Properties

Label 637.2.a.h.1.2
Level $637$
Weight $2$
Character 637.1
Self dual yes
Analytic conductor $5.086$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(1,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.08647060876\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.210756\) of defining polynomial
Character \(\chi\) \(=\) 637.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.21076 q^{2} +1.74483 q^{3} -0.534070 q^{4} -2.21076 q^{5} -2.11256 q^{6} +3.06814 q^{8} +0.0444180 q^{9} +O(q^{10})\) \(q-1.21076 q^{2} +1.74483 q^{3} -0.534070 q^{4} -2.21076 q^{5} -2.11256 q^{6} +3.06814 q^{8} +0.0444180 q^{9} +2.67669 q^{10} -0.789244 q^{11} -0.931860 q^{12} +1.00000 q^{13} -3.85738 q^{15} -2.64663 q^{16} +1.74483 q^{17} -0.0537794 q^{18} -4.32331 q^{19} +1.18070 q^{20} +0.955582 q^{22} -1.11256 q^{23} +5.35337 q^{24} -0.112558 q^{25} -1.21076 q^{26} -5.15698 q^{27} -8.48965 q^{29} +4.67035 q^{30} -5.70041 q^{31} -2.93186 q^{32} -1.37709 q^{33} -2.11256 q^{34} -0.0237224 q^{36} +2.27890 q^{37} +5.23448 q^{38} +1.74483 q^{39} -6.78291 q^{40} -12.1363 q^{41} +8.06814 q^{43} +0.421512 q^{44} -0.0981974 q^{45} +1.34704 q^{46} -8.74483 q^{47} -4.61791 q^{48} +0.136281 q^{50} +3.04442 q^{51} -0.534070 q^{52} +7.95558 q^{53} +6.24384 q^{54} +1.74483 q^{55} -7.54343 q^{57} +10.2789 q^{58} -10.9556 q^{59} +2.06011 q^{60} +13.0681 q^{61} +6.90180 q^{62} +8.84302 q^{64} -2.21076 q^{65} +1.66732 q^{66} +6.55779 q^{67} -0.931860 q^{68} -1.94122 q^{69} +5.85738 q^{71} +0.136281 q^{72} -8.00936 q^{73} -2.75919 q^{74} -0.196395 q^{75} +2.30895 q^{76} -2.11256 q^{78} -6.91116 q^{79} +5.85105 q^{80} -9.13128 q^{81} +14.6941 q^{82} -3.14262 q^{83} -3.85738 q^{85} -9.76855 q^{86} -14.8130 q^{87} -2.42151 q^{88} -3.39145 q^{89} +0.118893 q^{90} +0.594184 q^{92} -9.94622 q^{93} +10.5878 q^{94} +9.55779 q^{95} -5.11559 q^{96} +0.0981974 q^{97} -0.0350567 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - 4 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} - 6 q^{8} + 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 2 q^{2} - 4 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} - 6 q^{8} + 11 q^{9} + 14 q^{10} - 4 q^{11} - 18 q^{12} + 3 q^{13} + 2 q^{15} + 4 q^{16} - 4 q^{17} + 8 q^{18} - 7 q^{19} - 16 q^{20} - 8 q^{22} + q^{23} + 28 q^{24} + 4 q^{25} - 2 q^{26} - 22 q^{27} - 7 q^{29} - 24 q^{30} + 3 q^{31} - 24 q^{32} + 10 q^{33} - 2 q^{34} + 26 q^{36} - 10 q^{37} - 12 q^{38} - 4 q^{39} + 22 q^{40} - 6 q^{41} + 9 q^{43} - 2 q^{44} - 3 q^{45} - 28 q^{46} - 17 q^{47} - 16 q^{48} - 30 q^{50} + 20 q^{51} + 6 q^{52} + 13 q^{53} - 28 q^{54} - 4 q^{55} + 4 q^{57} + 14 q^{58} - 22 q^{59} + 42 q^{60} + 24 q^{61} + 18 q^{62} + 20 q^{64} - 5 q^{65} + 30 q^{66} - 14 q^{67} - 18 q^{68} - 2 q^{69} + 4 q^{71} - 30 q^{72} - 5 q^{73} + 8 q^{74} - 6 q^{75} + 8 q^{76} - 2 q^{78} + q^{79} - 40 q^{80} + 15 q^{81} - 20 q^{82} - 23 q^{83} + 2 q^{85} + 6 q^{86} - 20 q^{87} - 4 q^{88} + 11 q^{89} + 40 q^{90} + 30 q^{92} - 38 q^{93} + 16 q^{94} - 5 q^{95} + 52 q^{96} + 3 q^{97} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21076 −0.856134 −0.428067 0.903747i \(-0.640805\pi\)
−0.428067 + 0.903747i \(0.640805\pi\)
\(3\) 1.74483 1.00738 0.503688 0.863886i \(-0.331976\pi\)
0.503688 + 0.863886i \(0.331976\pi\)
\(4\) −0.534070 −0.267035
\(5\) −2.21076 −0.988680 −0.494340 0.869269i \(-0.664590\pi\)
−0.494340 + 0.869269i \(0.664590\pi\)
\(6\) −2.11256 −0.862448
\(7\) 0 0
\(8\) 3.06814 1.08475
\(9\) 0.0444180 0.0148060
\(10\) 2.67669 0.846442
\(11\) −0.789244 −0.237966 −0.118983 0.992896i \(-0.537963\pi\)
−0.118983 + 0.992896i \(0.537963\pi\)
\(12\) −0.931860 −0.269005
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −3.85738 −0.995972
\(16\) −2.64663 −0.661657
\(17\) 1.74483 0.423182 0.211591 0.977358i \(-0.432135\pi\)
0.211591 + 0.977358i \(0.432135\pi\)
\(18\) −0.0537794 −0.0126759
\(19\) −4.32331 −0.991836 −0.495918 0.868369i \(-0.665168\pi\)
−0.495918 + 0.868369i \(0.665168\pi\)
\(20\) 1.18070 0.264012
\(21\) 0 0
\(22\) 0.955582 0.203731
\(23\) −1.11256 −0.231984 −0.115992 0.993250i \(-0.537005\pi\)
−0.115992 + 0.993250i \(0.537005\pi\)
\(24\) 5.35337 1.09275
\(25\) −0.112558 −0.0225117
\(26\) −1.21076 −0.237449
\(27\) −5.15698 −0.992461
\(28\) 0 0
\(29\) −8.48965 −1.57649 −0.788244 0.615362i \(-0.789010\pi\)
−0.788244 + 0.615362i \(0.789010\pi\)
\(30\) 4.67035 0.852686
\(31\) −5.70041 −1.02382 −0.511912 0.859038i \(-0.671063\pi\)
−0.511912 + 0.859038i \(0.671063\pi\)
\(32\) −2.93186 −0.518284
\(33\) −1.37709 −0.239721
\(34\) −2.11256 −0.362301
\(35\) 0 0
\(36\) −0.0237224 −0.00395373
\(37\) 2.27890 0.374648 0.187324 0.982298i \(-0.440019\pi\)
0.187324 + 0.982298i \(0.440019\pi\)
\(38\) 5.23448 0.849144
\(39\) 1.74483 0.279396
\(40\) −6.78291 −1.07247
\(41\) −12.1363 −1.89537 −0.947684 0.319209i \(-0.896583\pi\)
−0.947684 + 0.319209i \(0.896583\pi\)
\(42\) 0 0
\(43\) 8.06814 1.23038 0.615190 0.788379i \(-0.289079\pi\)
0.615190 + 0.788379i \(0.289079\pi\)
\(44\) 0.421512 0.0635453
\(45\) −0.0981974 −0.0146384
\(46\) 1.34704 0.198610
