Properties

Label 637.2.a.h.1.1
Level $637$
Weight $2$
Character 637.1
Self dual yes
Analytic conductor $5.086$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(1,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.08647060876\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.65544\) of defining polynomial
Character \(\chi\) \(=\) 637.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.65544 q^{2} -2.39593 q^{3} +5.05137 q^{4} -3.65544 q^{5} +6.36226 q^{6} -8.10275 q^{8} +2.74049 q^{9} +O(q^{10})\) \(q-2.65544 q^{2} -2.39593 q^{3} +5.05137 q^{4} -3.65544 q^{5} +6.36226 q^{6} -8.10275 q^{8} +2.74049 q^{9} +9.70682 q^{10} +0.655442 q^{11} -12.1027 q^{12} +1.00000 q^{13} +8.75819 q^{15} +11.4136 q^{16} -2.39593 q^{17} -7.27721 q^{18} +2.70682 q^{19} -18.4650 q^{20} -1.74049 q^{22} +7.36226 q^{23} +19.4136 q^{24} +8.36226 q^{25} -2.65544 q^{26} +0.621770 q^{27} -0.208136 q^{29} -23.2569 q^{30} +1.13642 q^{31} -14.1027 q^{32} -1.57040 q^{33} +6.36226 q^{34} +13.8432 q^{36} -7.44731 q^{37} -7.18780 q^{38} -2.39593 q^{39} +29.6191 q^{40} +10.2055 q^{41} -3.10275 q^{43} +3.31088 q^{44} -10.0177 q^{45} -19.5501 q^{46} -4.60407 q^{47} -27.3463 q^{48} -22.2055 q^{50} +5.74049 q^{51} +5.05137 q^{52} +5.25951 q^{53} -1.65107 q^{54} -2.39593 q^{55} -6.48535 q^{57} +0.552694 q^{58} -8.25951 q^{59} +44.2409 q^{60} +1.89725 q^{61} -3.01770 q^{62} +14.6218 q^{64} -3.65544 q^{65} +4.17009 q^{66} -12.8946 q^{67} -12.1027 q^{68} -17.6395 q^{69} -6.75819 q^{71} -22.2055 q^{72} -12.5367 q^{73} +19.7759 q^{74} -20.0354 q^{75} +13.6731 q^{76} +6.36226 q^{78} -1.51902 q^{79} -41.7219 q^{80} -9.71119 q^{81} -27.1001 q^{82} -15.7582 q^{83} +8.75819 q^{85} +8.23917 q^{86} +0.498680 q^{87} -5.31088 q^{88} +14.8096 q^{89} +26.6014 q^{90} +37.1895 q^{92} -2.72279 q^{93} +12.2258 q^{94} -9.89461 q^{95} +33.7892 q^{96} +10.0177 q^{97} +1.79623 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - 4 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} - 6 q^{8} + 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 2 q^{2} - 4 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} - 6 q^{8} + 11 q^{9} + 14 q^{10} - 4 q^{11} - 18 q^{12} + 3 q^{13} + 2 q^{15} + 4 q^{16} - 4 q^{17} + 8 q^{18} - 7 q^{19} - 16 q^{20} - 8 q^{22} + q^{23} + 28 q^{24} + 4 q^{25} - 2 q^{26} - 22 q^{27} - 7 q^{29} - 24 q^{30} + 3 q^{31} - 24 q^{32} + 10 q^{33} - 2 q^{34} + 26 q^{36} - 10 q^{37} - 12 q^{38} - 4 q^{39} + 22 q^{40} - 6 q^{41} + 9 q^{43} - 2 q^{44} - 3 q^{45} - 28 q^{46} - 17 q^{47} - 16 q^{48} - 30 q^{50} + 20 q^{51} + 6 q^{52} + 13 q^{53} - 28 q^{54} - 4 q^{55} + 4 q^{57} + 14 q^{58} - 22 q^{59} + 42 q^{60} + 24 q^{61} + 18 q^{62} + 20 q^{64} - 5 q^{65} + 30 q^{66} - 14 q^{67} - 18 q^{68} - 2 q^{69} + 4 q^{71} - 30 q^{72} - 5 q^{73} + 8 q^{74} - 6 q^{75} + 8 q^{76} - 2 q^{78} + q^{79} - 40 q^{80} + 15 q^{81} - 20 q^{82} - 23 q^{83} + 2 q^{85} + 6 q^{86} - 20 q^{87} - 4 q^{88} + 11 q^{89} + 40 q^{90} + 30 q^{92} - 38 q^{93} + 16 q^{94} - 5 q^{95} + 52 q^{96} + 3 q^{97} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.65544 −1.87768 −0.938841 0.344352i \(-0.888099\pi\)
−0.938841 + 0.344352i \(0.888099\pi\)
\(3\) −2.39593 −1.38329 −0.691646 0.722237i \(-0.743114\pi\)
−0.691646 + 0.722237i \(0.743114\pi\)
\(4\) 5.05137 2.52569
\(5\) −3.65544 −1.63476 −0.817382 0.576096i \(-0.804575\pi\)
−0.817382 + 0.576096i \(0.804575\pi\)
\(6\) 6.36226 2.59738
\(7\) 0 0
\(8\) −8.10275 −2.86475
\(9\) 2.74049 0.913496
\(10\) 9.70682 3.06956
\(11\) 0.655442 0.197623 0.0988117 0.995106i \(-0.468496\pi\)
0.0988117 + 0.995106i \(0.468496\pi\)
\(12\) −12.1027 −3.49376
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 8.75819 2.26136
\(16\) 11.4136 2.85341
\(17\) −2.39593 −0.581099 −0.290549 0.956860i \(-0.593838\pi\)
−0.290549 + 0.956860i \(0.593838\pi\)
\(18\) −7.27721 −1.71526
\(19\) 2.70682 0.620986 0.310493 0.950576i \(-0.399506\pi\)
0.310493 + 0.950576i \(0.399506\pi\)
\(20\) −18.4650 −4.12890
\(21\) 0 0
\(22\) −1.74049 −0.371074
\(23\) 7.36226 1.53514 0.767569 0.640967i \(-0.221466\pi\)
0.767569 + 0.640967i \(0.221466\pi\)
\(24\) 19.4136 3.96279
\(25\) 8.36226 1.67245
\(26\) −2.65544 −0.520775
\(27\) 0.621770 0.119660
\(28\) 0 0
\(29\) −0.208136 −0.0386499 −0.0193250 0.999813i \(-0.506152\pi\)
−0.0193250 + 0.999813i \(0.506152\pi\)
\(30\) −23.2569 −4.24610
\(31\) 1.13642 0.204107 0.102054 0.994779i \(-0.467459\pi\)
0.102054 + 0.994779i \(0.467459\pi\)
\(32\) −14.1027 −2.49304
\(33\) −1.57040 −0.273371
\(34\) 6.36226 1.09112
\(35\) 0 0
\(36\) 13.8432 2.30721
\(37\) −7.44731 −1.22433 −0.612165 0.790730i \(-0.709701\pi\)
−0.612165 + 0.790730i \(0.709701\pi\)
\(38\) −7.18780 −1.16601
\(39\) −2.39593 −0.383656
\(40\) 29.6191 4.68320
\(41\) 10.2055 1.59383 0.796915 0.604091i \(-0.206464\pi\)
0.796915 + 0.604091i \(0.206464\pi\)
\(42\) 0 0
\(43\) −3.10275 −0.473165 −0.236582 0.971611i \(-0.576027\pi\)
−0.236582 + 0.971611i \(0.576027\pi\)
\(44\) 3.31088 0.499135
\(45\) −10.0177 −1.49335
\(46\) −19.5501 −2.88250
