Properties

Label 6336.2.a.bj
Level 6336
Weight 2
Character orbit 6336.a
Self dual yes
Analytic conductor 50.593
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6336.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{7} + O(q^{10}) \) \( q + 2q^{7} - q^{11} + 4q^{13} + 6q^{17} + 4q^{19} - 6q^{23} - 5q^{25} + 6q^{29} + 8q^{31} + 10q^{37} - 6q^{41} - 8q^{43} + 6q^{47} - 3q^{49} - 8q^{61} + 4q^{67} - 6q^{71} + 2q^{73} - 2q^{77} + 14q^{79} - 12q^{83} + 6q^{89} + 8q^{91} + 14q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 0 0 2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6336.2.a.bj 1
3.b odd 2 1 2112.2.a.i 1
4.b odd 2 1 6336.2.a.bf 1
8.b even 2 1 198.2.a.e 1
8.d odd 2 1 1584.2.a.h 1
12.b even 2 1 2112.2.a.v 1
24.f even 2 1 528.2.a.d 1
24.h odd 2 1 66.2.a.a 1
40.f even 2 1 4950.2.a.g 1
40.i odd 4 2 4950.2.c.r 2
56.h odd 2 1 9702.2.a.bu 1
72.j odd 6 2 1782.2.e.s 2
72.n even 6 2 1782.2.e.f 2
88.b odd 2 1 2178.2.a.b 1
120.i odd 2 1 1650.2.a.m 1
120.w even 4 2 1650.2.c.d 2
168.i even 2 1 3234.2.a.d 1
264.m even 2 1 726.2.a.i 1
264.p odd 2 1 5808.2.a.l 1
264.t odd 10 4 726.2.e.k 4
264.u even 10 4 726.2.e.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.a.a 1 24.h odd 2 1
198.2.a.e 1 8.b even 2 1
528.2.a.d 1 24.f even 2 1
726.2.a.i 1 264.m even 2 1
726.2.e.b 4 264.u even 10 4
726.2.e.k 4 264.t odd 10 4
1584.2.a.h 1 8.d odd 2 1
1650.2.a.m 1 120.i odd 2 1
1650.2.c.d 2 120.w even 4 2
1782.2.e.f 2 72.n even 6 2
1782.2.e.s 2 72.j odd 6 2
2112.2.a.i 1 3.b odd 2 1
2112.2.a.v 1 12.b even 2 1
2178.2.a.b 1 88.b odd 2 1
3234.2.a.d 1 168.i even 2 1
4950.2.a.g 1 40.f even 2 1
4950.2.c.r 2 40.i odd 4 2
5808.2.a.l 1 264.p odd 2 1
6336.2.a.bf 1 4.b odd 2 1
6336.2.a.bj 1 1.a even 1 1 trivial
9702.2.a.bu 1 56.h odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(11\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6336))\):

\( T_{5} \)
\( T_{7} - 2 \)
\( T_{13} - 4 \)
\( T_{17} - 6 \)
\( T_{19} - 4 \)
\( T_{23} + 6 \)
\( T_{47} - 6 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 + 5 T^{2} \)
$7$ \( 1 - 2 T + 7 T^{2} \)
$11$ \( 1 + T \)
$13$ \( 1 - 4 T + 13 T^{2} \)
$17$ \( 1 - 6 T + 17 T^{2} \)
$19$ \( 1 - 4 T + 19 T^{2} \)
$23$ \( 1 + 6 T + 23 T^{2} \)
$29$ \( 1 - 6 T + 29 T^{2} \)
$31$ \( 1 - 8 T + 31 T^{2} \)
$37$ \( 1 - 10 T + 37 T^{2} \)
$41$ \( 1 + 6 T + 41 T^{2} \)
$43$ \( 1 + 8 T + 43 T^{2} \)
$47$ \( 1 - 6 T + 47 T^{2} \)
$53$ \( 1 + 53 T^{2} \)
$59$ \( 1 + 59 T^{2} \)
$61$ \( 1 + 8 T + 61 T^{2} \)
$67$ \( 1 - 4 T + 67 T^{2} \)
$71$ \( 1 + 6 T + 71 T^{2} \)
$73$ \( 1 - 2 T + 73 T^{2} \)
$79$ \( 1 - 14 T + 79 T^{2} \)
$83$ \( 1 + 12 T + 83 T^{2} \)
$89$ \( 1 - 6 T + 89 T^{2} \)
$97$ \( 1 - 14 T + 97 T^{2} \)
show more
show less