\(47\) −8.74483 −1.27556 −0.637782 0.770217i \(-0.720148\pi\)
−0.637782 + 0.770217i \(0.720148\pi\)
\(48\) −4.61791 −0.666537
\(49\) 0 0
\(50\) 0.136281 0.0192730
\(51\) 3.04442 0.426304
\(52\) −0.534070 −0.0740622
\(53\) 7.95558 1.09278 0.546392 0.837530i \(-0.316001\pi\)
0.546392 + 0.837530i \(0.316001\pi\)
\(54\) 6.24384 0.849679
\(55\) 1.74483 0.235272
\(56\) 0 0
\(57\) −7.54343 −0.999152
\(58\) 10.2789 1.34969
\(59\) −10.9556 −1.42630 −0.713148 0.701014i \(-0.752731\pi\)
−0.713148 + 0.701014i \(0.752731\pi\)
\(60\) 2.06011 0.265960
\(61\) 13.0681 1.67320 0.836602 0.547811i \(-0.184539\pi\)
0.836602 + 0.547811i \(0.184539\pi\)
\(62\) 6.90180 0.876530
\(63\) 0 0
\(64\) 8.84302 1.10538
\(65\) −2.21076 −0.274211
\(66\) 1.66732 0.205233
\(67\) 6.55779 0.801162 0.400581 0.916261i \(-0.368808\pi\)
0.400581 + 0.916261i \(0.368808\pi\)
\(68\) −0.931860 −0.113005
\(69\) −1.94122 −0.233696
\(70\) 0 0
\(71\) 5.85738 0.695144 0.347572 0.937653i \(-0.387006\pi\)
0.347572 + 0.937653i \(0.387006\pi\)
\(72\) 0.136281 0.0160608
\(73\) −8.00936 −0.937425 −0.468712 0.883351i \(-0.655282\pi\)
−0.468712 + 0.883351i \(0.655282\pi\)
\(74\) −2.75919 −0.320749
\(75\) −0.196395 −0.0226777
\(76\) 2.30895 0.264855
\(77\) 0 0
\(78\) −2.11256 −0.239200
\(79\) −6.91116 −0.777567 −0.388783 0.921329i \(-0.627105\pi\)
−0.388783 + 0.921329i \(0.627105\pi\)
\(80\) 5.85105 0.654167
\(81\) −9.13128 −1.01459
\(82\) 14.6941 1.62269
\(83\) −3.14262 −0.344947 −0.172473 0.985014i \(-0.555176\pi\)
−0.172473 + 0.985014i \(0.555176\pi\)
\(84\) 0 0
\(85\) −3.85738 −0.418392
\(86\) −9.76855 −1.05337
\(87\) −14.8130 −1.58812
\(88\) −2.42151 −0.258134
\(89\) −3.39145 −0.359493 −0.179747 0.983713i \(-0.557528\pi\)
−0.179747 + 0.983713i \(0.557528\pi\)
\(90\) 0.118893 0.0125324
\(91\) 0 0
\(92\) 0.594184 0.0619480
\(93\) −9.94622 −1.03138
\(94\) 10.5878 1.09205
\(95\) 9.55779 0.980609
\(96\) −5.11559 −0.522107
\(97\) 0.0981974 0.00997044 0.00498522 0.999988i \(-0.498413\pi\)
0.00498522 + 0.999988i \(0.498413\pi\)
\(98\) 0 0
\(99\) −0.0350567 −0.00352333
\(100\) 0.0601141 0.00601141
\(101\) −6.90180 −0.686755 −0.343378 0.939197i \(-0.611571\pi\)
−0.343378 + 0.939197i \(0.611571\pi\)
\(102\) −3.68605 −0.364973
\(103\) 15.8223 1.55902 0.779510 0.626390i \(-0.215468\pi\)
0.779510 + 0.626390i \(0.215468\pi\)
\(104\) 3.06814 0.300856
\(105\) 0 0
\(106\) −9.63227 −0.935569
\(107\) −2.02372 −0.195641 −0.0978203 0.995204i \(-0.531187\pi\)
−0.0978203 + 0.995204i \(0.531187\pi\)
\(108\) 2.75419 0.265022
\(109\) −17.3470 −1.66154 −0.830772 0.556612i \(-0.812101\pi\)
−0.830772 + 0.556612i \(0.812101\pi\)
\(110\) −2.11256 −0.201425
\(111\) 3.97628 0.377412
\(112\) 0 0
\(113\) 10.1807 0.957720 0.478860 0.877891i \(-0.341050\pi\)
0.478860 + 0.877891i \(0.341050\pi\)
\(114\) 9.13325 0.855408
\(115\) 2.45960 0.229358
\(116\) 4.53407 0.420978
\(117\) 0.0444180 0.00410645
\(118\) 13.2645 1.22110
\(119\) 0 0
\(120\) −11.8350 −1.08038
\(121\) −10.3771 −0.943372
\(122\) −15.8223 −1.43249
\(123\) −21.1757 −1.90935
\(124\) 3.04442 0.273397
\(125\) 11.3026 1.01094
\(126\) 0 0
\(127\) 16.4452 1.45928 0.729639 0.683832i \(-0.239688\pi\)
0.729639 + 0.683832i \(0.239688\pi\)
\(128\) −4.84302 −0.428067
\(129\) 14.0775 1.23945
\(130\) 2.67669 0.234761
\(131\) −12.3327 −1.07751 −0.538755 0.842462i \(-0.681105\pi\)
−0.538755 + 0.842462i \(0.681105\pi\)
\(132\) 0.735465 0.0640140
\(133\) 0 0
\(134\) −7.93989 −0.685902
\(135\) 11.4008 0.981226
\(136\) 5.35337 0.459048
\(137\) −3.34704 −0.285957 −0.142978 0.989726i \(-0.545668\pi\)
−0.142978 + 0.989726i \(0.545668\pi\)
\(138\) 2.35034 0.200075
\(139\) 6.16634 0.523022 0.261511 0.965201i \(-0.415779\pi\)
0.261511 + 0.965201i \(0.415779\pi\)
\(140\) 0 0
\(141\) −15.2582 −1.28497
\(142\) −7.09186 −0.595136
\(143\) −0.789244 −0.0659999
\(144\) −0.117558 −0.00979651
\(145\) 18.7685 1.55864
\(146\) 9.69738 0.802561
\(147\) 0 0
\(148\) −1.21709 −0.100044
\(149\) 18.8367 1.54316 0.771581 0.636131i \(-0.219466\pi\)
0.771581 + 0.636131i \(0.219466\pi\)
\(150\) 0.237786 0.0194152
\(151\) 20.1901 1.64304 0.821522 0.570177i \(-0.193125\pi\)
0.821522 + 0.570177i \(0.193125\pi\)
\(152\) −13.2645 −1.07590
\(153\) 0.0775018 0.00626565
\(154\) 0 0
\(155\) 12.6022 1.01223
\(156\) −0.931860 −0.0746085
\(157\) −13.8811 −1.10783 −0.553916 0.832572i \(-0.686867\pi\)
−0.553916 + 0.832572i \(0.686867\pi\)
\(158\) 8.36773 0.665701
\(159\) 13.8811 1.10084
\(160\) 6.48163 0.512418
\(161\) 0 0
\(162\) 11.0558 0.868622
\(163\) 11.4897 0.899939 0.449970 0.893044i \(-0.351435\pi\)
0.449970 + 0.893044i \(0.351435\pi\)
\(164\) 6.48163 0.506130
\(165\) 3.04442 0.237008
\(166\) 3.80494 0.295321
\(167\) 12.9699 1.00364 0.501822 0.864971i \(-0.332663\pi\)
0.501822 + 0.864971i \(0.332663\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 4.67035 0.358200
\(171\) −0.192033 −0.0146851
\(172\) −4.30895 −0.328555
\(173\) −2.48029 −0.188573 −0.0942865 0.995545i \(-0.530057\pi\)
−0.0942865 + 0.995545i \(0.530057\pi\)
\(174\) 17.9349 1.35964
\(175\) 0 0
\(176\) 2.08884 0.157452
\(177\) −19.1156 −1.43682
