Properties

Label 6336.2.b.c
Level $6336$
Weight $2$
Character orbit 6336.b
Analytic conductor $50.593$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(2177,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.2177"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,-6,0,0,0,0,0,-12,0,0,0,0,0,0,0,6,0,0,0,-12, 0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} - \beta q^{7} + (\beta - 3) q^{11} - 2 \beta q^{13} - 6 q^{17} - \beta q^{19} + 6 \beta q^{23} + 3 q^{25} - 6 q^{29} + 4 q^{31} + 2 q^{35} - 8 q^{37} + 10 q^{41} - 5 \beta q^{43} - 8 \beta q^{47} + \cdots + 2 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{11} - 12 q^{17} + 6 q^{25} - 12 q^{29} + 8 q^{31} + 4 q^{35} - 16 q^{37} + 20 q^{41} + 10 q^{49} - 4 q^{55} + 8 q^{65} + 32 q^{67} + 4 q^{77} + 8 q^{83} - 8 q^{91} + 4 q^{95} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2177.1
1.41421i
1.41421i
0 0 0 1.41421i 0 1.41421i 0 0 0
2177.2 0 0 0 1.41421i 0 1.41421i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6336.2.b.c 2
3.b odd 2 1 6336.2.b.p 2
4.b odd 2 1 6336.2.b.j 2
8.b even 2 1 3168.2.b.e yes 2
8.d odd 2 1 3168.2.b.a 2
11.b odd 2 1 6336.2.b.p 2
12.b even 2 1 6336.2.b.g 2
24.f even 2 1 3168.2.b.h yes 2
24.h odd 2 1 3168.2.b.d yes 2
33.d even 2 1 inner 6336.2.b.c 2
44.c even 2 1 6336.2.b.g 2
88.b odd 2 1 3168.2.b.d yes 2
88.g even 2 1 3168.2.b.h yes 2
132.d odd 2 1 6336.2.b.j 2
264.m even 2 1 3168.2.b.e yes 2
264.p odd 2 1 3168.2.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3168.2.b.a 2 8.d odd 2 1
3168.2.b.a 2 264.p odd 2 1
3168.2.b.d yes 2 24.h odd 2 1
3168.2.b.d yes 2 88.b odd 2 1
3168.2.b.e yes 2 8.b even 2 1
3168.2.b.e yes 2 264.m even 2 1
3168.2.b.h yes 2 24.f even 2 1
3168.2.b.h yes 2 88.g even 2 1
6336.2.b.c 2 1.a even 1 1 trivial
6336.2.b.c 2 33.d even 2 1 inner
6336.2.b.g 2 12.b even 2 1
6336.2.b.g 2 44.c even 2 1
6336.2.b.j 2 4.b odd 2 1
6336.2.b.j 2 132.d odd 2 1
6336.2.b.p 2 3.b odd 2 1
6336.2.b.p 2 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(6336, [\chi])\):

\( T_{5}^{2} + 2 \) Copy content Toggle raw display
\( T_{7}^{2} + 2 \) Copy content Toggle raw display
\( T_{13}^{2} + 8 \) Copy content Toggle raw display
\( T_{17} + 6 \) Copy content Toggle raw display
\( T_{31} - 4 \) Copy content Toggle raw display
\( T_{83} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2 \) Copy content Toggle raw display
$7$ \( T^{2} + 2 \) Copy content Toggle raw display
$11$ \( T^{2} + 6T + 11 \) Copy content Toggle raw display
$13$ \( T^{2} + 8 \) Copy content Toggle raw display
$17$ \( (T + 6)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 2 \) Copy content Toggle raw display
$23$ \( T^{2} + 72 \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( (T + 8)^{2} \) Copy content Toggle raw display
$41$ \( (T - 10)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 50 \) Copy content Toggle raw display
$47$ \( T^{2} + 128 \) Copy content Toggle raw display
$53$ \( T^{2} + 98 \) Copy content Toggle raw display
$59$ \( T^{2} + 8 \) Copy content Toggle raw display
$61$ \( T^{2} + 32 \) Copy content Toggle raw display
$67$ \( (T - 16)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 32 \) Copy content Toggle raw display
$73$ \( T^{2} + 200 \) Copy content Toggle raw display
$79$ \( T^{2} + 18 \) Copy content Toggle raw display
$83$ \( (T - 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 162 \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less