# Properties

 Label 637.2.a.j Level $637$ Weight $2$ Character orbit 637.a Self dual yes Analytic conductor $5.086$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [637,2,Mod(1,637)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(637, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("637.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$637 = 7^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 637.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$5.08647060876$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.316.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 4x + 2$$ x^3 - x^2 - 4*x + 2 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 91) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_1 q^{2} + (\beta_{2} - \beta_1 + 1) q^{3} + (\beta_{2} + 1) q^{4} + (\beta_1 - 1) q^{5} + (2 \beta_1 - 2) q^{6} + (\beta_{2} + 1) q^{8} + ( - 2 \beta_1 + 3) q^{9}+O(q^{10})$$ q + b1 * q^2 + (b2 - b1 + 1) * q^3 + (b2 + 1) * q^4 + (b1 - 1) * q^5 + (2*b1 - 2) * q^6 + (b2 + 1) * q^8 + (-2*b1 + 3) * q^9 $$q + \beta_1 q^{2} + (\beta_{2} - \beta_1 + 1) q^{3} + (\beta_{2} + 1) q^{4} + (\beta_1 - 1) q^{5} + (2 \beta_1 - 2) q^{6} + (\beta_{2} + 1) q^{8} + ( - 2 \beta_1 + 3) q^{9} + (\beta_{2} - \beta_1 + 3) q^{10} + (\beta_{2} - \beta_1 + 1) q^{11} + 4 q^{12} - q^{13} + ( - \beta_{2} + 3 \beta_1 - 3) q^{15} + ( - \beta_{2} + 2 \beta_1 - 1) q^{16} + ( - \beta_{2} - \beta_1 - 1) q^{17} + ( - 2 \beta_{2} + 3 \beta_1 - 6) q^{18} + (\beta_1 + 1) q^{19} + 2 \beta_1 q^{20} + (2 \beta_1 - 2) q^{22} + ( - \beta_{2} - 2 \beta_1 + 4) q^{23} + 4 q^{24} + (\beta_{2} - 2 \beta_1 - 1) q^{25} - \beta_1 q^{26} + ( - 4 \beta_1 + 4) q^{27} + (\beta_{2} + 8) q^{29} + (2 \beta_{2} - 4 \beta_1 + 8) q^{30} + ( - 2 \beta_{2} + \beta_1 + 1) q^{31} + ( - \beta_{2} - 2 \beta_1 + 3) q^{32} + ( - 2 \beta_1 + 6) q^{33} + ( - 2 \beta_{2} - 2 \beta_1 - 4) q^{34} + (\beta_{2} - 4 \beta_1 + 1) q^{36} + (\beta_{2} + 3 \beta_1 - 1) q^{37} + (\beta_{2} + \beta_1 + 3) q^{38} + ( - \beta_{2} + \beta_1 - 1) q^{39} + 2 \beta_1 q^{40} + (2 \beta_{2} - 2 \beta_1) q^{41} + ( - 3 \beta_{2} - 2 \beta_1 + 4) q^{43} + 4 q^{44} + ( - 2 \beta_{2} + 5 \beta_1 - 9) q^{45} + ( - 3 \beta_{2} + 3 \beta_1 - 7) q^{46} + (4 \beta_{2} - \beta_1 + 3) q^{47} + (4 \beta_1 - 8) q^{48} + ( - \beta_{2} - 5) q^{50} + ( - 2 \beta_1 - 2) q^{51} + ( - \beta_{2} - 1) q^{52} + ( - 3 \beta_{2} + 2 \beta_1 + 2) q^{53} + ( - 4 \beta_{2} + 4 \beta_1 - 12) q^{54} + ( - \beta_{2} + 3 \beta_1 - 3) q^{55} + (\beta_{2} + \beta_1 - 1) q^{57} + (\beta_{2} + 9 \beta_1 + 1) q^{58} + ( - 4 \beta_{2} - 2 \beta_1 + 2) q^{59} + (4 \beta_1 - 4) q^{60} + 2 q^{61} + ( - \beta_{2} - \beta_1 + 1) q^{62} + ( - \beta_{2} - 2 \beta_1 - 5) q^{64} + ( - \beta_1 + 1) q^{65} + ( - 2 \beta_{2} + 6 \beta_1 - 6) q^{66} + (4 \beta_{2} - 6 \beta_1 - 2) q^{67} + ( - 2 \beta_{2} - 4 \beta_1 - 6) q^{68} + (5 \beta_{2} - 9 \beta_1 + 5) q^{69} + ( - \beta_{2} + 3 \beta_1 - 3) q^{71} + (\beta_{2} - 4 \beta_1 + 1) q^{72} + (4 \beta_{2} + \beta_1 + 3) q^{73} + (4 \beta_{2} + 10) q^{74} + ( - 2 \beta_{2} - 2 \beta_1 + 6) q^{75} + (2 \beta_{2} + 2 \beta_1 + 2) q^{76} + ( - 2 \beta_1 + 2) q^{78} + ( - \beta_{2} + 4 \beta_1 - 6) q^{79} + (2 \beta_{2} - 4 \beta_1 + 6) q^{80} + (4 \beta_{2} - 6 \beta_1 + 3) q^{81} + (2 \beta_1 - 4) q^{82} + ( - 4 \beta_{2} + 9 \beta_1 + 1) q^{83} + ( - \beta_{2} - \beta_1 - 3) q^{85} + ( - 5 \beta_{2} + \beta_1 - 9) q^{86} + (7 \beta_{2} - 7 \beta_1 + 11) q^{87} + 4 q^{88} + (2 \beta_{2} - 5 \beta_1 + 1) q^{89} + (3 \beta_{2} - 11 \beta_1 + 13) q^{90} + (2 \beta_{2} - 6 \beta_1 - 2) q^{92} + (3 \beta_{2} - \beta_1 - 7) q^{93} + (3 \beta_{2} + 7 \beta_1 + 1) q^{94} + (\beta_{2} + 2) q^{95} + (4 \beta_{2} - 8 \beta_1 + 4) q^{96} + (\beta_1 + 3) q^{97} + (3 \beta_{2} - 7 \beta_1 + 7) q^{99}+O(q^{100})$$ q + b1 * q^2 + (b2 - b1 + 1) * q^3 + (b2 + 1) * q^4 + (b1 - 1) * q^5 + (2*b1 - 2) * q^6 + (b2 + 1) * q^8 + (-2*b1 + 3) * q^9 + (b2 - b1 + 3) * q^10 + (b2 - b1 + 1) * q^11 + 4 * q^12 - q^13 + (-b2 + 3*b1 - 3) * q^15 + (-b2 + 2*b1 - 1) * q^16 + (-b2 - b1 - 1) * q^17 + (-2*b2 + 3*b1 - 6) * q^18 + (b1 + 1) * q^19 + 2*b1 * q^20 + (2*b1 - 2) * q^22 + (-b2 - 2*b1 + 4) * q^23 + 4 * q^24 + (b2 - 2*b1 - 1) * q^25 - b1 * q^26 + (-4*b1 + 4) * q^27 + (b2 + 8) * q^29 + (2*b2 - 4*b1 + 8) * q^30 + (-2*b2 + b1 + 1) * q^31 + (-b2 - 2*b1 + 3) * q^32 + (-2*b1 + 6) * q^33 + (-2*b2 - 2*b1 - 4) * q^34 + (b2 - 4*b1 + 1) * q^36 + (b2 + 3*b1 - 1) * q^37 + (b2 + b1 + 3) * q^38 + (-b2 + b1 - 1) * q^39 + 2*b1 * q^40 + (2*b2 - 2*b1) * q^41 + (-3*b2 - 2*b1 + 4) * q^43 + 4 * q^44 + (-2*b2 + 5*b1 - 9) * q^45 + (-3*b2 + 3*b1 - 7) * q^46 + (4*b2 - b1 + 3) * q^47 + (4*b1 - 8) * q^48 + (-b2 - 5) * q^50 + (-2*b1 - 2) * q^51 + (-b2 - 1) * q^52 + (-3*b2 + 2*b1 + 2) * q^53 + (-4*b2 + 4*b1 - 12) * q^54 + (-b2 + 3*b1 - 3) * q^55 + (b2 + b1 - 1) * q^57 + (b2 + 9*b1 + 1) * q^58 + (-4*b2 - 2*b1 + 2) * q^59 + (4*b1 - 4) * q^60 + 2 * q^61 + (-b2 - b1 + 1) * q^62 + (-b2 - 2*b1 - 5) * q^64 + (-b1 + 1) * q^65 + (-2*b2 + 6*b1 - 6) * q^66 + (4*b2 - 6*b1 - 2) * q^67 + (-2*b2 - 4*b1 - 6) * q^68 + (5*b2 - 9*b1 + 5) * q^69 + (-b2 + 3*b1 - 3) * q^71 + (b2 - 4*b1 + 1) * q^72 + (4*b2 + b1 + 3) * q^73 + (4*b2 + 10) * q^74 + (-2*b2 - 2*b1 + 6) * q^75 + (2*b2 + 2*b1 + 2) * q^76 + (-2*b1 + 2) * q^78 + (-b2 + 4*b1 - 6) * q^79 + (2*b2 - 4*b1 + 6) * q^80 + (4*b2 - 6*b1 + 3) * q^81 + (2*b1 - 4) * q^82 + (-4*b2 + 9*b1 + 1) * q^83 + (-b2 - b1 - 3) * q^85 + (-5*b2 + b1 - 9) * q^86 + (7*b2 - 7*b1 + 11) * q^87 + 4 * q^88 + (2*b2 - 5*b1 + 1) * q^89 + (3*b2 - 11*b1 + 13) * q^90 + (2*b2 - 6*b1 - 2) * q^92 + (3*b2 - b1 - 7) * q^93 + (3*b2 + 7*b1 + 1) * q^94 + (b2 + 2) * q^95 + (4*b2 - 8*b1 + 4) * q^96 + (b1 + 3) * q^97 + (3*b2 - 7*b1 + 7) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q + q^{2} + 2 q^{3} + 3 q^{4} - 2 q^{5} - 4 q^{6} + 3 q^{8} + 7 q^{9}+O(q^{10})$$ 3 * q + q^2 + 2 * q^3 + 3 * q^4 - 2 * q^5 - 4 * q^6 + 3 * q^8 + 7 * q^9 $$3 q + q^{2} + 2 q^{3} + 3 q^{4} - 2 q^{5} - 4 q^{6} + 3 q^{8} + 7 q^{9} + 8 q^{10} + 2 q^{11} + 12 q^{12} - 3 q^{13} - 6 q^{15} - q^{16} - 4 q^{17} - 15 q^{18} + 4 q^{19} + 2 q^{20} - 4 q^{22} + 10 q^{23} + 12 q^{24} - 5 q^{25} - q^{26} + 8 q^{27} + 24 q^{29} + 20 q^{30} + 4 q^{31} + 7 q^{32} + 16 q^{33} - 14 q^{34} - q^{36} + 10 q^{38} - 2 q^{39} + 2 q^{40} - 2 q^{41} + 10 q^{43} + 12 q^{44} - 22 q^{45} - 18 q^{46} + 8 q^{47} - 20 q^{48} - 15 q^{50} - 8 q^{51} - 3 q^{52} + 8 q^{53} - 32 q^{54} - 6 q^{55} - 2 q^{57} + 12 q^{58} + 4 q^{59} - 8 q^{60} + 6 q^{61} + 2 q^{62} - 17 q^{64} + 2 q^{65} - 12 q^{66} - 12 q^{67} - 22 q^{68} + 6 q^{69} - 6 q^{71} - q^{72} + 10 q^{73} + 30 q^{74} + 16 q^{75} + 8 q^{76} + 4 q^{78} - 14 q^{79} + 14 q^{80} + 3 q^{81} - 10 q^{82} + 12 q^{83} - 10 q^{85} - 26 q^{86} + 26 q^{87} + 12 q^{88} - 2 q^{89} + 28 q^{90} - 12 q^{92} - 22 q^{93} + 10 q^{94} + 6 q^{95} + 4 q^{96} + 10 q^{97} + 14 q^{99}+O(q^{100})$$ 3 * q + q^2 + 2 * q^3 + 3 * q^4 - 2 * q^5 - 4 * q^6 + 3 * q^8 + 7 * q^9 + 8 * q^10 + 2 * q^11 + 12 * q^12 - 3 * q^13 - 6 * q^15 - q^16 - 4 * q^17 - 15 * q^18 + 4 * q^19 + 2 * q^20 - 4 * q^22 + 10 * q^23 + 12 * q^24 - 5 * q^25 - q^26 + 8 * q^27 + 24 * q^29 + 20 * q^30 + 4 * q^31 + 7 * q^32 + 16 * q^33 - 14 * q^34 - q^36 + 10 * q^38 - 2 * q^39 + 2 * q^40 - 2 * q^41 + 10 * q^43 + 12 * q^44 - 22 * q^45 - 18 * q^46 + 8 * q^47 - 20 * q^48 - 15 * q^50 - 8 * q^51 - 3 * q^52 + 8 * q^53 - 32 * q^54 - 6 * q^55 - 2 * q^57 + 12 * q^58 + 4 * q^59 - 8 * q^60 + 6 * q^61 + 2 * q^62 - 17 * q^64 + 2 * q^65 - 12 * q^66 - 12 * q^67 - 22 * q^68 + 6 * q^69 - 6 * q^71 - q^72 + 10 * q^73 + 30 * q^74 + 16 * q^75 + 8 * q^76 + 4 * q^78 - 14 * q^79 + 14 * q^80 + 3 * q^81 - 10 * q^82 + 12 * q^83 - 10 * q^85 - 26 * q^86 + 26 * q^87 + 12 * q^88 - 2 * q^89 + 28 * q^90 - 12 * q^92 - 22 * q^93 + 10 * q^94 + 6 * q^95 + 4 * q^96 + 10 * q^97 + 14 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 4x + 2$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - 3$$ v^2 - 3