\(178\) 4.10622 0.307774
\(179\) −8.15698 −0.609681 −0.304841 0.952403i \(-0.598603\pi\)
−0.304841 + 0.952403i \(0.598603\pi\)
\(180\) 0.0524443 0.00390897
\(181\) −3.60855 −0.268221 −0.134111 0.990966i \(-0.542818\pi\)
−0.134111 + 0.990966i \(0.542818\pi\)
\(182\) 0 0
\(183\) 22.8016 1.68555
\(184\) −3.41349 −0.251645
\(185\) −5.03808 −0.370407
\(186\) 12.0424 0.882995
\(187\) −1.37709 −0.100703
\(188\) 4.67035 0.340620
\(189\) 0 0
\(190\) −11.5722 −0.839532
\(191\) 0.337675 0.0244333 0.0122167 0.999925i \(-0.496111\pi\)
0.0122167 + 0.999925i \(0.496111\pi\)
\(192\) 15.4295 1.11353
\(193\) 8.42151 0.606194 0.303097 0.952960i \(-0.401979\pi\)
0.303097 + 0.952960i \(0.401979\pi\)
\(194\) −0.118893 −0.00853603
\(195\) −3.85738 −0.276233
\(196\) 0 0
\(197\) −8.51035 −0.606337 −0.303169 0.952937i \(-0.598045\pi\)
−0.303169 + 0.952937i \(0.598045\pi\)
\(198\) 0.0424451 0.00301644
\(199\) 14.6166 1.03614 0.518071 0.855338i \(-0.326650\pi\)
0.518071 + 0.855338i \(0.326650\pi\)
\(200\) −0.345345 −0.0244196
\(201\) 11.4422 0.807071
\(202\) 8.35640 0.587954
\(203\) 0 0
\(204\) −1.62593 −0.113838
\(205\) 26.8304 1.87391
\(206\) −19.1570 −1.33473
\(207\) −0.0494177 −0.00343477
\(208\) −2.64663 −0.183511
\(209\) 3.41215 0.236023
\(210\) 0 0
\(211\) −23.8667 −1.64305 −0.821527 0.570169i \(-0.806878\pi\)
−0.821527 + 0.570169i \(0.806878\pi\)
\(212\) −4.24884 −0.291811
\(213\) 10.2201 0.700271
\(214\) 2.45023 0.167495
\(215\) −17.8367 −1.21645
\(216\) −15.8223 −1.07657
\(217\) 0 0
\(218\) 21.0030 1.42250
\(219\) −13.9749 −0.944339
\(220\) −0.931860 −0.0628260
\(221\) 1.74483 0.117370
\(222\) −4.81430 −0.323115
\(223\) −1.27890 −0.0856412 −0.0428206 0.999083i \(-0.513634\pi\)
−0.0428206 + 0.999083i \(0.513634\pi\)
\(224\) 0 0
\(225\) −0.00499963 −0.000333308 0
\(226\) −12.3263 −0.819936
\(227\) −9.57849 −0.635747 −0.317873 0.948133i \(-0.602969\pi\)
−0.317873 + 0.948133i \(0.602969\pi\)
\(228\) 4.02872 0.266809
\(229\) 13.5134 0.892989 0.446494 0.894786i \(-0.352672\pi\)
0.446494 + 0.894786i \(0.352672\pi\)
\(230\) −2.97797 −0.196361
\(231\) 0 0
\(232\) −26.0474 −1.71010
\(233\) 28.9586 1.89714 0.948571 0.316565i \(-0.102530\pi\)
0.948571 + 0.316565i \(0.102530\pi\)
\(234\) −0.0537794 −0.00351567
\(235\) 19.3327 1.26112
\(236\) 5.85105 0.380871
\(237\) −12.0588 −0.783302
\(238\) 0 0
\(239\) −24.1363 −1.56125 −0.780623 0.625002i \(-0.785098\pi\)
−0.780623 + 0.625002i \(0.785098\pi\)
\(240\) 10.2091 0.658992
\(241\) 9.92552 0.639359 0.319680 0.947526i \(-0.396425\pi\)
0.319680 + 0.947526i \(0.396425\pi\)
\(242\) 12.5641 0.807653
\(243\) −0.461568 −0.0296096
\(244\) −6.97930 −0.446804
\(245\) 0 0
\(246\) 25.6386 1.63466
\(247\) −4.32331 −0.275086
\(248\) −17.4897 −1.11059
\(249\) −5.48332 −0.347491
\(250\) −13.6847 −0.865497
\(251\) −18.4990 −1.16765 −0.583824 0.811880i \(-0.698444\pi\)
−0.583824 + 0.811880i \(0.698444\pi\)
\(252\) 0 0
\(253\) 0.878080 0.0552044
\(254\) −19.9112 −1.24934
\(255\) −6.73047 −0.421478
\(256\) −11.8223 −0.738895
\(257\) −16.6767 −1.04026 −0.520132 0.854086i \(-0.674117\pi\)
−0.520132 + 0.854086i \(0.674117\pi\)
\(258\) −17.0444 −1.06114
\(259\) 0 0
\(260\) 1.18070 0.0732238
\(261\) −0.377094 −0.0233415
\(262\) 14.9319 0.922493
\(263\) −13.4690 −0.830531 −0.415266 0.909700i \(-0.636311\pi\)
−0.415266 + 0.909700i \(0.636311\pi\)
\(264\) −4.22512 −0.260038
\(265\) −17.5878 −1.08041
\(266\) 0 0
\(267\) −5.91750 −0.362145
\(268\) −3.50232 −0.213938
\(269\) 30.5578 1.86314 0.931571 0.363560i \(-0.118439\pi\)
0.931571 + 0.363560i \(0.118439\pi\)
\(270\) −13.8036 −0.840061
\(271\) −4.22512 −0.256658 −0.128329 0.991732i \(-0.540961\pi\)
−0.128329 + 0.991732i \(0.540961\pi\)
\(272\) −4.61791 −0.280002
\(273\) 0 0
\(274\) 4.05244 0.244817
\(275\) 0.0888361 0.00535702
\(276\) 1.03675 0.0624049
\(277\) −3.00000 −0.180253 −0.0901263 0.995930i \(-0.528727\pi\)
−0.0901263 + 0.995930i \(0.528727\pi\)
\(278\) −7.46593 −0.447777
\(279\) −0.253201 −0.0151587
\(280\) 0 0
\(281\) −6.27890 −0.374568 −0.187284 0.982306i \(-0.559968\pi\)
−0.187284 + 0.982306i \(0.559968\pi\)
\(282\) 18.4740 1.10011
\(283\) −23.5371 −1.39914 −0.699568 0.714566i \(-0.746624\pi\)
−0.699568 + 0.714566i \(0.746624\pi\)
\(284\) −3.12825 −0.185628
\(285\) 16.6767 0.987842
\(286\) 0.955582 0.0565047
\(287\) 0 0
\(288\) −0.130227 −0.00767373
\(289\) −13.9556 −0.820917
\(290\) −22.7241 −1.33441
\(291\) 0.171337 0.0100440
\(292\) 4.27756 0.250325
\(293\) −21.6166 −1.26285 −0.631427 0.775435i \(-0.717530\pi\)
−0.631427 + 0.775435i \(0.717530\pi\)
\(294\) 0 0
\(295\) 24.2201 1.41015
\(296\) 6.99197 0.406400
\(297\) 4.07011 0.236172
\(298\) −22.8066 −1.32115
\(299\) −1.11256 −0.0643409
\(300\) 0.104889 0.00605575
\(301\) 0 0
\(302\) −24.4452 −1.40667
\(303\) −12.0424 −0.691820
\(304\) 11.4422 0.656256
\(305\) −28.8905 −1.65426
\(306\) −0.0938357 −0.00536423
\(307\) 20.3945 1.16397 0.581987 0.813198i \(-0.302275\pi\)
0.581987 + 0.813198i \(0.302275\pi\)
\(308\) 0 0
\(309\) 27.6072 1.57052
\(310\) −15.2582 −0.866608
\(311\) −12.9492 −0.734284 −0.367142 0.930165i \(-0.619664\pi\)