\(47\) −4.60407 −0.671572 −0.335786 0.941938i \(-0.609002\pi\)
−0.335786 + 0.941938i \(0.609002\pi\)
\(48\) −27.3463 −3.94710
\(49\) 0 0
\(50\) −22.2055 −3.14033
\(51\) 5.74049 0.803829
\(52\) 5.05137 0.700500
\(53\) 5.25951 0.722449 0.361225 0.932479i \(-0.382359\pi\)
0.361225 + 0.932479i \(0.382359\pi\)
\(54\) −1.65107 −0.224683
\(55\) −2.39593 −0.323067
\(56\) 0 0
\(57\) −6.48535 −0.859005
\(58\) 0.552694 0.0725723
\(59\) −8.25951 −1.07530 −0.537648 0.843169i \(-0.680687\pi\)
−0.537648 + 0.843169i \(0.680687\pi\)
\(60\) 44.2409 5.71148
\(61\) 1.89725 0.242918 0.121459 0.992596i \(-0.461243\pi\)
0.121459 + 0.992596i \(0.461243\pi\)
\(62\) −3.01770 −0.383248
\(63\) 0 0
\(64\) 14.6218 1.82772
\(65\) −3.65544 −0.453402
\(66\) 4.17009 0.513303
\(67\) −12.8946 −1.57533 −0.787664 0.616105i \(-0.788710\pi\)
−0.787664 + 0.616105i \(0.788710\pi\)
\(68\) −12.1027 −1.46767
\(69\) −17.6395 −2.12354
\(70\) 0 0
\(71\) −6.75819 −0.802050 −0.401025 0.916067i \(-0.631346\pi\)
−0.401025 + 0.916067i \(0.631346\pi\)
\(72\) −22.2055 −2.61694
\(73\) −12.5367 −1.46731 −0.733656 0.679521i \(-0.762188\pi\)
−0.733656 + 0.679521i \(0.762188\pi\)
\(74\) 19.7759 2.29890
\(75\) −20.0354 −2.31349
\(76\) 13.6731 1.56842
\(77\) 0 0
\(78\) 6.36226 0.720384
\(79\) −1.51902 −0.170903 −0.0854516 0.996342i \(-0.527233\pi\)
−0.0854516 + 0.996342i \(0.527233\pi\)
\(80\) −41.7219 −4.66465
\(81\) −9.71119 −1.07902
\(82\) −27.1001 −2.99271
\(83\) −15.7582 −1.72969 −0.864843 0.502042i \(-0.832582\pi\)
−0.864843 + 0.502042i \(0.832582\pi\)
\(84\) 0 0
\(85\) 8.75819 0.949959
\(86\) 8.23917 0.888453
\(87\) 0.498680 0.0534641
\(88\) −5.31088 −0.566142
\(89\) 14.8096 1.56981 0.784905 0.619616i \(-0.212712\pi\)
0.784905 + 0.619616i \(0.212712\pi\)
\(90\) 26.6014 2.80404
\(91\) 0 0
\(92\) 37.1895 3.87728
\(93\) −2.72279 −0.282340
\(94\) 12.2258 1.26100
\(95\) −9.89461 −1.01517
\(96\) 33.7892 3.44860
\(97\) 10.0177 1.01714 0.508572 0.861020i \(-0.330174\pi\)
0.508572 + 0.861020i \(0.330174\pi\)
\(98\) 0 0
\(99\) 1.79623 0.180528
\(100\) 42.2409 4.22409
\(101\) 3.01770 0.300273 0.150136 0.988665i \(-0.452029\pi\)
0.150136 + 0.988665i \(0.452029\pi\)
\(102\) −15.2435 −1.50934
\(103\) 5.03804 0.496413 0.248207 0.968707i \(-0.420159\pi\)
0.248207 + 0.968707i \(0.420159\pi\)
\(104\) −8.10275 −0.794540
\(105\) 0 0
\(106\) −13.9663 −1.35653
\(107\) 11.8432 1.14493 0.572465 0.819929i \(-0.305987\pi\)
0.572465 + 0.819929i \(0.305987\pi\)
\(108\) 3.14079 0.302223
\(109\) 3.55005 0.340034 0.170017 0.985441i \(-0.445618\pi\)
0.170017 + 0.985441i \(0.445618\pi\)
\(110\) 6.36226 0.606618
\(111\) 17.8432 1.69361
\(112\) 0 0
\(113\) −9.46501 −0.890393 −0.445197 0.895433i \(-0.646866\pi\)
−0.445197 + 0.895433i \(0.646866\pi\)
\(114\) 17.2215 1.61294
\(115\) −26.9123 −2.50959
\(116\) −1.05137 −0.0976176
\(117\) 2.74049 0.253358
\(118\) 21.9327 2.01906
\(119\) 0 0
\(120\) −70.9654 −6.47823
\(121\) −10.5704 −0.960945
\(122\) −5.03804 −0.456123
\(123\) −24.4517 −2.20473
\(124\) 5.74049 0.515511
\(125\) −12.2905 −1.09930
\(126\) 0 0
\(127\) 5.46765 0.485175 0.242588 0.970130i \(-0.422004\pi\)
0.242588 + 0.970130i \(0.422004\pi\)
\(128\) −10.6218 −0.938841
\(129\) 7.43397 0.654525
\(130\) 9.70682 0.851344
\(131\) −9.82991 −0.858843 −0.429421 0.903104i \(-0.641282\pi\)
−0.429421 + 0.903104i \(0.641282\pi\)
\(132\) −7.93265 −0.690449
\(133\) 0 0
\(134\) 34.2409 2.95796
\(135\) −2.27284 −0.195615
\(136\) 19.4136 1.66471
\(137\) 17.5501 1.49940 0.749701 0.661777i \(-0.230197\pi\)
0.749701 + 0.661777i \(0.230197\pi\)
\(138\) 46.8406 3.98734
\(139\) 4.91495 0.416881 0.208440 0.978035i \(-0.433161\pi\)
0.208440 + 0.978035i \(0.433161\pi\)
\(140\) 0 0
\(141\) 11.0310 0.928981
\(142\) 17.9460 1.50599
\(143\) 0.655442 0.0548108
\(144\) 31.2789 2.60658
\(145\) 0.760830 0.0631835
\(146\) 33.2905 2.75515
\(147\) 0 0
\(148\) −37.6191 −3.09227
\(149\) −10.3419 −0.847243 −0.423621 0.905839i \(-0.639241\pi\)
−0.423621 + 0.905839i \(0.639241\pi\)
\(150\) 53.2029 4.34400
\(151\) 5.07171 0.412730 0.206365 0.978475i \(-0.433837\pi\)
0.206365 + 0.978475i \(0.433837\pi\)
\(152\) −21.9327 −1.77897
\(153\) −6.56603 −0.530832
\(154\) 0 0
\(155\) −4.15412 −0.333667
\(156\) −12.1027 −0.968995
\(157\) 12.6014 1.00570 0.502852 0.864373i \(-0.332284\pi\)
0.502852 + 0.864373i \(0.332284\pi\)
\(158\) 4.03367 0.320902
\(159\) −12.6014 −0.999358
\(160\) 51.5518 4.07553
\(161\) 0 0
\(162\) 25.7875 2.02606
\(163\) 3.20814 0.251281 0.125640 0.992076i \(-0.459901\pi\)
0.125640 + 0.992076i \(0.459901\pi\)
\(164\) 51.5518 4.02552
\(165\) 5.74049 0.446896
\(166\) 41.8450 3.24780
\(167\) −8.12045 −0.628379 −0.314190 0.949360i \(-0.601733\pi\)
−0.314190 + 0.949360i \(0.601733\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −23.2569 −1.78372
\(171\) 7.41800 0.567269
\(172\) −15.6731 −1.19507
\(173\) 10.3286 0.785268 0.392634 0.919695i \(-0.371564\pi\)
0.392634 + 0.919695i \(0.371564\pi\)
\(174\) −1.32422 −0.100389
\(175\) 0 0
\(176\) 7.48098 0.563900
