Properties

Label 6336.2.a.n
Level 6336
Weight 2
Character orbit 6336.a
Self dual yes
Analytic conductor 50.593
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(50.5932147207\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 2q^{5} - 4q^{7} + O(q^{10}) \) \( q - 2q^{5} - 4q^{7} - q^{11} + 2q^{13} + 2q^{17} + 8q^{23} - q^{25} - 6q^{29} + 8q^{31} + 8q^{35} - 6q^{37} + 2q^{41} + 8q^{47} + 9q^{49} + 6q^{53} + 2q^{55} + 4q^{59} - 6q^{61} - 4q^{65} - 4q^{67} - 14q^{73} + 4q^{77} + 4q^{79} - 12q^{83} - 4q^{85} + 6q^{89} - 8q^{91} + 2q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −2.00000 0 −4.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6336.2.a.n 1
3.b odd 2 1 2112.2.a.j 1
4.b odd 2 1 6336.2.a.x 1
8.b even 2 1 1584.2.a.o 1
8.d odd 2 1 99.2.a.b 1
12.b even 2 1 2112.2.a.bb 1
24.f even 2 1 33.2.a.a 1
24.h odd 2 1 528.2.a.g 1
40.e odd 2 1 2475.2.a.g 1
40.k even 4 2 2475.2.c.d 2
56.e even 2 1 4851.2.a.b 1
72.l even 6 2 891.2.e.e 2
72.p odd 6 2 891.2.e.g 2
88.g even 2 1 1089.2.a.j 1
120.m even 2 1 825.2.a.a 1
120.q odd 4 2 825.2.c.a 2
168.e odd 2 1 1617.2.a.j 1
264.m even 2 1 5808.2.a.t 1
264.p odd 2 1 363.2.a.b 1
264.r odd 10 4 363.2.e.g 4
264.w even 10 4 363.2.e.e 4
312.h even 2 1 5577.2.a.a 1
408.h even 2 1 9537.2.a.m 1
1320.b odd 2 1 9075.2.a.q 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.2.a.a 1 24.f even 2 1
99.2.a.b 1 8.d odd 2 1
363.2.a.b 1 264.p odd 2 1
363.2.e.e 4 264.w even 10 4
363.2.e.g 4 264.r odd 10 4
528.2.a.g 1 24.h odd 2 1
825.2.a.a 1 120.m even 2 1
825.2.c.a 2 120.q odd 4 2
891.2.e.e 2 72.l even 6 2
891.2.e.g 2 72.p odd 6 2
1089.2.a.j 1 88.g even 2 1
1584.2.a.o 1 8.b even 2 1
1617.2.a.j 1 168.e odd 2 1
2112.2.a.j 1 3.b odd 2 1
2112.2.a.bb 1 12.b even 2 1
2475.2.a.g 1 40.e odd 2 1
2475.2.c.d 2 40.k even 4 2
4851.2.a.b 1 56.e even 2 1
5577.2.a.a 1 312.h even 2 1
5808.2.a.t 1 264.m even 2 1
6336.2.a.n 1 1.a even 1 1 trivial
6336.2.a.x 1 4.b odd 2 1
9075.2.a.q 1 1320.b odd 2 1
9537.2.a.m 1 408.h even 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(11\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6336))\):

\( T_{5} + 2 \)
\( T_{7} + 4 \)
\( T_{13} - 2 \)
\( T_{17} - 2 \)
\( T_{19} \)
\( T_{23} - 8 \)
\( T_{47} - 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 + 2 T + 5 T^{2} \)
$7$ \( 1 + 4 T + 7 T^{2} \)
$11$ \( 1 + T \)
$13$ \( 1 - 2 T + 13 T^{2} \)
$17$ \( 1 - 2 T + 17 T^{2} \)
$19$ \( 1 + 19 T^{2} \)
$23$ \( 1 - 8 T + 23 T^{2} \)
$29$ \( 1 + 6 T + 29 T^{2} \)
$31$ \( 1 - 8 T + 31 T^{2} \)
$37$ \( 1 + 6 T + 37 T^{2} \)
$41$ \( 1 - 2 T + 41 T^{2} \)
$43$ \( 1 + 43 T^{2} \)
$47$ \( 1 - 8 T + 47 T^{2} \)
$53$ \( 1 - 6 T + 53 T^{2} \)
$59$ \( 1 - 4 T + 59 T^{2} \)
$61$ \( 1 + 6 T + 61 T^{2} \)
$67$ \( 1 + 4 T + 67 T^{2} \)
$71$ \( 1 + 71 T^{2} \)
$73$ \( 1 + 14 T + 73 T^{2} \)
$79$ \( 1 - 4 T + 79 T^{2} \)
$83$ \( 1 + 12 T + 83 T^{2} \)
$89$ \( 1 - 6 T + 89 T^{2} \)
$97$ \( 1 - 2 T + 97 T^{2} \)
show more
show less