−0.367142 + 0.930165i \(0.619664\pi\)
\(312\) 5.35337 0.303075
\(313\) 33.2345 1.87852 0.939262 0.343201i \(-0.111511\pi\)
0.939262 + 0.343201i \(0.111511\pi\)
\(314\) 16.8066 0.948453
\(315\) 0 0
\(316\) 3.69105 0.207638
\(317\) −4.87175 −0.273624 −0.136812 0.990597i \(-0.543686\pi\)
−0.136812 + 0.990597i \(0.543686\pi\)
\(318\) −16.8066 −0.942469
\(319\) 6.70041 0.375151
\(320\) −19.5498 −1.09287
\(321\) −3.53104 −0.197084
\(322\) 0 0
\(323\) −7.54343 −0.419728
\(324\) 4.87675 0.270930
\(325\) −0.112558 −0.00624362
\(326\) −13.9112 −0.770468
\(327\) −30.2676 −1.67380
\(328\) −37.2358 −2.05600
\(329\) 0 0
\(330\) −3.68605 −0.202910
\(331\) 6.87175 0.377705 0.188853 0.982005i \(-0.439523\pi\)
0.188853 + 0.982005i \(0.439523\pi\)
\(332\) 1.67838 0.0921129
\(333\) 0.101224 0.00554705
\(334\) −15.7034 −0.859254
\(335\) −14.4977 −0.792093
\(336\) 0 0
\(337\) 11.0712 0.603085 0.301542 0.953453i \(-0.402499\pi\)
0.301542 + 0.953453i \(0.402499\pi\)
\(338\) −1.21076 −0.0658564
\(339\) 17.7635 0.964784
\(340\) 2.06011 0.111725
\(341\) 4.49901 0.243635
\(342\) 0.232505 0.0125724
\(343\) 0 0
\(344\) 24.7542 1.33466
\(345\) 4.29157 0.231050
\(346\) 3.00303 0.161444
\(347\) 5.62593 0.302016 0.151008 0.988533i \(-0.451748\pi\)
0.151008 + 0.988533i \(0.451748\pi\)
\(348\) 7.91116 0.424083
\(349\) −18.4783 −0.989122 −0.494561 0.869143i \(-0.664671\pi\)
−0.494561 + 0.869143i \(0.664671\pi\)
\(350\) 0 0
\(351\) −5.15698 −0.275259
\(352\) 2.31395 0.123334
\(353\) −4.67035 −0.248578 −0.124289 0.992246i \(-0.539665\pi\)
−0.124289 + 0.992246i \(0.539665\pi\)
\(354\) 23.1443 1.23011
\(355\) −12.9492 −0.687275
\(356\) 1.81127 0.0959974
\(357\) 0 0
\(358\) 9.87611 0.521968
\(359\) −11.7211 −0.618616 −0.309308 0.950962i \(-0.600097\pi\)
−0.309308 + 0.950962i \(0.600097\pi\)
\(360\) −0.301284 −0.0158790
\(361\) −0.308953 −0.0162607
\(362\) 4.36907 0.229633
\(363\) −18.1062 −0.950330
\(364\) 0 0
\(365\) 17.7067 0.926813
\(366\) −27.6072 −1.44305
\(367\) −19.9699 −1.04242 −0.521211 0.853428i \(-0.674520\pi\)
−0.521211 + 0.853428i \(0.674520\pi\)
\(368\) 2.94453 0.153494
\(369\) −0.539070 −0.0280629
\(370\) 6.09989 0.317118
\(371\) 0 0
\(372\) 5.31198 0.275413
\(373\) −4.42651 −0.229196 −0.114598 0.993412i \(-0.536558\pi\)
−0.114598 + 0.993412i \(0.536558\pi\)
\(374\) 1.66732 0.0862153
\(375\) 19.7211 1.01839
\(376\) −26.8304 −1.38367
\(377\) −8.48965 −0.437239
\(378\) 0 0
\(379\) −32.5702 −1.67302 −0.836509 0.547953i \(-0.815407\pi\)
−0.836509 + 0.547953i \(0.815407\pi\)
\(380\) −5.10453 −0.261857
\(381\) 28.6941 1.47004
\(382\) −0.408842 −0.0209182
\(383\) −14.1964 −0.725402 −0.362701 0.931906i \(-0.618145\pi\)
−0.362701 + 0.931906i \(0.618145\pi\)
\(384\) −8.45023 −0.431224
\(385\) 0 0
\(386\) −10.1964 −0.518983
\(387\) 0.358371 0.0182170
\(388\) −0.0524443 −0.00266246
\(389\) 17.3170 0.878006 0.439003 0.898486i \(-0.355332\pi\)
0.439003 + 0.898486i \(0.355332\pi\)
\(390\) 4.67035 0.236492
\(391\) −1.94122 −0.0981718
\(392\) 0 0
\(393\) −21.5184 −1.08546
\(394\) 10.3040 0.519106
\(395\) 15.2789 0.768765
\(396\) 0.0187227 0.000940852 0
\(397\) −15.7241 −0.789171 −0.394586 0.918859i \(-0.629112\pi\)
−0.394586 + 0.918859i \(0.629112\pi\)
\(398\) −17.6971 −0.887075
\(399\) 0 0
\(400\) 0.297900 0.0148950
\(401\) 3.57849 0.178701 0.0893506 0.996000i \(-0.471521\pi\)
0.0893506 + 0.996000i \(0.471521\pi\)
\(402\) −13.8537 −0.690961
\(403\) −5.70041 −0.283958
\(404\) 3.68605 0.183388
\(405\) 20.1870 1.00310
\(406\) 0 0
\(407\) −1.79861 −0.0891536
\(408\) 9.34070 0.462434
\(409\) 31.3501 1.55016 0.775080 0.631863i \(-0.217709\pi\)
0.775080 + 0.631863i \(0.217709\pi\)
\(410\) −32.4850 −1.60432
\(411\) −5.84000 −0.288066
\(412\) −8.45023 −0.416313
\(413\) 0 0
\(414\) 0.0598327 0.00294062
\(415\) 6.94756 0.341042
\(416\) −2.93186 −0.143746
\(417\) 10.7592 0.526880
\(418\) −4.13128 −0.202068
\(419\) 28.7716 1.40558 0.702792 0.711396i \(-0.251937\pi\)
0.702792 + 0.711396i \(0.251937\pi\)
\(420\) 0 0
\(421\) −0.190060 −0.00926297 −0.00463148 0.999989i \(-0.501474\pi\)
−0.00463148 + 0.999989i \(0.501474\pi\)
\(422\) 28.8968 1.40667
\(423\) −0.388428 −0.0188860
\(424\) 24.4088 1.18540
\(425\) −0.196395 −0.00952655
\(426\) −12.3741 −0.599526
\(427\) 0 0
\(428\) 1.08081 0.0522429
\(429\) −1.37709 −0.0664867
\(430\) 21.5959 1.04145
\(431\) 25.6734 1.23664 0.618322 0.785925i \(-0.287813\pi\)
0.618322 + 0.785925i \(0.287813\pi\)
\(432\) 13.6486 0.656669
\(433\) −1.82233 −0.0875755 −0.0437877 0.999041i \(-0.513943\pi\)
−0.0437877 + 0.999041i \(0.513943\pi\)
\(434\) 0 0
\(435\) 32.7479 1.57014
\(436\) 9.26454 0.443691
\(437\) 4.80994 0.230091
\(438\) 16.9202 0.808481
\(439\) −0.735465 −0.0351018 −0.0175509 0.999846i \(-0.505587\pi\)
−0.0175509 + 0.999846i \(0.505587\pi\)
\(440\) 5.35337 0.255212
\(441\) 0 0
\(442\) −2.11256 −0.100484
\(443\) −3.71174 −0.176350 −0.0881751 0.996105i \(-0.528104\pi\)
−0.0881751 + 0.996105i \(0.528104\pi\)
\(444\) −2.12361 −0.100782
\(445\) 7.49768 0.355424
\(446\) 1.54843 0.0733203
\(447\) 32.8667 1.55454
\(448\) 0 0