\(177\) 19.7892 1.48745
\(178\) −39.3259 −2.94760
\(179\) −2.37823 −0.177757 −0.0888786 0.996042i \(-0.528328\pi\)
−0.0888786 + 0.996042i \(0.528328\pi\)
\(180\) −50.6032 −3.77174
\(181\) −21.8096 −1.62109 −0.810546 0.585675i \(-0.800830\pi\)
−0.810546 + 0.585675i \(0.800830\pi\)
\(182\) 0 0
\(183\) −4.54569 −0.336027
\(184\) −59.6545 −4.39779
\(185\) 27.2232 2.00149
\(186\) 7.23021 0.530144
\(187\) −1.57040 −0.114839
\(188\) −23.2569 −1.69618
\(189\) 0 0
\(190\) 26.2746 1.90616
\(191\) −25.0868 −1.81522 −0.907608 0.419819i \(-0.862093\pi\)
−0.907608 + 0.419819i \(0.862093\pi\)
\(192\) −35.0328 −2.52827
\(193\) 11.3109 0.814175 0.407088 0.913389i \(-0.366544\pi\)
0.407088 + 0.913389i \(0.366544\pi\)
\(194\) −26.6014 −1.90987
\(195\) 8.75819 0.627187
\(196\) 0 0
\(197\) −16.7919 −1.19637 −0.598185 0.801358i \(-0.704111\pi\)
−0.598185 + 0.801358i \(0.704111\pi\)
\(198\) −4.76979 −0.338974
\(199\) −20.5341 −1.45562 −0.727811 0.685777i \(-0.759462\pi\)
−0.727811 + 0.685777i \(0.759462\pi\)
\(200\) −67.7573 −4.79116
\(201\) 30.8946 2.17914
\(202\) −8.01333 −0.563816
\(203\) 0 0
\(204\) 28.9974 2.03022
\(205\) −37.3056 −2.60554
\(206\) −13.3782 −0.932105
\(207\) 20.1762 1.40234
\(208\) 11.4136 0.791393
\(209\) 1.77416 0.122721
\(210\) 0 0
\(211\) −15.7785 −1.08624 −0.543119 0.839655i \(-0.682757\pi\)
−0.543119 + 0.839655i \(0.682757\pi\)
\(212\) 26.5678 1.82468
\(213\) 16.1922 1.10947
\(214\) −31.4490 −2.14981
\(215\) 11.3419 0.773512
\(216\) −5.03804 −0.342795
\(217\) 0 0
\(218\) −9.42697 −0.638475
\(219\) 30.0371 2.02972
\(220\) −12.1027 −0.815967
\(221\) −2.39593 −0.161168
\(222\) −47.3817 −3.18005
\(223\) 8.44731 0.565673 0.282837 0.959168i \(-0.408725\pi\)
0.282837 + 0.959168i \(0.408725\pi\)
\(224\) 0 0
\(225\) 22.9167 1.52778
\(226\) 25.1338 1.67187
\(227\) −6.68912 −0.443972 −0.221986 0.975050i \(-0.571254\pi\)
−0.221986 + 0.975050i \(0.571254\pi\)
\(228\) −32.7599 −2.16958
\(229\) −8.63510 −0.570624 −0.285312 0.958435i \(-0.592097\pi\)
−0.285312 + 0.958435i \(0.592097\pi\)
\(230\) 71.4641 4.71220
\(231\) 0 0
\(232\) 1.68648 0.110723
\(233\) −4.16745 −0.273019 −0.136510 0.990639i \(-0.543588\pi\)
−0.136510 + 0.990639i \(0.543588\pi\)
\(234\) −7.27721 −0.475726
\(235\) 16.8299 1.09786
\(236\) −41.7219 −2.71586
\(237\) 3.63947 0.236409
\(238\) 0 0
\(239\) −1.79450 −0.116077 −0.0580384 0.998314i \(-0.518485\pi\)
−0.0580384 + 0.998314i \(0.518485\pi\)
\(240\) 99.9628 6.45257
\(241\) −13.8609 −0.892862 −0.446431 0.894818i \(-0.647305\pi\)
−0.446431 + 0.894818i \(0.647305\pi\)
\(242\) 28.0691 1.80435
\(243\) 21.4020 1.37294
\(244\) 9.58373 0.613535
\(245\) 0 0
\(246\) 64.9300 4.13979
\(247\) 2.70682 0.172231
\(248\) −9.20814 −0.584717
\(249\) 37.7556 2.39266
\(250\) 32.6368 2.06413
\(251\) −14.7449 −0.930687 −0.465344 0.885130i \(-0.654069\pi\)
−0.465344 + 0.885130i \(0.654069\pi\)
\(252\) 0 0
\(253\) 4.82554 0.303379
\(254\) −14.5190 −0.911004
\(255\) −20.9840 −1.31407
\(256\) −1.03804 −0.0648776
\(257\) −23.7068 −1.47879 −0.739395 0.673272i \(-0.764888\pi\)
−0.739395 + 0.673272i \(0.764888\pi\)
\(258\) −19.7405 −1.22899
\(259\) 0 0
\(260\) −18.4650 −1.14515
\(261\) −0.570395 −0.0353066
\(262\) 26.1027 1.61263
\(263\) 11.3756 0.701449 0.350725 0.936479i \(-0.385935\pi\)
0.350725 + 0.936479i \(0.385935\pi\)
\(264\) 12.7245 0.783140
\(265\) −19.2258 −1.18103
\(266\) 0 0
\(267\) −35.4827 −2.17151
\(268\) −65.1355 −3.97878
\(269\) 11.1054 0.677107 0.338554 0.940947i \(-0.390062\pi\)
0.338554 + 0.940947i \(0.390062\pi\)
\(270\) 6.03540 0.367303
\(271\) 12.7245 0.772959 0.386480 0.922298i \(-0.373691\pi\)
0.386480 + 0.922298i \(0.373691\pi\)
\(272\) −27.3463 −1.65811
\(273\) 0 0
\(274\) −46.6032 −2.81540
\(275\) 5.48098 0.330515
\(276\) −89.1036 −5.36340
\(277\) −3.00000 −0.180253 −0.0901263 0.995930i \(-0.528727\pi\)
−0.0901263 + 0.995930i \(0.528727\pi\)
\(278\) −13.0514 −0.782769
\(279\) 3.11435 0.186451
\(280\) 0 0
\(281\) 3.44731 0.205649 0.102825 0.994700i \(-0.467212\pi\)
0.102825 + 0.994700i \(0.467212\pi\)
\(282\) −29.2923 −1.74433
\(283\) 12.4783 0.741760 0.370880 0.928681i \(-0.379056\pi\)
0.370880 + 0.928681i \(0.379056\pi\)
\(284\) −34.1382 −2.02573
\(285\) 23.7068 1.40427
\(286\) −1.74049 −0.102917
\(287\) 0 0
\(288\) −38.6484 −2.27738
\(289\) −11.2595 −0.662324
\(290\) −2.02034 −0.118638
\(291\) −24.0017 −1.40701
\(292\) −63.3277 −3.70597
\(293\) 13.5341 0.790670 0.395335 0.918537i \(-0.370629\pi\)
0.395335 + 0.918537i \(0.370629\pi\)
\(294\) 0 0
\(295\) 30.1922 1.75786
\(296\) 60.3436 3.50740
\(297\) 0.407534 0.0236475
\(298\) 27.4624 1.59085
\(299\) 7.36226 0.425770
\(300\) −101.206 −5.84315
\(301\) 0 0
\(302\) −13.4676 −0.774976
\(303\) −7.23021 −0.415365
\(304\) 30.8946 1.77193
\(305\) −6.93529 −0.397114
\(306\) 17.4357 0.996733
\(307\) −28.2365 −1.61154 −0.805772 0.592226i \(-0.798249\pi\)
−0.805772 + 0.592226i \(0.798249\pi\)
\(308\) 0 0
\(309\) −12.0708 −0.686684
\(310\) 11.0310 0.626521
\(311\) 24.7042 1.40085 0.700423 0.713728i \(-0.252995\pi\)
