# Properties

 Label 6300.2.k.o Level $6300$ Weight $2$ Character orbit 6300.k Analytic conductor $50.306$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 6300.k (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$50.3057532734$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1260) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{7}+O(q^{10})$$ q + i * q^7 $$q + i q^{7} + 4 q^{11} - 2 i q^{17} + 6 q^{19} + 6 i q^{23} + 2 q^{31} - 2 i q^{37} + 2 q^{41} + 4 i q^{43} - 8 i q^{47} - q^{49} + 10 i q^{53} - 4 q^{59} - 2 q^{61} - 12 i q^{67} + 8 q^{71} + 8 i q^{73} + 4 i q^{77} + 8 q^{79} - 4 i q^{83} - 10 q^{89} + 4 i q^{97} +O(q^{100})$$ q + i * q^7 + 4 * q^11 - 2*i * q^17 + 6 * q^19 + 6*i * q^23 + 2 * q^31 - 2*i * q^37 + 2 * q^41 + 4*i * q^43 - 8*i * q^47 - q^49 + 10*i * q^53 - 4 * q^59 - 2 * q^61 - 12*i * q^67 + 8 * q^71 + 8*i * q^73 + 4*i * q^77 + 8 * q^79 - 4*i * q^83 - 10 * q^89 + 4*i * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q+O(q^{10})$$ 2 * q $$2 q + 8 q^{11} + 12 q^{19} + 4 q^{31} + 4 q^{41} - 2 q^{49} - 8 q^{59} - 4 q^{61} + 16 q^{71} + 16 q^{79} - 20 q^{89}+O(q^{100})$$ 2 * q + 8 * q^11 + 12 * q^19 + 4 * q^31 + 4 * q^41 - 2 * q^49 - 8 * q^59 - 4 * q^61 + 16 * q^71 + 16 * q^79 - 20 * q^89

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times$$.

 $$n$$ $$2801$$ $$3151$$ $$3277$$ $$3601$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
6049.1
 − 1.00000i 1.00000i
0 0 0 0 0 1.00000i 0 0 0
6049.2 0 0 0 0 0 1.00000i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6300.2.k.o 2
3.b odd 2 1 6300.2.k.b 2
5.b even 2 1 inner 6300.2.k.o 2
5.c odd 4 1 1260.2.a.b 1
5.c odd 4 1 6300.2.a.bd 1
15.d odd 2 1 6300.2.k.b 2
15.e even 4 1 1260.2.a.f yes 1
15.e even 4 1 6300.2.a.q 1
20.e even 4 1 5040.2.a.m 1
35.f even 4 1 8820.2.a.z 1
60.l odd 4 1 5040.2.a.bo 1
105.k odd 4 1 8820.2.a.c 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1260.2.a.b 1 5.c odd 4 1
1260.2.a.f yes 1 15.e even 4 1
5040.2.a.m 1 20.e even 4 1
5040.2.a.bo 1 60.l odd 4 1
6300.2.a.q 1 15.e even 4 1
6300.2.a.bd 1 5.c odd 4 1
6300.2.k.b 2 3.b odd 2 1
6300.2.k.b 2 15.d odd 2 1
6300.2.k.o 2 1.a even 1 1 trivial
6300.2.k.o 2 5.b even 2 1 inner
8820.2.a.c 1 105.k odd 4 1
8820.2.a.z 1 35.f even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(6300, [\chi])$$:

 $$T_{11} - 4$$ T11 - 4 $$T_{13}$$ T13 $$T_{17}^{2} + 4$$ T17^2 + 4 $$T_{41} - 2$$ T41 - 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 1$$
$11$ $$(T - 4)^{2}$$
$13$ $$T^{2}$$
$17$ $$T^{2} + 4$$
$19$ $$(T - 6)^{2}$$
$23$ $$T^{2} + 36$$
$29$ $$T^{2}$$
$31$ $$(T - 2)^{2}$$
$37$ $$T^{2} + 4$$
$41$ $$(T - 2)^{2}$$
$43$ $$T^{2} + 16$$
$47$ $$T^{2} + 64$$
$53$ $$T^{2} + 100$$
$59$ $$(T + 4)^{2}$$
$61$ $$(T + 2)^{2}$$
$67$ $$T^{2} + 144$$
$71$ $$(T - 8)^{2}$$
$73$ $$T^{2} + 64$$
$79$ $$(T - 8)^{2}$$
$83$ $$T^{2} + 16$$
$89$ $$(T + 10)^{2}$$
$97$ $$T^{2} + 16$$