\(449\) −5.17570 −0.244256 −0.122128 0.992514i \(-0.538972\pi\)
−0.122128 + 0.992514i \(0.538972\pi\)
\(450\) 0.00605333 0.000285357 0
\(451\) 9.57849 0.451033
\(452\) −5.43721 −0.255745
\(453\) 35.2281 1.65516
\(454\) 11.5972 0.544284
\(455\) 0 0
\(456\) −23.1443 −1.08383
\(457\) −34.1299 −1.59653 −0.798266 0.602305i \(-0.794249\pi\)
−0.798266 + 0.602305i \(0.794249\pi\)
\(458\) −16.3614 −0.764518
\(459\) −8.99803 −0.419992
\(460\) −1.31360 −0.0612467
\(461\) 11.4008 0.530989 0.265494 0.964112i \(-0.414465\pi\)
0.265494 + 0.964112i \(0.414465\pi\)
\(462\) 0 0
\(463\) −30.0124 −1.39479 −0.697397 0.716685i \(-0.745659\pi\)
−0.697397 + 0.716685i \(0.745659\pi\)
\(464\) 22.4690 1.04310
\(465\) 21.9887 1.01970
\(466\) −35.0618 −1.62421
\(467\) −34.1663 −1.58103 −0.790515 0.612443i \(-0.790187\pi\)
−0.790515 + 0.612443i \(0.790187\pi\)
\(468\) −0.0237224 −0.00109657
\(469\) 0 0
\(470\) −23.4072 −1.07969
\(471\) −24.2201 −1.11600
\(472\) −33.6133 −1.54718
\(473\) −6.36773 −0.292789
\(474\) 14.6002 0.670611
\(475\) 0.486625 0.0223279
\(476\) 0 0
\(477\) 0.353371 0.0161798
\(478\) 29.2231 1.33664
\(479\) 12.8761 0.588324 0.294162 0.955756i \(-0.404959\pi\)
0.294162 + 0.955756i \(0.404959\pi\)
\(480\) 11.3093 0.516197
\(481\) 2.27890 0.103909
\(482\) −12.0174 −0.547377
\(483\) 0 0
\(484\) 5.54210 0.251913
\(485\) −0.217091 −0.00985758
\(486\) 0.558846 0.0253498
\(487\) −21.9399 −0.994191 −0.497096 0.867696i \(-0.665600\pi\)
−0.497096 + 0.867696i \(0.665600\pi\)
\(488\) 40.0949 1.81501
\(489\) 20.0474 0.906577
\(490\) 0 0
\(491\) 4.11256 0.185597 0.0927986 0.995685i \(-0.470419\pi\)
0.0927986 + 0.995685i \(0.470419\pi\)
\(492\) 11.3093 0.509863
\(493\) −14.8130 −0.667142
\(494\) 5.23448 0.235510
\(495\) 0.0775018 0.00348344
\(496\) 15.0869 0.677420
\(497\) 0 0
\(498\) 6.63896 0.297499
\(499\) 19.0331 0.852038 0.426019 0.904714i \(-0.359916\pi\)
0.426019 + 0.904714i \(0.359916\pi\)
\(500\) −6.03639 −0.269956
\(501\) 22.6303 1.01105
\(502\) 22.3978 0.999662
\(503\) 35.8698 1.59935 0.799677 0.600430i \(-0.205004\pi\)
0.799677 + 0.600430i \(0.205004\pi\)
\(504\) 0 0
\(505\) 15.2582 0.678981
\(506\) −1.06314 −0.0472624
\(507\) 1.74483 0.0774904
\(508\) −8.78291 −0.389679
\(509\) −17.5465 −0.777733 −0.388867 0.921294i \(-0.627133\pi\)
−0.388867 + 0.921294i \(0.627133\pi\)
\(510\) 8.14895 0.360842
\(511\) 0 0
\(512\) 24.0000 1.06066
\(513\) 22.2952 0.984358
\(514\) 20.1914 0.890604
\(515\) −34.9793 −1.54137
\(516\) −7.51837 −0.330978
\(517\) 6.90180 0.303541
\(518\) 0 0
\(519\) −4.32768 −0.189964
\(520\) −6.78291 −0.297450
\(521\) 8.84302 0.387420 0.193710 0.981059i \(-0.437948\pi\)
0.193710 + 0.981059i \(0.437948\pi\)
\(522\) 0.456568 0.0199835
\(523\) −21.9112 −0.958108 −0.479054 0.877785i \(-0.659020\pi\)
−0.479054 + 0.877785i \(0.659020\pi\)
\(524\) 6.58651 0.287733
\(525\) 0 0
\(526\) 16.3076 0.711046
\(527\) −9.94622 −0.433264
\(528\) 3.64466 0.158613
\(529\) −21.7622 −0.946183
\(530\) 21.2946 0.924978
\(531\) −0.486625 −0.0211177
\(532\) 0 0
\(533\) −12.1363 −0.525681
\(534\) 7.16465 0.310045
\(535\) 4.47396 0.193426
\(536\) 20.1202 0.869061
\(537\) −14.2325 −0.614178
\(538\) −36.9980 −1.59510
\(539\) 0 0
\(540\) −6.08884 −0.262022
\(541\) 22.8654 0.983061 0.491530 0.870860i \(-0.336438\pi\)
0.491530 + 0.870860i \(0.336438\pi\)
\(542\) 5.11559 0.219733
\(543\) −6.29628 −0.270199
\(544\) −5.11559 −0.219329
\(545\) 38.3501 1.64274
\(546\) 0 0
\(547\) −35.2676 −1.50793 −0.753966 0.656913i \(-0.771862\pi\)
−0.753966 + 0.656913i \(0.771862\pi\)
\(548\) 1.78755 0.0763605
\(549\) 0.580461 0.0247735
\(550\) −0.107559 −0.00458632
\(551\) 36.7034 1.56362
\(552\) −5.95594 −0.253502
\(553\) 0 0
\(554\) 3.63227 0.154320
\(555\) −8.79058 −0.373139
\(556\) −3.29326 −0.139665
\(557\) 39.8698 1.68934 0.844668 0.535290i \(-0.179798\pi\)
0.844668 + 0.535290i \(0.179798\pi\)
\(558\) 0.306565 0.0129779
\(559\) 8.06814 0.341246
\(560\) 0 0
\(561\) −2.40279 −0.101446
\(562\) 7.60221 0.320680
\(563\) −25.5972 −1.07879 −0.539397 0.842052i \(-0.681348\pi\)
−0.539397 + 0.842052i \(0.681348\pi\)
\(564\) 8.14895 0.343133
\(565\) −22.5070 −0.946878
\(566\) 28.4977 1.19785
\(567\) 0 0
\(568\) 17.9713 0.754058
\(569\) −25.0949 −1.05203 −0.526016 0.850475i \(-0.676315\pi\)
−0.526016 + 0.850475i \(0.676315\pi\)
\(570\) −20.1914 −0.845724
\(571\) −31.2488 −1.30772 −0.653862 0.756614i \(-0.726852\pi\)
−0.653862 + 0.756614i \(0.726852\pi\)
\(572\) 0.421512 0.0176243
\(573\) 0.589185 0.0246135
\(574\) 0 0
\(575\) 0.125228 0.00522236
\(576\) 0.392790 0.0163662
\(577\) 12.8717 0.535858 0.267929 0.963439i \(-0.413661\pi\)
0.267929 + 0.963439i \(0.413661\pi\)
\(578\) 16.8968 0.702814
\(579\) 14.6941 0.610665
\(580\) −10.0237 −0.416212
\(581\) 0 0
\(582\) −0.207448 −0.00859899
\(583\) −6.27890 −0.260045
\(584\) −24.5738 −1.01687
\(585\) −0.0981974 −0.00405996
\(586\) 26.1724 1.08117
\(587\) −9.96692 −0.411379 −0.205689 0.978617i \(-0.565944\pi\)
−0.205689 + 0.978617i \(0.565944\pi\)
\(588\) 0 0
\(589\) 24.6447 1.01547
\(590\) −29.3246 −1.20728
\(591\) −14.8491 −0.610809
\(592\) −6.03139 −0.247889
