Newspace parameters
| Level: | \( N \) | = | \( 633 = 3 \cdot 211 \) |
| Weight: | \( k \) | = | \( 1 \) |
| Character orbit: | \([\chi]\) | = | 633.m (of order \(10\) and degree \(4\)) |
Newform invariants
| Self dual: | No |
| Analytic conductor: | \(0.315908152997\) |
| Analytic rank: | \(0\) |
| Dimension: | \(8\) |
| Relative dimension: | \(2\) over \(\Q(\zeta_{10})\) |
| Coefficient field: | \(\Q(\zeta_{20})\) |
| Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
| Coefficient ring index: | \( 1 \) |
| Projective image | \(A_{5}\) |
| Projective field | Galois closure of 5.1.17839074969.1 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character Values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/633\mathbb{Z}\right)^\times\).
| \(n\) | \(212\) | \(424\) |
| \(\chi(n)\) | \(-1\) | \(\zeta_{20}^{4}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 71.1 |
|
−0.951057 | − | 1.30902i | −0.309017 | − | 0.951057i | −0.500000 | + | 1.53884i | −0.951057 | − | 0.309017i | −0.951057 | + | 1.30902i | −0.809017 | − | 0.587785i | 0.951057 | − | 0.309017i | −0.809017 | + | 0.587785i | 0.500000 | + | 1.53884i | ||||||||||||||||||||||||
| 71.2 | 0.951057 | + | 1.30902i | −0.309017 | − | 0.951057i | −0.500000 | + | 1.53884i | 0.951057 | + | 0.309017i | 0.951057 | − | 1.30902i | −0.809017 | − | 0.587785i | −0.951057 | + | 0.309017i | −0.809017 | + | 0.587785i | 0.500000 | + | 1.53884i | |||||||||||||||||||||||||
| 107.1 | −0.951057 | + | 1.30902i | −0.309017 | + | 0.951057i | −0.500000 | − | 1.53884i | −0.951057 | + | 0.309017i | −0.951057 | − | 1.30902i | −0.809017 | + | 0.587785i | 0.951057 | + | 0.309017i | −0.809017 | − | 0.587785i | 0.500000 | − | 1.53884i | |||||||||||||||||||||||||
| 107.2 | 0.951057 | − | 1.30902i | −0.309017 | + | 0.951057i | −0.500000 | − | 1.53884i | 0.951057 | − | 0.309017i | 0.951057 | + | 1.30902i | −0.809017 | + | 0.587785i | −0.951057 | − | 0.309017i | −0.809017 | − | 0.587785i | 0.500000 | − | 1.53884i | |||||||||||||||||||||||||
| 188.1 | −0.587785 | − | 0.190983i | 0.809017 | − | 0.587785i | −0.500000 | − | 0.363271i | −0.587785 | + | 0.809017i | −0.587785 | + | 0.190983i | 0.309017 | + | 0.951057i | 0.587785 | + | 0.809017i | 0.309017 | − | 0.951057i | 0.500000 | − | 0.363271i | |||||||||||||||||||||||||
| 188.2 | 0.587785 | + | 0.190983i | 0.809017 | − | 0.587785i | −0.500000 | − | 0.363271i | 0.587785 | − | 0.809017i | 0.587785 | − | 0.190983i | 0.309017 | + | 0.951057i | −0.587785 | − | 0.809017i | 0.309017 | − | 0.951057i | 0.500000 | − | 0.363271i | |||||||||||||||||||||||||
| 266.1 | −0.587785 | + | 0.190983i | 0.809017 | + | 0.587785i | −0.500000 | + | 0.363271i | −0.587785 | − | 0.809017i | −0.587785 | − | 0.190983i | 0.309017 | − | 0.951057i | 0.587785 | − | 0.809017i | 0.309017 | + | 0.951057i | 0.500000 | + | 0.363271i | |||||||||||||||||||||||||
| 266.2 | 0.587785 | − | 0.190983i | 0.809017 | + | 0.587785i | −0.500000 | + | 0.363271i | 0.587785 | + | 0.809017i | 0.587785 | + | 0.190983i | 0.309017 | − | 0.951057i | −0.587785 | + | 0.809017i | 0.309017 | + | 0.951057i | 0.500000 | + | 0.363271i | |||||||||||||||||||||||||
Inner twists
| Char. orbit | Parity | Mult. | Self Twist | Proved |
|---|---|---|---|---|
| 1.a | Even | 1 | trivial | yes |
| 3.b | Odd | 1 | yes | |
| 211.d | Even | 1 | yes | |
| 633.m | Odd | 1 | yes |
Hecke kernels
This newform can be constructed as the kernel of the linear operator \( T_{2}^{8} + T_{2}^{6} + 6 T_{2}^{4} - 4 T_{2}^{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(633, [\chi])\).