0.700423 + 0.713728i \(0.252995\pi\)
\(312\) 19.4136 1.09908
\(313\) 20.8122 1.17638 0.588188 0.808724i \(-0.299842\pi\)
0.588188 + 0.808724i \(0.299842\pi\)
\(314\) −33.4624 −1.88839
\(315\) 0 0
\(316\) −7.67314 −0.431648
\(317\) 26.1382 1.46806 0.734032 0.679114i \(-0.237636\pi\)
0.734032 + 0.679114i \(0.237636\pi\)
\(318\) 33.4624 1.87648
\(319\) −0.136421 −0.00763813
\(320\) −53.4490 −2.98789
\(321\) −28.3756 −1.58377
\(322\) 0 0
\(323\) −6.48535 −0.360854
\(324\) −49.0548 −2.72527
\(325\) 8.36226 0.463855
\(326\) −8.51902 −0.471825
\(327\) −8.50569 −0.470366
\(328\) −82.6926 −4.56593
\(329\) 0 0
\(330\) −15.2435 −0.839129
\(331\) −24.1382 −1.32675 −0.663376 0.748286i \(-0.730877\pi\)
−0.663376 + 0.748286i \(0.730877\pi\)
\(332\) −79.6005 −4.36865
\(333\) −20.4093 −1.11842
\(334\) 21.5634 1.17990
\(335\) 47.1355 2.57529
\(336\) 0 0
\(337\) −30.5297 −1.66306 −0.831530 0.555480i \(-0.812534\pi\)
−0.831530 + 0.555480i \(0.812534\pi\)
\(338\) −2.65544 −0.144437
\(339\) 22.6775 1.23167
\(340\) 44.2409 2.39930
\(341\) 0.744859 0.0403364
\(342\) −19.6981 −1.06515
\(343\) 0 0
\(344\) 25.1408 1.35550
\(345\) 64.4801 3.47149
\(346\) −27.4270 −1.47448
\(347\) −24.9974 −1.34193 −0.670964 0.741490i \(-0.734120\pi\)
−0.670964 + 0.741490i \(0.734120\pi\)
\(348\) 2.51902 0.135034
\(349\) 1.83887 0.0984324 0.0492162 0.998788i \(-0.484328\pi\)
0.0492162 + 0.998788i \(0.484328\pi\)
\(350\) 0 0
\(351\) 0.621770 0.0331876
\(352\) −9.24354 −0.492682
\(353\) 23.2569 1.23784 0.618919 0.785455i \(-0.287571\pi\)
0.618919 + 0.785455i \(0.287571\pi\)
\(354\) −52.5491 −2.79296
\(355\) 24.7042 1.31116
\(356\) 74.8087 3.96485
\(357\) 0 0
\(358\) 6.31525 0.333772
\(359\) −21.4473 −1.13195 −0.565973 0.824424i \(-0.691499\pi\)
−0.565973 + 0.824424i \(0.691499\pi\)
\(360\) 81.1709 4.27808
\(361\) −11.6731 −0.614376
\(362\) 57.9140 3.04389
\(363\) 25.3259 1.32927
\(364\) 0 0
\(365\) 45.8273 2.39871
\(366\) 12.0708 0.630951
\(367\) 1.12045 0.0584870 0.0292435 0.999572i \(-0.490690\pi\)
0.0292435 + 0.999572i \(0.490690\pi\)
\(368\) 84.0301 4.38037
\(369\) 27.9681 1.45596
\(370\) −72.2896 −3.75816
\(371\) 0 0
\(372\) −13.7538 −0.713102
\(373\) 15.6058 0.808038 0.404019 0.914751i \(-0.367613\pi\)
0.404019 + 0.914751i \(0.367613\pi\)
\(374\) 4.17009 0.215630
\(375\) 29.4473 1.52065
\(376\) 37.3056 1.92389
\(377\) −0.208136 −0.0107196
\(378\) 0 0
\(379\) 12.7849 0.656714 0.328357 0.944554i \(-0.393505\pi\)
0.328357 + 0.944554i \(0.393505\pi\)
\(380\) −49.9814 −2.56399
\(381\) −13.1001 −0.671139
\(382\) 66.6165 3.40840
\(383\) −34.0354 −1.73913 −0.869564 0.493820i \(-0.835600\pi\)
−0.869564 + 0.493820i \(0.835600\pi\)
\(384\) 25.4490 1.29869
\(385\) 0 0
\(386\) −30.0354 −1.52876
\(387\) −8.50305 −0.432234
\(388\) 50.6032 2.56899
\(389\) −24.6705 −1.25084 −0.625422 0.780287i \(-0.715073\pi\)
−0.625422 + 0.780287i \(0.715073\pi\)
\(390\) −23.2569 −1.17766
\(391\) −17.6395 −0.892066
\(392\) 0 0
\(393\) 23.5518 1.18803
\(394\) 44.5898 2.24640
\(395\) 5.55269 0.279386
\(396\) 9.07344 0.455958
\(397\) 4.97966 0.249922 0.124961 0.992162i \(-0.460119\pi\)
0.124961 + 0.992162i \(0.460119\pi\)
\(398\) 54.5271 2.73320
\(399\) 0 0
\(400\) 95.4438 4.77219
\(401\) 0.689115 0.0344128 0.0172064 0.999852i \(-0.494523\pi\)
0.0172064 + 0.999852i \(0.494523\pi\)
\(402\) −82.0389 −4.09173
\(403\) 1.13642 0.0566092
\(404\) 15.2435 0.758394
\(405\) 35.4987 1.76394
\(406\) 0 0
\(407\) −4.88128 −0.241956
\(408\) −46.5137 −2.30277
\(409\) −19.9770 −0.987800 −0.493900 0.869519i \(-0.664429\pi\)
−0.493900 + 0.869519i \(0.664429\pi\)
\(410\) 99.0629 4.89237
\(411\) −42.0487 −2.07411
\(412\) 25.4490 1.25378
\(413\) 0 0
\(414\) −53.5767 −2.63315
\(415\) 57.6032 2.82763
\(416\) −14.1027 −0.691444
\(417\) −11.7759 −0.576668
\(418\) −4.71119 −0.230432
\(419\) −19.6661 −0.960754 −0.480377 0.877062i \(-0.659500\pi\)
−0.480377 + 0.877062i \(0.659500\pi\)
\(420\) 0 0
\(421\) 14.9283 0.727560 0.363780 0.931485i \(-0.381486\pi\)
0.363780 + 0.931485i \(0.381486\pi\)
\(422\) 41.8990 2.03961
\(423\) −12.6174 −0.613479
\(424\) −42.6165 −2.06964
\(425\) −20.0354 −0.971860
\(426\) −42.9974 −2.08323
\(427\) 0 0
\(428\) 59.8246 2.89173
\(429\) −1.57040 −0.0758194
\(430\) −30.1178 −1.45241
\(431\) −32.6838 −1.57433 −0.787163 0.616746i \(-0.788451\pi\)
−0.787163 + 0.616746i \(0.788451\pi\)
\(432\) 7.09665 0.341438
\(433\) 8.96196 0.430684 0.215342 0.976539i \(-0.430913\pi\)
0.215342 + 0.976539i \(0.430913\pi\)
\(434\) 0 0
\(435\) −1.82290 −0.0874012
\(436\) 17.9327 0.858818
\(437\) 19.9283 0.953299
\(438\) −79.7619 −3.81117
\(439\) 7.93265 0.378605 0.189302 0.981919i \(-0.439377\pi\)
0.189302 + 0.981919i \(0.439377\pi\)
\(440\) 19.4136 0.925509
\(441\) 0 0
\(442\) 6.36226 0.302622
\(443\) −8.91058 −0.423355 −0.211677 0.977340i \(-0.567893\pi\)
−0.211677 + 0.977340i \(0.567893\pi\)
\(444\) 90.1329 4.27752
\(445\) −54.1355 −2.56627
\(446\) −22.4313 −1.06215
\(447\) 24.7785 1.17198
\(448\) 0 0
\(449\) −8.45168 −0.398859 −0.199430 0.979912i \(-0.563909\pi\)