\(593\) 20.5909 0.845566 0.422783 0.906231i \(-0.361053\pi\)
0.422783 + 0.906231i \(0.361053\pi\)
\(594\) −4.92791 −0.202195
\(595\) 0 0
\(596\) −10.0601 −0.412078
\(597\) 25.5034 1.04378
\(598\) 1.34704 0.0550844
\(599\) −12.5371 −0.512252 −0.256126 0.966643i \(-0.582446\pi\)
−0.256126 + 0.966643i \(0.582446\pi\)
\(600\) −0.602567 −0.0245997
\(601\) −1.82233 −0.0743343 −0.0371672 0.999309i \(-0.511833\pi\)
−0.0371672 + 0.999309i \(0.511833\pi\)
\(602\) 0 0
\(603\) 0.291284 0.0118620
\(604\) −10.7829 −0.438750
\(605\) 22.9412 0.932693
\(606\) 14.5805 0.592291
\(607\) 30.9780 1.25736 0.628678 0.777665i \(-0.283596\pi\)
0.628678 + 0.777665i \(0.283596\pi\)
\(608\) 12.6754 0.514053
\(609\) 0 0
\(610\) 34.9793 1.41627
\(611\) −8.74483 −0.353778
\(612\) −0.0413914 −0.00167315
\(613\) 12.4502 0.502860 0.251430 0.967875i \(-0.419099\pi\)
0.251430 + 0.967875i \(0.419099\pi\)
\(614\) −24.6927 −0.996518
\(615\) 46.8143 1.88773
\(616\) 0 0
\(617\) 31.7809 1.27945 0.639726 0.768603i \(-0.279048\pi\)
0.639726 + 0.768603i \(0.279048\pi\)
\(618\) −33.4256 −1.34457
\(619\) 4.22512 0.169822 0.0849109 0.996389i \(-0.472939\pi\)
0.0849109 + 0.996389i \(0.472939\pi\)
\(620\) −6.73047 −0.270302
\(621\) 5.73744 0.230235
\(622\) 15.6784 0.628646
\(623\) 0 0
\(624\) −4.61791 −0.184864
\(625\) −24.4245 −0.976982
\(626\) −40.2388 −1.60827
\(627\) 5.95361 0.237764
\(628\) 7.41349 0.295830
\(629\) 3.97628 0.158545
\(630\) 0 0
\(631\) 7.31198 0.291085 0.145543 0.989352i \(-0.453507\pi\)
0.145543 + 0.989352i \(0.453507\pi\)
\(632\) −21.2044 −0.843467
\(633\) −41.6433 −1.65517
\(634\) 5.89849 0.234259
\(635\) −36.3564 −1.44276
\(636\) −7.41349 −0.293964
\(637\) 0 0
\(638\) −8.11256 −0.321179
\(639\) 0.260174 0.0102923
\(640\) 10.7067 0.423221
\(641\) −23.0474 −0.910319 −0.455160 0.890410i \(-0.650418\pi\)
−0.455160 + 0.890410i \(0.650418\pi\)
\(642\) 4.27523 0.168730
\(643\) −48.9379 −1.92992 −0.964961 0.262392i \(-0.915489\pi\)
−0.964961 + 0.262392i \(0.915489\pi\)
\(644\) 0 0
\(645\) −31.1219 −1.22542
\(646\) 9.13325 0.359343
\(647\) −33.4309 −1.31430 −0.657152 0.753758i \(-0.728239\pi\)
−0.657152 + 0.753758i \(0.728239\pi\)
\(648\) −28.0161 −1.10057
\(649\) 8.64663 0.339410
\(650\) 0.136281 0.00534537
\(651\) 0 0
\(652\) −6.13628 −0.240315
\(653\) −10.4629 −0.409445 −0.204723 0.978820i \(-0.565629\pi\)
−0.204723 + 0.978820i \(0.565629\pi\)
\(654\) 36.6466 1.43300
\(655\) 27.2645 1.06531
\(656\) 32.1202 1.25408
\(657\) −0.355760 −0.0138795
\(658\) 0 0
\(659\) −8.73849 −0.340403 −0.170202 0.985409i \(-0.554442\pi\)
−0.170202 + 0.985409i \(0.554442\pi\)
\(660\) −1.62593 −0.0632894
\(661\) −4.61354 −0.179446 −0.0897230 0.995967i \(-0.528598\pi\)
−0.0897230 + 0.995967i \(0.528598\pi\)
\(662\) −8.32001 −0.323366
\(663\) 3.04442 0.118235
\(664\) −9.64199 −0.374182
\(665\) 0 0
\(666\) −0.122558 −0.00474901
\(667\) 9.44523 0.365721
\(668\) −6.92686 −0.268008
\(669\) −2.23145 −0.0862729
\(670\) 17.5531 0.678137
\(671\) −10.3140 −0.398166
\(672\) 0 0
\(673\) 9.83802 0.379228 0.189614 0.981859i \(-0.439276\pi\)
0.189614 + 0.981859i \(0.439276\pi\)
\(674\) −13.4045 −0.516321
\(675\) 0.580461 0.0223420
\(676\) −0.534070 −0.0205412
\(677\) 4.69541 0.180459 0.0902296 0.995921i \(-0.471240\pi\)
0.0902296 + 0.995921i \(0.471240\pi\)
\(678\) −21.5073 −0.825984
\(679\) 0 0
\(680\) −11.8350 −0.453851
\(681\) −16.7128 −0.640436
\(682\) −5.44721 −0.208584
\(683\) 11.0207 0.421695 0.210848 0.977519i \(-0.432378\pi\)
0.210848 + 0.977519i \(0.432378\pi\)
\(684\) 0.102559 0.00392145
\(685\) 7.39948 0.282720
\(686\) 0 0
\(687\) 23.5785 0.899575
\(688\) −21.3534 −0.814090
\(689\) 7.95558 0.303084
\(690\) −5.19604 −0.197810
\(691\) −38.7635 −1.47463 −0.737317 0.675546i \(-0.763908\pi\)
−0.737317 + 0.675546i \(0.763908\pi\)
\(692\) 1.32465 0.0503556
\(693\) 0 0
\(694\) −6.81163 −0.258566
\(695\) −13.6323 −0.517101
\(696\) −45.4483 −1.72271
\(697\) −21.1757 −0.802087
\(698\) 22.3727 0.846820
\(699\) 50.5277 1.91113
\(700\) 0 0
\(701\) −32.0681 −1.21120 −0.605598 0.795770i \(-0.707066\pi\)
−0.605598 + 0.795770i \(0.707066\pi\)
\(702\) 6.24384 0.235659
\(703\) −9.85238 −0.371590
\(704\) −6.97930 −0.263042
\(705\) 33.7322 1.27043
\(706\) 5.65465 0.212816
\(707\) 0 0
\(708\) 10.2091 0.383680
\(709\) 38.3451 1.44008 0.720040 0.693933i \(-0.244124\pi\)
0.720040 + 0.693933i \(0.244124\pi\)
\(710\) 15.6784 0.588399
\(711\) −0.306980 −0.0115127
\(712\) −10.4055 −0.389961
\(713\) 6.34204 0.237511
\(714\) 0 0
\(715\) 1.74483 0.0652528
\(716\) 4.35640 0.162806
\(717\) −42.1136 −1.57276
\(718\) 14.1914 0.529618
\(719\) −8.72413 −0.325355 −0.162678 0.986679i \(-0.552013\pi\)
−0.162678 + 0.986679i \(0.552013\pi\)
\(720\) 0.259892 0.00968561
\(721\) 0 0
\(722\) 0.374067 0.0139213
\(723\) 17.3183 0.644075
\(724\) 1.92722 0.0716244
\(725\) 0.955582 0.0354894
\(726\) 21.9222 0.813610
\(727\) 26.6754 0.989334 0.494667 0.869083i \(-0.335290\pi\)
0.494667 + 0.869083i \(0.335290\pi\)
\(728\) 0 0
\(729\) 26.5885 0.984759
\(730\) −21.4385 −0.793476
\(731\) 14.0775 0.520675
\(732\) −12.1777 −0.450100