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 3$$ b2 + 3

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.81361 0.470683 2.34292
−1.81361 3.10278 1.28917 −2.81361 −5.62721 0 1.28917 6.62721 5.10278
1.2 0.470683 −2.24914 −1.77846 −0.529317 −1.05863 0 −1.77846 2.05863 −0.249141
1.3 2.34292 1.14637 3.48929 1.34292 2.68585 0 3.48929 −1.68585 3.14637
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$7$$ $$-1$$
$$13$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.2.a.j 3
3.b odd 2 1 5733.2.a.x 3
7.b odd 2 1 91.2.a.d 3
7.c even 3 2 637.2.e.i 6
7.d odd 6 2 637.2.e.j 6
13.b even 2 1 8281.2.a.bg 3
21.c even 2 1 819.2.a.i 3
28.d even 2 1 1456.2.a.t 3
35.c odd 2 1 2275.2.a.m 3
56.e even 2 1 5824.2.a.bs 3
56.h odd 2 1 5824.2.a.by 3
91.b odd 2 1 1183.2.a.i 3
91.i even 4 2 1183.2.c.f 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.d 3 7.b odd 2 1
637.2.a.j 3 1.a even 1 1 trivial
637.2.e.i 6 7.c even 3 2
637.2.e.j 6 7.d odd 6 2
819.2.a.i 3 21.c even 2 1
1183.2.a.i 3 91.b odd 2 1
1183.2.c.f 6 91.i even 4 2
1456.2.a.t 3 28.d even 2 1
2275.2.a.m 3 35.c odd 2 1
5733.2.a.x 3 3.b odd 2 1
5824.2.a.bs 3 56.e even 2 1
5824.2.a.by 3 56.h odd 2 1
8281.2.a.bg 3 13.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(637))$$:

 $$T_{2}^{3} - T_{2}^{2} - 4T_{2} + 2$$ T2^3 - T2^2 - 4*T2 + 2 $$T_{3}^{3} - 2T_{3}^{2} - 6T_{3} + 8$$ T3^3 - 2*T3^2 - 6*T3 + 8 $$T_{17}^{3} + 4T_{17}^{2} - 10T_{17} + 4$$ T17^3 + 4*T17^2 - 10*T17 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3} - T^{2} - 4T + 2$$
$3$ $$T^{3} - 2 T^{2} + \cdots + 8$$
$5$ $$T^{3} + 2 T^{2} + \cdots - 2$$
$7$ $$T^{3}$$
$11$ $$T^{3} - 2 T^{2} + \cdots + 8$$
$13$ $$(T + 1)^{3}$$
$17$ $$T^{3} + 4 T^{2} + \cdots + 4$$
$19$ $$T^{3} - 4T^{2} + T + 4$$
$23$ $$T^{3} - 10 T^{2} + \cdots + 136$$
$29$ $$T^{3} - 24 T^{2} + \cdots - 454$$
$31$ $$T^{3} - 4 T^{2} + \cdots - 16$$
$37$ $$T^{3} - 58T - 124$$
$41$ $$T^{3} + 2 T^{2} + \cdots + 8$$
$43$ $$T^{3} - 10 T^{2} + \cdots + 628$$
$47$ $$T^{3} - 8 T^{2} + \cdots + 544$$
$53$ $$T^{3} - 8 T^{2} + \cdots - 22$$
$59$ $$T^{3} - 4 T^{2} + \cdots + 688$$
$61$ $$(T - 2)^{3}$$
$67$ $$T^{3} + 12 T^{2} + \cdots - 976$$
$71$ $$T^{3} + 6 T^{2} + \cdots + 16$$
$73$ $$T^{3} - 10 T^{2} + \cdots + 274$$
$79$ $$T^{3} + 14 T^{2} + \cdots - 16$$
$83$ $$T^{3} - 12 T^{2} + \cdots + 3268$$
$89$ $$T^{3} + 2 T^{2} + \cdots - 422$$
$97$ $$T^{3} - 10 T^{2} + \cdots - 22$$