59.5045 1.89983
\(982\) 18.1475 0.579111
\(983\) 11.0462 0.352318 0.176159 0.984362i \(-0.443633\pi\)
0.176159 + 0.984362i \(0.443633\pi\)
\(984\) −26.3993 −0.841578
\(985\) −47.4148 −1.51076
\(986\) 16.7067 0.532049
\(987\) 0 0
\(988\) 0.754072 0.0239902
\(989\) 8.17216 0.259860
\(990\) −23.5696 −0.749090
\(991\) −40.4757 −1.28575 −0.642877 0.765969i \(-0.722259\pi\)
−0.642877 + 0.765969i \(0.722259\pi\)
\(992\) −20.5398 −0.652138
\(993\) −54.4251 −1.72713
\(994\) 0 0
\(995\) 48.6357 1.54185
\(996\) −31.4593 −0.996826
\(997\) 12.0623 0.382018 0.191009 0.981588i \(-0.438824\pi\)
0.191009 + 0.981588i \(0.438824\pi\)
\(998\) 45.6610 1.44537
\(999\) −87.6029 −2.77163
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.a.m.1.2 6
3.2 odd 2 5733.2.a.bu.1.5 6
7.2 even 3 637.2.e.o.508.5 12
7.3 odd 6 637.2.e.n.79.5 12
7.4 even 3 637.2.e.o.79.5 12
7.5 odd 6 637.2.e.n.508.5 12
7.6 odd 2 637.2.a.n.1.2 yes 6
13.12 even 2 8281.2.a.cc.1.5 6
21.20 even 2 5733.2.a.br.1.5 6
91.90 odd 2 8281.2.a.cd.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.a.m.1.2 6 1.1 even 1 trivial
637.2.a.n.1.2 yes 6 7.6 odd 2
637.2.e.n.79.5 12 7.3 odd 6
637.2.e.n.508.5 12 7.5 odd 6
637.2.e.o.79.5 12 7.4 even 3
637.2.e.o.508.5 12 7.2 even 3
5733.2.a.br.1.5 6 21.20 even 2
5733.2.a.bu.1.5 6 3.2 odd 2
8281.2.a.cc.1.5 6 13.12 even 2
8281.2.a.cd.1.5 6 91.90 odd 2