\(733\) 26.7211 0.986966 0.493483 0.869755i \(-0.335723\pi\)
0.493483 + 0.869755i \(0.335723\pi\)
\(734\) 24.1787 0.892453
\(735\) 0 0
\(736\) 3.26187 0.120234
\(737\) −5.17570 −0.190649
\(738\) 0.652682 0.0240256
\(739\) 36.0538 1.32626 0.663130 0.748504i \(-0.269228\pi\)
0.663130 + 0.748504i \(0.269228\pi\)
\(740\) 2.69069 0.0989117
\(741\) −7.54343 −0.277115
\(742\) 0 0
\(743\) −2.96058 −0.108613 −0.0543066 0.998524i \(-0.517295\pi\)
−0.0543066 + 0.998524i \(0.517295\pi\)
\(744\) −30.5164 −1.11879
\(745\) −41.6433 −1.52569
\(746\) 5.35942 0.196222
\(747\) −0.139589 −0.00510729
\(748\) 0.735465 0.0268913
\(749\) 0 0
\(750\) −23.8774 −0.871881
\(751\) 43.1550 1.57475 0.787374 0.616475i \(-0.211440\pi\)
0.787374 + 0.616475i \(0.211440\pi\)
\(752\) 23.1443 0.843986
\(753\) −32.2776 −1.17626
\(754\) 10.2789 0.374335
\(755\) −44.6353 −1.62444
\(756\) 0 0
\(757\) 18.7335 0.680880 0.340440 0.940266i \(-0.389424\pi\)
0.340440 + 0.940266i \(0.389424\pi\)
\(758\) 39.4345 1.43233
\(759\) 1.53210 0.0556116
\(760\) 29.3246 1.06372
\(761\) −4.22948 −0.153318 −0.0766592 0.997057i \(-0.524425\pi\)
−0.0766592 + 0.997057i \(0.524425\pi\)
\(762\) −34.7415 −1.25855
\(763\) 0 0
\(764\) −0.180342 −0.00652456
\(765\) −0.171337 −0.00619472
\(766\) 17.1884 0.621041
\(767\) −10.9556 −0.395583
\(768\) −20.6279 −0.744345
\(769\) −21.1299 −0.761965 −0.380983 0.924582i \(-0.624414\pi\)
−0.380983 + 0.924582i \(0.624414\pi\)
\(770\) 0 0
\(771\) −29.0979 −1.04794
\(772\) −4.49768 −0.161875
\(773\) 33.0742 1.18960 0.594798 0.803875i \(-0.297232\pi\)
0.594798 + 0.803875i \(0.297232\pi\)
\(774\) −0.433900 −0.0155962
\(775\) 0.641629 0.0230480
\(776\) 0.301284 0.0108154
\(777\) 0 0
\(778\) −20.9666 −0.751690
\(779\) 52.4690 1.87990
\(780\) 2.06011 0.0737639
\(781\) −4.62291 −0.165421
\(782\) 2.35034 0.0840482
\(783\) 43.7809 1.56460
\(784\) 0 0
\(785\) 30.6877 1.09529
\(786\) 26.0535 0.929297
\(787\) 6.23948 0.222413 0.111207 0.993797i \(-0.464528\pi\)
0.111207 + 0.993797i \(0.464528\pi\)
\(788\) 4.54512 0.161913
\(789\) −23.5010 −0.836657
\(790\) −18.4990 −0.658165
\(791\) 0 0
\(792\) −0.107559 −0.00382194
\(793\) 13.0681 0.464063
\(794\) 19.0381 0.675636
\(795\) −30.6877 −1.08838
\(796\) −7.80628 −0.276686
\(797\) −32.1837 −1.14001 −0.570003 0.821643i \(-0.693058\pi\)
−0.570003 + 0.821643i \(0.693058\pi\)
\(798\) 0 0
\(799\) −15.2582 −0.539796
\(800\) 0.330006 0.0116675
\(801\) −0.150642 −0.00532267
\(802\) −4.33268 −0.152992
\(803\) 6.32134 0.223075
\(804\) −6.11094 −0.215516
\(805\) 0 0
\(806\) 6.90180 0.243106
\(807\) 53.3180 1.87688
\(808\) −21.1757 −0.744958
\(809\) 47.8016 1.68062 0.840308 0.542109i \(-0.182374\pi\)
0.840308 + 0.542109i \(0.182374\pi\)
\(810\) −24.4416 −0.858789
\(811\) −37.4957 −1.31665 −0.658326 0.752733i \(-0.728735\pi\)
−0.658326 + 0.752733i \(0.728735\pi\)
\(812\) 0 0
\(813\) −7.37209 −0.258551
\(814\) 2.17767 0.0763274
\(815\) −25.4008 −0.889752
\(816\) −8.05744 −0.282067
\(817\) −34.8811 −1.22034
\(818\) −37.9573 −1.32714
\(819\) 0 0
\(820\) −14.3293 −0.500401
\(821\) 39.6447 1.38361 0.691804 0.722085i \(-0.256816\pi\)
0.691804 + 0.722085i \(0.256816\pi\)
\(822\) 7.07081 0.246623
\(823\) −17.4659 −0.608824 −0.304412 0.952540i \(-0.598460\pi\)
−0.304412 + 0.952540i \(0.598460\pi\)
\(824\) 48.5451 1.69115
\(825\) 0.155004 0.00539653
\(826\) 0 0
\(827\) −1.53104 −0.0532396 −0.0266198 0.999646i \(-0.508474\pi\)
−0.0266198 + 0.999646i \(0.508474\pi\)
\(828\) 0.0263925 0.000917203 0
\(829\) 37.2218 1.29277 0.646383 0.763013i \(-0.276281\pi\)
0.646383 + 0.763013i \(0.276281\pi\)
\(830\) −8.41179 −0.291978
\(831\) −5.23448 −0.181582
\(832\) 8.84302 0.306577
\(833\) 0 0
\(834\) −13.0267 −0.451079
\(835\) −28.6734 −0.992283
\(836\) −1.82233 −0.0630265
\(837\) 29.3969 1.01610
\(838\) −34.8354 −1.20337
\(839\) 7.37209 0.254513 0.127256 0.991870i \(-0.459383\pi\)
0.127256 + 0.991870i \(0.459383\pi\)
\(840\) 0 0
\(841\) 43.0742 1.48532
\(842\) 0.230116 0.00793034
\(843\) −10.9556 −0.377330
\(844\) 12.7465 0.438753
\(845\) −2.21076 −0.0760523
\(846\) 0.470292 0.0161690
\(847\) 0 0
\(848\) −21.0555 −0.723048
\(849\) −41.0681 −1.40945
\(850\) 0.237786 0.00815600
\(851\) −2.53541 −0.0869126
\(852\) −5.45826 −0.186997
\(853\) −4.57215 −0.156548 −0.0782738 0.996932i \(-0.524941\pi\)
−0.0782738 + 0.996932i \(0.524941\pi\)
\(854\) 0 0
\(855\) 0.424538 0.0145189
\(856\) −6.20906 −0.212221
\(857\) 52.0348 1.77747 0.888737 0.458417i \(-0.151584\pi\)
0.888737 + 0.458417i \(0.151584\pi\)
\(858\) 1.66732 0.0569215
\(859\) −42.8905 −1.46340 −0.731702 0.681625i \(-0.761274\pi\)
−0.731702 + 0.681625i \(0.761274\pi\)
\(860\) 9.52604 0.324835
\(861\) 0 0
\(862\) −31.0842 −1.05873
\(863\) −7.82233 −0.266275 −0.133138 0.991098i \(-0.542505\pi\)
−0.133138 + 0.991098i \(0.542505\pi\)
\(864\) 15.1195 0.514377
\(865\) 5.48332 0.186438
\(866\) 2.20639 0.0749763
\(867\) −24.3501 −0.826972
\(868\) 0 0
\(869\) 5.45460 0.185034
\(870\) −39.6497 −1.34425
\(871\) 6.55779 0.222202
\(872\) −53.2231 −1.80236
\(873\) 0.00436174 0.000147622 0
\(874\) −5.82366 −0.196988
\(875\) 0 0