−0.199430 + 0.979912i \(0.563909\pi\)
\(450\) −60.8539 −2.86868
\(451\) 6.68912 0.314978
\(452\) −47.8113 −2.24885
\(453\) −12.1515 −0.570926
\(454\) 17.7626 0.833638
\(455\) 0 0
\(456\) 52.5491 2.46084
\(457\) 23.1692 1.08381 0.541904 0.840440i \(-0.317703\pi\)
0.541904 + 0.840440i \(0.317703\pi\)
\(458\) 22.9300 1.07145
\(459\) −1.48972 −0.0695341
\(460\) −135.944 −6.33843
\(461\) −2.27284 −0.105857 −0.0529284 0.998598i \(-0.516856\pi\)
−0.0529284 + 0.998598i \(0.516856\pi\)
\(462\) 0 0
\(463\) −4.10976 −0.190997 −0.0954983 0.995430i \(-0.530444\pi\)
−0.0954983 + 0.995430i \(0.530444\pi\)
\(464\) −2.37559 −0.110284
\(465\) 9.95299 0.461559
\(466\) 11.0664 0.512643
\(467\) −32.9150 −1.52312 −0.761561 0.648093i \(-0.775567\pi\)
−0.761561 + 0.648093i \(0.775567\pi\)
\(468\) 13.8432 0.639904
\(469\) 0 0
\(470\) −44.6908 −2.06143
\(471\) −30.1922 −1.39118
\(472\) 66.9247 3.08046
\(473\) −2.03367 −0.0935084
\(474\) −9.66441 −0.443901
\(475\) 22.6351 1.03857
\(476\) 0 0
\(477\) 14.4136 0.659955
\(478\) 4.76520 0.217955
\(479\) 9.31525 0.425625 0.212812 0.977093i \(-0.431738\pi\)
0.212812 + 0.977093i \(0.431738\pi\)
\(480\) −123.515 −5.63764
\(481\) −7.44731 −0.339568
\(482\) 36.8069 1.67651
\(483\) 0 0
\(484\) −53.3950 −2.42705
\(485\) −36.6191 −1.66279
\(486\) −56.8319 −2.57795
\(487\) 20.2409 0.917203 0.458601 0.888642i \(-0.348351\pi\)
0.458601 + 0.888642i \(0.348351\pi\)
\(488\) −15.3730 −0.695901
\(489\) −7.68648 −0.347594
\(490\) 0 0
\(491\) −4.36226 −0.196866 −0.0984330 0.995144i \(-0.531383\pi\)
−0.0984330 + 0.995144i \(0.531383\pi\)
\(492\) −123.515 −5.56847
\(493\) 0.498680 0.0224594
\(494\) −7.18780 −0.323394
\(495\) −6.56603 −0.295121
\(496\) 12.9707 0.582401
\(497\) 0 0
\(498\) −100.258 −4.49265
\(499\) 9.69348 0.433940 0.216970 0.976178i \(-0.430383\pi\)
0.216970 + 0.976178i \(0.430383\pi\)
\(500\) −62.0841 −2.77649
\(501\) 19.4560 0.869232
\(502\) 39.1541 1.74753
\(503\) −2.64843 −0.118088 −0.0590439 0.998255i \(-0.518805\pi\)
−0.0590439 + 0.998255i \(0.518805\pi\)
\(504\) 0 0
\(505\) −11.0310 −0.490875
\(506\) −12.8139 −0.569649
\(507\) −2.39593 −0.106407
\(508\) 27.6191 1.22540
\(509\) 13.9416 0.617951 0.308976 0.951070i \(-0.400014\pi\)
0.308976 + 0.951070i \(0.400014\pi\)
\(510\) 55.7219 2.46741
\(511\) 0 0
\(512\) 24.0000 1.06066
\(513\) 1.68302 0.0743070
\(514\) 62.9521 2.77670
\(515\) −18.4163 −0.811518
\(516\) 37.5518 1.65313
\(517\) −3.01770 −0.132718
\(518\) 0 0
\(519\) −24.7466 −1.08625
\(520\) 29.6191 1.29888
\(521\) 14.6218 0.640591 0.320296 0.947318i \(-0.396218\pi\)
0.320296 + 0.947318i \(0.396218\pi\)
\(522\) 1.51465 0.0662945
\(523\) −16.5190 −0.722326 −0.361163 0.932503i \(-0.617620\pi\)
−0.361163 + 0.932503i \(0.617620\pi\)
\(524\) −49.6545 −2.16917
\(525\) 0 0
\(526\) −30.2072 −1.31710
\(527\) −2.72279 −0.118607
\(528\) −17.9239 −0.780038
\(529\) 31.2029 1.35665
\(530\) 51.0531 2.21761
\(531\) −22.6351 −0.982280
\(532\) 0 0
\(533\) 10.2055 0.442049
\(534\) 94.2223 4.07740
\(535\) −43.2923 −1.87169
\(536\) 104.482 4.51293
\(537\) 5.69808 0.245890
\(538\) −29.4897 −1.27139
\(539\) 0 0
\(540\) −11.4810 −0.494063
\(541\) −43.1018 −1.85309 −0.926546 0.376181i \(-0.877237\pi\)
−0.926546 + 0.376181i \(0.877237\pi\)
\(542\) −33.7892 −1.45137
\(543\) 52.2542 2.24244
\(544\) 33.7892 1.44870
\(545\) −12.9770 −0.555874
\(546\) 0 0
\(547\) −13.5057 −0.577462 −0.288731 0.957410i \(-0.593233\pi\)
−0.288731 + 0.957410i \(0.593233\pi\)
\(548\) 88.6519 3.78702
\(549\) 5.19940 0.221905
\(550\) −14.5544 −0.620603
\(551\) −0.563387 −0.0240011
\(552\) 142.928 6.08343
\(553\) 0 0
\(554\) 7.96633 0.338457
\(555\) −65.2249 −2.76864
\(556\) 24.8273 1.05291
\(557\) 1.35157 0.0572677 0.0286338 0.999590i \(-0.490884\pi\)
0.0286338 + 0.999590i \(0.490884\pi\)
\(558\) −8.26998 −0.350096
\(559\) −3.10275 −0.131232
\(560\) 0 0
\(561\) 3.76256 0.158855
\(562\) −9.15412 −0.386143
\(563\) −31.7626 −1.33863 −0.669316 0.742978i \(-0.733413\pi\)
−0.669316 + 0.742978i \(0.733413\pi\)
\(564\) 55.7219 2.34631
\(565\) 34.5988 1.45558
\(566\) −33.1355 −1.39279
\(567\) 0 0
\(568\) 54.7599 2.29768
\(569\) 30.3730 1.27330 0.636650 0.771153i \(-0.280320\pi\)
0.636650 + 0.771153i \(0.280320\pi\)
\(570\) −62.9521 −2.63677
\(571\) −0.432244 −0.0180888 −0.00904442 0.999959i \(-0.502879\pi\)
−0.00904442 + 0.999959i \(0.502879\pi\)
\(572\) 3.31088 0.138435
\(573\) 60.1062 2.51097
\(574\) 0 0
\(575\) 61.5651 2.56744
\(576\) 40.0708 1.66962
\(577\) −18.1382 −0.755101 −0.377551 0.925989i \(-0.623234\pi\)
−0.377551 + 0.925989i \(0.623234\pi\)
\(578\) 29.8990 1.24363
\(579\) −27.1001 −1.12624
\(580\) 3.84324 0.159582
\(581\) 0 0
\(582\) 63.7352 2.64191
\(583\) 3.44731 0.142773
\(584\) 101.582 4.20349
\(585\) −10.0177 −0.414181
\(586\) −35.9390 −1.48463
\(587\) −19.3065 −0.796865 −0.398433 0.917198i \(-0.630446\pi\)
−0.398433 + 0.917198i \(0.630446\pi\)
\(588\) 0 0
\(589\) 3.07608 0.126748
\(590\) −80.1736 −3.30069
\(591\) 40.2322 1.65493
\(592\) −85.0008 −3.49351
