Defining parameters
Level: | \( N \) | \(=\) | \( 637 = 7^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 637.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(130\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(2\), \(3\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(637))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 41 | 31 |
Cusp forms | 57 | 41 | 16 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(9\) |
\(+\) | \(-\) | \(-\) | \(11\) |
\(-\) | \(+\) | \(-\) | \(12\) |
\(-\) | \(-\) | \(+\) | \(9\) |
Plus space | \(+\) | \(18\) | |
Minus space | \(-\) | \(23\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(637))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(637))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(637)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 2}\)