\(876\) 7.46360 0.252172
\(877\) −34.7191 −1.17238 −0.586191 0.810173i \(-0.699373\pi\)
−0.586191 + 0.810173i \(0.699373\pi\)
\(878\) 0.890468 0.0300518
\(879\) −37.7172 −1.27217
\(880\) −4.61791 −0.155670
\(881\) −11.4422 −0.385498 −0.192749 0.981248i \(-0.561740\pi\)
−0.192749 + 0.981248i \(0.561740\pi\)
\(882\) 0 0
\(883\) −31.0217 −1.04396 −0.521982 0.852956i \(-0.674807\pi\)
−0.521982 + 0.852956i \(0.674807\pi\)
\(884\) −0.931860 −0.0313418
\(885\) 42.2599 1.42055
\(886\) 4.49401 0.150979
\(887\) −12.8304 −0.430801 −0.215401 0.976526i \(-0.569106\pi\)
−0.215401 + 0.976526i \(0.569106\pi\)
\(888\) 12.1998 0.409398
\(889\) 0 0
\(890\) −9.07786 −0.304291
\(891\) 7.20681 0.241437
\(892\) 0.683020 0.0228692
\(893\) 37.8066 1.26515
\(894\) −39.7936 −1.33090
\(895\) 18.0331 0.602780
\(896\) 0 0
\(897\) −1.94122 −0.0648155
\(898\) 6.26651 0.209116
\(899\) 48.3945 1.61405
\(900\) 0.00267015 8.90050e−5 0
\(901\) 13.8811 0.462447
\(902\) −11.5972 −0.386145
\(903\) 0 0
\(904\) 31.2358 1.03889
\(905\) 7.97761 0.265185
\(906\) −42.6527 −1.41704
\(907\) 10.1620 0.337423 0.168711 0.985665i \(-0.446039\pi\)
0.168711 + 0.985665i \(0.446039\pi\)
\(908\) 5.11559 0.169767
\(909\) −0.306565 −0.0101681
\(910\) 0 0
\(911\) 34.4008 1.13975 0.569875 0.821731i \(-0.306992\pi\)
0.569875 + 0.821731i \(0.306992\pi\)
\(912\) 19.9647 0.661096
\(913\) 2.48029 0.0820856
\(914\) 41.3230 1.36684
\(915\) −50.4088 −1.66646
\(916\) −7.21709 −0.238459
\(917\) 0 0
\(918\) 10.8944 0.359569
\(919\) 8.15500 0.269009 0.134504 0.990913i \(-0.457056\pi\)
0.134504 + 0.990913i \(0.457056\pi\)
\(920\) 7.54638 0.248797
\(921\) 35.5848 1.17256
\(922\) −13.8036 −0.454598
\(923\) 5.85738 0.192798
\(924\) 0 0
\(925\) −0.256509 −0.00843396
\(926\) 36.3377 1.19413
\(927\) 0.702797 0.0230829
\(928\) 24.8905 0.817070
\(929\) −4.80994 −0.157809 −0.0789045 0.996882i \(-0.525142\pi\)
−0.0789045 + 0.996882i \(0.525142\pi\)
\(930\) −26.6229 −0.872999
\(931\) 0 0
\(932\) −15.4659 −0.506603
\(933\) −22.5942 −0.739700
\(934\) 41.3671 1.35357
\(935\) 3.04442 0.0995631
\(936\) 0.136281 0.00445448
\(937\) 47.1931 1.54173 0.770865 0.636998i \(-0.219824\pi\)
0.770865 + 0.636998i \(0.219824\pi\)
\(938\) 0 0
\(939\) 57.9884 1.89238
\(940\) −10.3250 −0.336765
\(941\) −27.5702 −0.898762 −0.449381 0.893340i \(-0.648355\pi\)
−0.449381 + 0.893340i \(0.648355\pi\)
\(942\) 29.3246 0.955449
\(943\) 13.5023 0.439696
\(944\) 28.9954 0.943718
\(945\) 0 0
\(946\) 7.70977 0.250666
\(947\) −27.8698 −0.905646 −0.452823 0.891600i \(-0.649583\pi\)
−0.452823 + 0.891600i \(0.649583\pi\)
\(948\) 6.44023 0.209169
\(949\) −8.00936 −0.259995
\(950\) −0.589185 −0.0191157
\(951\) −8.50035 −0.275643
\(952\) 0 0
\(953\) −27.1076 −0.878100 −0.439050 0.898463i \(-0.644685\pi\)
−0.439050 + 0.898463i \(0.644685\pi\)
\(954\) −0.427846 −0.0138520
\(955\) −0.746518 −0.0241567
\(956\) 12.8905 0.416908
\(957\) 11.6910 0.377918
\(958\) −15.5898 −0.503684
\(959\) 0 0
\(960\) −34.1109 −1.10093
\(961\) 1.49465 0.0482146
\(962\) −2.75919 −0.0889598
\(963\) −0.0898898 −0.00289666
\(964\) −5.30093 −0.170731
\(965\) −18.6179 −0.599332
\(966\) 0 0
\(967\) −4.45657 −0.143314 −0.0716568 0.997429i \(-0.522829\pi\)
−0.0716568 + 0.997429i \(0.522829\pi\)
\(968\) −31.8384 −1.02332
\(969\) −13.1620 −0.422824
\(970\) 0.262844 0.00843940
\(971\) 18.9192 0.607146 0.303573 0.952808i \(-0.401820\pi\)
0.303573 + 0.952808i \(0.401820\pi\)
\(972\) 0.246510 0.00790680
\(973\) 0 0
\(974\) 26.5638 0.851161
\(975\) −0.196395 −0.00628967
\(976\) −34.5865 −1.10709
\(977\) 17.4359 0.557823 0.278911 0.960317i \(-0.410026\pi\)
0.278911 + 0.960317i \(0.410026\pi\)
\(978\) −24.2726 −0.776151
\(979\) 2.67669 0.0855472
\(980\) 0 0
\(981\) −0.770521 −0.0246009
\(982\) −4.97930 −0.158896
\(983\) 15.3815 0.490592 0.245296 0.969448i \(-0.421115\pi\)
0.245296 + 0.969448i \(0.421115\pi\)
\(984\) −64.9700 −2.07117
\(985\) 18.8143 0.599473
\(986\) 17.9349 0.571163
\(987\) 0 0
\(988\) 2.30895 0.0734576
\(989\) −8.97628 −0.285429
\(990\) −0.0938357 −0.00298229
\(991\) 2.42651 0.0770807 0.0385403 0.999257i \(-0.487729\pi\)
0.0385403 + 0.999257i \(0.487729\pi\)
\(992\) 16.7128 0.530632
\(993\) 11.9900 0.380491
\(994\) 0 0
\(995\) −32.3137 −1.02441
\(996\) 2.92848 0.0927923
\(997\) 15.0869 0.477806 0.238903 0.971043i \(-0.423212\pi\)
0.238903 + 0.971043i \(0.423212\pi\)
\(998\) −23.0444 −0.729458
\(999\) −11.7522 −0.371824
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.a.h.1.2 3
3.2 odd 2 5733.2.a.be.1.2 3
7.2 even 3 637.2.e.l.508.2 6
7.3 odd 6 637.2.e.k.79.2 6
7.4 even 3 637.2.e.l.79.2 6
7.5 odd 6 637.2.e.k.508.2 6
7.6 odd 2 637.2.a.i.1.2 yes 3
13.12 even 2 8281.2.a.bh.1.2 3
21.20 even 2 5733.2.a.bd.1.2 3
91.90 odd 2 8281.2.a.bk.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.a.h.1.2 3 1.1 even 1 trivial
637.2.a.i.1.2 yes 3 7.6 odd 2
637.2.e.k.79.2 6 7.3 odd 6
637.2.e.k.508.2 6 7.5 odd 6
637.2.e.l.79.2 6 7.4 even 3
637.2.e.l.508.2 6 7.2 even 3
5733.2.a.bd.1.2 3 21.20 even 2
5733.2.a.be.1.2 3 3.2 odd 2
8281.2.a.bh.1.2 3 13.12 even 2
8281.2.a.bk.1.2 3 91.90 odd 2