\(593\) −8.20113 −0.336780 −0.168390 0.985720i \(-0.553857\pi\)
−0.168390 + 0.985720i \(0.553857\pi\)
\(594\) −1.08218 −0.0444025
\(595\) 0 0
\(596\) −52.2409 −2.13987
\(597\) 49.1983 2.01355
\(598\) −19.5501 −0.799461
\(599\) 23.4783 0.959299 0.479649 0.877460i \(-0.340764\pi\)
0.479649 + 0.877460i \(0.340764\pi\)
\(600\) 162.342 6.62758
\(601\) 8.96196 0.365566 0.182783 0.983153i \(-0.441489\pi\)
0.182783 + 0.983153i \(0.441489\pi\)
\(602\) 0 0
\(603\) −35.3375 −1.43906
\(604\) 25.6191 1.04243
\(605\) 38.6395 1.57092
\(606\) 19.1994 0.779922
\(607\) −43.4641 −1.76415 −0.882077 0.471106i \(-0.843855\pi\)
−0.882077 + 0.471106i \(0.843855\pi\)
\(608\) −38.1736 −1.54814
\(609\) 0 0
\(610\) 18.4163 0.745653
\(611\) −4.60407 −0.186261
\(612\) −33.1675 −1.34071
\(613\) −21.4490 −0.866318 −0.433159 0.901317i \(-0.642601\pi\)
−0.433159 + 0.901317i \(0.642601\pi\)
\(614\) 74.9805 3.02597
\(615\) 89.3817 3.60422
\(616\) 0 0
\(617\) −12.1294 −0.488312 −0.244156 0.969736i \(-0.578511\pi\)
−0.244156 + 0.969736i \(0.578511\pi\)
\(618\) 32.0533 1.28937
\(619\) −12.7245 −0.511442 −0.255721 0.966751i \(-0.582313\pi\)
−0.255721 + 0.966751i \(0.582313\pi\)
\(620\) −20.9840 −0.842739
\(621\) 4.57763 0.183694
\(622\) −65.6005 −2.63034
\(623\) 0 0
\(624\) −27.3463 −1.09473
\(625\) 3.11608 0.124643
\(626\) −55.2656 −2.20886
\(627\) −4.25077 −0.169759
\(628\) 63.6545 2.54009
\(629\) 17.8432 0.711456
\(630\) 0 0
\(631\) −11.7538 −0.467912 −0.233956 0.972247i \(-0.575167\pi\)
−0.233956 + 0.972247i \(0.575167\pi\)
\(632\) 12.3082 0.489596
\(633\) 37.8043 1.50259
\(634\) −69.4084 −2.75656
\(635\) −19.9867 −0.793147
\(636\) −63.6545 −2.52407
\(637\) 0 0
\(638\) 0.362259 0.0143420
\(639\) −18.5208 −0.732670
\(640\) 38.8273 1.53478
\(641\) 4.68648 0.185105 0.0925523 0.995708i \(-0.470497\pi\)
0.0925523 + 0.995708i \(0.470497\pi\)
\(642\) 75.3497 2.97382
\(643\) 0.751182 0.0296237 0.0148119 0.999890i \(-0.495285\pi\)
0.0148119 + 0.999890i \(0.495285\pi\)
\(644\) 0 0
\(645\) −27.1745 −1.06999
\(646\) 17.2215 0.677570
\(647\) −40.8476 −1.60589 −0.802943 0.596056i \(-0.796733\pi\)
−0.802943 + 0.596056i \(0.796733\pi\)
\(648\) 78.6873 3.09113
\(649\) −5.41363 −0.212504
\(650\) −22.2055 −0.870971
\(651\) 0 0
\(652\) 16.2055 0.634656
\(653\) −46.4783 −1.81884 −0.909419 0.415881i \(-0.863473\pi\)
−0.909419 + 0.415881i \(0.863473\pi\)
\(654\) 22.5864 0.883197
\(655\) 35.9327 1.40400
\(656\) 116.482 4.54785
\(657\) −34.3568 −1.34038
\(658\) 0 0
\(659\) 30.3596 1.18264 0.591321 0.806436i \(-0.298606\pi\)
0.591321 + 0.806436i \(0.298606\pi\)
\(660\) 28.9974 1.12872
\(661\) 0.107118 0.00416640 0.00208320 0.999998i \(-0.499337\pi\)
0.00208320 + 0.999998i \(0.499337\pi\)
\(662\) 64.0975 2.49122
\(663\) 5.74049 0.222942
\(664\) 127.685 4.95513
\(665\) 0 0
\(666\) 54.1956 2.10004
\(667\) −1.53235 −0.0593330
\(668\) −41.0194 −1.58709
\(669\) −20.2392 −0.782492
\(670\) −125.166 −4.83557
\(671\) 1.24354 0.0480063
\(672\) 0 0
\(673\) 38.5385 1.48555 0.742774 0.669542i \(-0.233510\pi\)
0.742774 + 0.669542i \(0.233510\pi\)
\(674\) 81.0699 3.12270
\(675\) 5.19940 0.200125
\(676\) 5.05137 0.194284
\(677\) 20.7803 0.798650 0.399325 0.916809i \(-0.369244\pi\)
0.399325 + 0.916809i \(0.369244\pi\)
\(678\) −60.2188 −2.31269
\(679\) 0 0
\(680\) −70.9654 −2.72140
\(681\) 16.0267 0.614143
\(682\) −1.97793 −0.0757388
\(683\) 27.5837 1.05546 0.527731 0.849412i \(-0.323043\pi\)
0.527731 + 0.849412i \(0.323043\pi\)
\(684\) 37.4711 1.43274
\(685\) −64.1532 −2.45117
\(686\) 0 0
\(687\) 20.6891 0.789339
\(688\) −35.4136 −1.35013
\(689\) 5.25951 0.200371
\(690\) −171.223 −6.51835
\(691\) −43.6775 −1.66157 −0.830785 0.556593i \(-0.812108\pi\)
−0.830785 + 0.556593i \(0.812108\pi\)
\(692\) 52.1736 1.98334
\(693\) 0 0
\(694\) 66.3791 2.51971
\(695\) −17.9663 −0.681502
\(696\) −4.04068 −0.153162
\(697\) −24.4517 −0.926173
\(698\) −4.88301 −0.184825
\(699\) 9.98494 0.377665
\(700\) 0 0
\(701\) −20.8973 −0.789278 −0.394639 0.918836i \(-0.629130\pi\)
−0.394639 + 0.918836i \(0.629130\pi\)
\(702\) −1.65107 −0.0623157
\(703\) −20.1585 −0.760292
\(704\) 9.58373 0.361200
\(705\) −40.3233 −1.51866
\(706\) −61.7573 −2.32427
\(707\) 0 0
\(708\) 99.9628 3.75683
\(709\) 9.93966 0.373292 0.186646 0.982427i \(-0.440238\pi\)
0.186646 + 0.982427i \(0.440238\pi\)
\(710\) −65.6005 −2.46194
\(711\) −4.16286 −0.156119
\(712\) −119.998 −4.49712
\(713\) 8.36663 0.313333
\(714\) 0 0
\(715\) −2.39593 −0.0896028
\(716\) −12.0133 −0.448959
\(717\) 4.29951 0.160568
\(718\) 56.9521 2.12543
\(719\) 11.9797 0.446766 0.223383 0.974731i \(-0.428290\pi\)
0.223383 + 0.974731i \(0.428290\pi\)
\(720\) −114.338 −4.26114
\(721\) 0 0
\(722\) 30.9974 1.15360
\(723\) 33.2099 1.23509
\(724\) −110.168 −4.09437
\(725\) −1.74049 −0.0646402
\(726\) −67.2516 −2.49594
\(727\) −24.1736 −0.896547 −0.448274 0.893896i \(-0.647961\pi\)
−0.448274 + 0.893896i \(0.647961\pi\)
\(728\) 0 0
\(729\) −22.1443 −0.820157
\(730\) −121.692 −4.50401
\(731\) 7.43397 0.274955
\(732\) −22.9620 −0.848698
\(733\) 36.4473 1.34621 0.673106 0.739546i \(-0.264960\pi\)
0.673106 + 0.739546i \(0.264960\pi\)
\(734\) −2.97529 −0.109820
\(735\) 0 0
\(736\) −103.828 −3.82715
\(737\) −8.45168 −0.311321
\(738\) −74.2676 −2.73383
\(739\) 43.2772 1.59198 0.795989 0.605311i \(-0.206951\pi\)
0.795989 + 0.605311i \(0.206951\pi\)
\(740\) 137.515 5.05514
\(741\) −6.48535 −0.238245
\(742\) 0 0
\(743\) 22.6572 0.831211 0.415606 0.909545i \(-0.363570\pi\)
0.415606 + 0.909545i \(0.363570\pi\)
\(744\) 22.0621 0.808835
\(745\) 37.8043 1.38504
\(746\) −41.4403 −1.51724
\(747\) −43.1852 −1.58006
\(748\) −7.93265 −0.290047
\(749\) 0 0
\(750\) −78.1956 −2.85530
\(751\) 29.8679 1.08990 0.544948 0.838470i \(-0.316549\pi\)
0.544948 + 0.838470i \(0.316549\pi\)
\(752\) −52.5491 −1.91627
\(753\) 35.3277 1.28741
\(754\) 0.552694 0.0201279
\(755\) −18.5394 −0.674716
\(756\) 0 0
\(757\) 2.55706 0.0929380 0.0464690 0.998920i \(-0.485203\pi\)
0.0464690 + 0.998920i \(0.485203\pi\)
\(758\) −33.9494 −1.23310
\(759\) −11.5617 −0.419662
\(760\) 80.1736 2.90820
\(761\) −14.7289 −0.533922 −0.266961 0.963707i \(-0.586019\pi\)
−0.266961 + 0.963707i \(0.586019\pi\)
\(762\) 34.7866 1.26019
\(763\) 0 0
\(764\) −126.723 −4.58467
\(765\) 24.0017 0.867784
\(766\) 90.3791 3.26553
\(767\) −8.25951 −0.298234
\(768\) 2.48708 0.0897447
\(769\) 36.1692 1.30429 0.652147 0.758092i \(-0.273868\pi\)
0.652147 + 0.758092i \(0.273868\pi\)
\(770\) 0 0
\(771\) 56.7999 2.04560
\(772\) 57.1355 2.05635
\(773\) −38.9567 −1.40117 −0.700587 0.713567i \(-0.747079\pi\)
−0.700587 + 0.713567i \(0.747079\pi\)
\(774\) 22.5794 0.811598
\(775\) 9.50305 0.341360
\(776\) −81.1709 −2.91387
\(777\) 0 0
\(778\) 65.5111 2.34869
\(779\) 27.6244 0.989747
\(780\) 44.2409 1.58408
\(781\) −4.42960 −0.158504
\(782\) 46.8406 1.67502
\(783\) −0.129413 −0.00462484
\(784\) 0 0
\(785\) −46.0638 −1.64409
\(786\) −62.5404 −2.23074
\(787\) −29.1045 −1.03746 −0.518731 0.854937i \(-0.673595\pi\)
−0.518731 + 0.854937i \(0.673595\pi\)
\(788\) −84.8220 −3.02166
\(789\) −27.2551 −0.970309
\(790\) −14.7449 −0.524599
\(791\) 0 0
\(792\) −14.5544 −0.517169
\(793\) 1.89725 0.0673734
\(794\) −13.2232 −0.469274
\(795\) 46.0638 1.63371
\(796\) −103.725 −3.67645
\(797\) 17.8920 0.633766 0.316883 0.948465i \(-0.397364\pi\)
0.316883 + 0.948465i \(0.397364\pi\)
\(798\) 0 0
\(799\) 11.0310 0.390250
\(800\) −117.931 −4.16948
\(801\) 40.5855 1.43402
\(802\) −1.82991 −0.0646162
\(803\) −8.21710 −0.289975
\(804\) 156.060 5.50382
\(805\) 0 0
\(806\) −3.01770 −0.106294
\(807\) −26.6078 −0.936637
\(808\) −24.4517 −0.860207
\(809\) 20.4543 0.719135 0.359568 0.933119i \(-0.382924\pi\)
0.359568 + 0.933119i \(0.382924\pi\)
\(810\) −94.2647 −3.31212
\(811\) 31.6458 1.11123 0.555617 0.831438i \(-0.312482\pi\)
0.555617 + 0.831438i \(0.312482\pi\)
\(812\) 0 0
\(813\) −30.4871 −1.06923
\(814\) 12.9620 0.454316
\(815\) −11.7272 −0.410784
\(816\) 65.5198 2.29365
\(817\) −8.39857 −0.293829
\(818\) 53.0478 1.85477
\(819\) 0 0
\(820\) −188.445 −6.58077
\(821\) 18.0761 0.630860 0.315430 0.948949i \(-0.397851\pi\)
0.315430 + 0.948949i \(0.397851\pi\)
\(822\) 111.658 3.89452
\(823\) −23.0514 −0.803520 −0.401760 0.915745i \(-0.631601\pi\)
−0.401760 + 0.915745i \(0.631601\pi\)
\(824\) −40.8220 −1.42210
\(825\) −13.1321 −0.457199
\(826\) 0 0
\(827\) −26.3756 −0.917169 −0.458585 0.888651i \(-0.651643\pi\)
−0.458585 + 0.888651i \(0.651643\pi\)
\(828\) 101.918 3.54188
\(829\) −45.1152 −1.56691 −0.783457 0.621446i \(-0.786546\pi\)
−0.783457 + 0.621446i \(0.786546\pi\)
\(830\) −152.962 −5.30938
\(831\) 7.18780 0.249342
\(832\) 14.6218 0.506919
\(833\) 0 0
\(834\) 31.2702 1.08280
\(835\) 29.6838 1.02725
\(836\) 8.96196 0.309956
\(837\) 0.706592 0.0244234
\(838\) 52.2223 1.80399
\(839\) 30.4871 1.05253 0.526265 0.850320i \(-0.323592\pi\)
0.526265 + 0.850320i \(0.323592\pi\)
\(840\) 0 0
\(841\) −28.9567 −0.998506
\(842\) −39.6412 −1.36613
\(843\) −8.25951 −0.284473
\(844\) −79.7033 −2.74350
\(845\) −3.65544 −0.125751
\(846\) 33.5048 1.15192
\(847\) 0 0
\(848\) 60.0301 2.06144
\(849\) −29.8973 −1.02607
\(850\) 53.2029 1.82484
\(851\) −54.8290 −1.87951
\(852\) 81.7927 2.80217
\(853\) 33.2746 1.13930 0.569650 0.821888i \(-0.307079\pi\)
0.569650 + 0.821888i \(0.307079\pi\)
\(854\) 0 0
\(855\) −27.1161 −0.927350
\(856\) −95.9628 −3.27994
\(857\) −45.6139 −1.55814 −0.779070 0.626937i \(-0.784308\pi\)
−0.779070 + 0.626937i \(0.784308\pi\)
\(858\) 4.17009 0.142365
\(859\) −20.9353 −0.714303 −0.357151 0.934046i \(-0.616252\pi\)
−0.357151 + 0.934046i \(0.616252\pi\)
\(860\) 57.2923 1.95365
\(861\) 0 0
\(862\) 86.7900 2.95608
\(863\) 2.96196 0.100826 0.0504131 0.998728i \(-0.483946\pi\)
0.0504131 + 0.998728i \(0.483946\pi\)
\(864\) −8.76866 −0.298316
\(865\) −37.7556 −1.28373
\(866\) −23.7980 −0.808688
\(867\) 26.9770 0.916188
\(868\) 0 0
\(869\) −0.995631 −0.0337745
\(870\) 4.84060 0.164112
\(871\) −12.8946 −0.436917
\(872\) −28.7652 −0.974113
\(873\) 27.4534 0.929157
\(874\) −52.9184 −1.78999
\(875\) 0 0
\(876\) 151.729 5.12644
\(877\) −36.9370 −1.24727 −0.623637 0.781714i \(-0.714346\pi\)
−0.623637 + 0.781714i \(0.714346\pi\)
\(878\) −21.0647 −0.710899
\(879\) −32.4267 −1.09373
\(880\) −27.3463 −0.921843
\(881\) −30.8946 −1.04087 −0.520433 0.853903i \(-0.674229\pi\)
−0.520433 + 0.853903i \(0.674229\pi\)
\(882\) 0 0
\(883\) −9.64648 −0.324630 −0.162315 0.986739i \(-0.551896\pi\)
−0.162315 + 0.986739i \(0.551896\pi\)
\(884\) −12.1027 −0.407059
\(885\) −72.3384 −2.43163
\(886\) 23.6615 0.794925
\(887\) 51.3056 1.72267 0.861337 0.508034i \(-0.169628\pi\)
0.861337 + 0.508034i \(0.169628\pi\)
\(888\) −144.579 −4.85176
\(889\) 0 0
\(890\) 143.754 4.81864
\(891\) −6.36512 −0.213240
\(892\) 42.6705 1.42871
\(893\) −12.4624 −0.417037
\(894\) −65.7980 −2.20061
\(895\) 8.69348 0.290591
\(896\) 0 0
\(897\) −17.6395 −0.588965
\(898\) 22.4429 0.748931
\(899\) −0.236531 −0.00788873
\(900\) 115.761 3.85869
\(901\) −12.6014 −0.419814
\(902\) −17.7626 −0.591429
\(903\) 0 0
\(904\) 76.6926 2.55076
\(905\) 79.7236 2.65010
\(906\) 32.2676 1.07202
\(907\) −18.5385 −0.615559 −0.307780 0.951458i \(-0.599586\pi\)
−0.307780 + 0.951458i \(0.599586\pi\)
\(908\) −33.7892 −1.12133
\(909\) 8.26998 0.274298
\(910\) 0 0
\(911\) 20.7272 0.686721 0.343361 0.939204i \(-0.388435\pi\)
0.343361 + 0.939204i \(0.388435\pi\)
\(912\) −74.0214 −2.45109
\(913\) −10.3286 −0.341826
\(914\) −61.5244 −2.03505
\(915\) 16.6165 0.549324
\(916\) −43.6191 −1.44122
\(917\) 0 0
\(918\) 3.95586 0.130563
\(919\) −5.13205 −0.169291 −0.0846454 0.996411i \(-0.526976\pi\)
−0.0846454 + 0.996411i \(0.526976\pi\)
\(920\) 218.064 7.18935
\(921\) 67.6528 2.22924
\(922\) 6.03540 0.198765
\(923\) −6.75819 −0.222449
\(924\) 0 0
\(925\) −62.2763 −2.04763
\(926\) 10.9132 0.358631
\(927\) 13.8067 0.453472
\(928\) 2.93529 0.0963557
\(929\) −19.9283 −0.653826 −0.326913 0.945054i \(-0.606008\pi\)
−0.326913 + 0.945054i \(0.606008\pi\)
\(930\) −26.4296 −0.866661
\(931\) 0 0
\(932\) −21.0514 −0.689561
\(933\) −59.1895 −1.93778
\(934\) 87.4038 2.85994
\(935\) 5.74049 0.187734
\(936\) −22.2055 −0.725809
\(937\) 1.64475 0.0537316 0.0268658 0.999639i \(-0.491447\pi\)
0.0268658 + 0.999639i \(0.491447\pi\)
\(938\) 0 0
\(939\) −49.8646 −1.62727
\(940\) 85.0142 2.77286
\(941\) 17.7849 0.579770 0.289885 0.957062i \(-0.406383\pi\)
0.289885 + 0.957062i \(0.406383\pi\)
\(942\) 80.1736 2.61220
\(943\) 75.1355 2.44675
\(944\) −94.2710 −3.06826
\(945\) 0 0
\(946\) 5.40030 0.175579
\(947\) 10.6484 0.346028 0.173014 0.984919i \(-0.444649\pi\)
0.173014 + 0.984919i \(0.444649\pi\)
\(948\) 18.3843 0.597095
\(949\) −12.5367 −0.406959
\(950\) −60.1062 −1.95010
\(951\) −62.6252 −2.03076
\(952\) 0 0
\(953\) −41.5544 −1.34608 −0.673040 0.739606i \(-0.735012\pi\)
−0.673040 + 0.739606i \(0.735012\pi\)
\(954\) −38.2746 −1.23919
\(955\) 91.7033 2.96745
\(956\) −9.06471 −0.293174
\(957\) 0.326856 0.0105658
\(958\) −24.7361 −0.799188
\(959\) 0 0
\(960\) 128.060 4.13313
\(961\) −29.7085 −0.958340
\(962\) 19.7759 0.637600
\(963\) 32.4563 1.04589
\(964\) −70.0168 −2.25509
\(965\) −41.3463 −1.33098
\(966\) 0 0
\(967\) −5.51465 −0.177339 −0.0886696 0.996061i \(-0.528262\pi\)
−0.0886696 + 0.996061i \(0.528262\pi\)
\(968\) 85.6493 2.75287
\(969\) 15.5385 0.499167
\(970\) 97.2400 3.12219
\(971\) −39.8246 −1.27803 −0.639017 0.769193i \(-0.720658\pi\)
−0.639017 + 0.769193i \(0.720658\pi\)
\(972\) 108.110 3.46762
\(973\) 0 0
\(974\) −53.7485 −1.72221
\(975\) −20.0354 −0.641646
\(976\) 21.6545 0.693145
\(977\) 1.93092 0.0617757 0.0308879 0.999523i \(-0.490167\pi\)
0.0308879 + 0.999523i \(0.490167\pi\)
\(978\) 20.4110 0.652672
\(979\) 9.70682 0.310231
\(980\) 0 0
\(981\) 9.72889 0.310619
\(982\) 11.5837 0.369652
\(983\) 43.0238 1.37225 0.686123 0.727485i \(-0.259311\pi\)
0.686123 + 0.727485i \(0.259311\pi\)
\(984\) 198.126 6.31602
\(985\) 61.3817 1.95578
\(986\) −1.32422 −0.0421717
\(987\) 0 0
\(988\) 13.6731 0.435001
\(989\) −22.8432 −0.726373
\(990\) 17.4357 0.554143
\(991\) −17.6058 −0.559267 −0.279633 0.960107i \(-0.590213\pi\)
−0.279633 + 0.960107i \(0.590213\pi\)
\(992\) −16.0267 −0.508847
\(993\) 57.8334 1.83529
\(994\) 0 0
\(995\) 75.0612 2.37960
\(996\) 190.717 6.04311
\(997\) 12.9707 0.410786 0.205393 0.978680i \(-0.434153\pi\)
0.205393 + 0.978680i \(0.434153\pi\)
\(998\) −25.7405 −0.814801
\(999\) −4.63051 −0.146503
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.a.h.1.1 3
3.2 odd 2 5733.2.a.be.1.3 3
7.2 even 3 637.2.e.l.508.3 6
7.3 odd 6 637.2.e.k.79.3 6
7.4 even 3 637.2.e.l.79.3 6
7.5 odd 6 637.2.e.k.508.3 6
7.6 odd 2 637.2.a.i.1.1 yes 3
13.12 even 2 8281.2.a.bh.1.3 3
21.20 even 2 5733.2.a.bd.1.3 3
91.90 odd 2 8281.2.a.bk.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.a.h.1.1 3 1.1 even 1 trivial
637.2.a.i.1.1 yes 3 7.6 odd 2
637.2.e.k.79.3 6 7.3 odd 6
637.2.e.k.508.3 6 7.5 odd 6
637.2.e.l.79.3 6 7.4 even 3
637.2.e.l.508.3 6 7.2 even 3
5733.2.a.bd.1.3 3 21.20 even 2
5733.2.a.be.1.3 3 3.2 odd 2
8281.2.a.bh.1.3 3 13.12 even 2
8281.2.a.bk.1.3 3 91.90 odd 2