Properties

Label 6300.2.a.bc
Level $6300$
Weight $2$
Character orbit 6300.a
Self dual yes
Analytic conductor $50.306$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(50.3057532734\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 420)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{7} + O(q^{10}) \) \( q + q^{7} + 4 q^{11} - 6 q^{13} - 2 q^{17} + 6 q^{19} - 2 q^{23} - 6 q^{29} - 2 q^{31} - 4 q^{37} - 8 q^{41} - 4 q^{43} - 4 q^{47} + q^{49} - 6 q^{53} - 4 q^{59} + 14 q^{61} + 4 q^{67} - 10 q^{73} + 4 q^{77} + 16 q^{83} - 8 q^{89} - 6 q^{91} + 10 q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 0 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6300.2.a.bc 1
3.b odd 2 1 2100.2.a.e 1
5.b even 2 1 6300.2.a.n 1
5.c odd 4 2 1260.2.k.d 2
12.b even 2 1 8400.2.a.cd 1
15.d odd 2 1 2100.2.a.j 1
15.e even 4 2 420.2.k.a 2
20.e even 4 2 5040.2.t.o 2
60.h even 2 1 8400.2.a.bh 1
60.l odd 4 2 1680.2.t.a 2
105.k odd 4 2 2940.2.k.d 2
105.w odd 12 4 2940.2.bb.c 4
105.x even 12 4 2940.2.bb.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
420.2.k.a 2 15.e even 4 2
1260.2.k.d 2 5.c odd 4 2
1680.2.t.a 2 60.l odd 4 2
2100.2.a.e 1 3.b odd 2 1
2100.2.a.j 1 15.d odd 2 1
2940.2.k.d 2 105.k odd 4 2
2940.2.bb.c 4 105.w odd 12 4
2940.2.bb.h 4 105.x even 12 4
5040.2.t.o 2 20.e even 4 2
6300.2.a.n 1 5.b even 2 1
6300.2.a.bc 1 1.a even 1 1 trivial
8400.2.a.bh 1 60.h even 2 1
8400.2.a.cd 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6300))\):

\( T_{11} - 4 \)
\( T_{13} + 6 \)
\( T_{17} + 2 \)
\( T_{37} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( T \)
$5$ \( T \)
$7$ \( -1 + T \)
$11$ \( -4 + T \)
$13$ \( 6 + T \)
$17$ \( 2 + T \)
$19$ \( -6 + T \)
$23$ \( 2 + T \)
$29$ \( 6 + T \)
$31$ \( 2 + T \)
$37$ \( 4 + T \)
$41$ \( 8 + T \)
$43$ \( 4 + T \)
$47$ \( 4 + T \)
$53$ \( 6 + T \)
$59$ \( 4 + T \)
$61$ \( -14 + T \)
$67$ \( -4 + T \)
$71$ \( T \)
$73$ \( 10 + T \)
$79$ \( T \)
$83$ \( -16 + T \)
$89$ \( 8 + T \)
$97$ \( -10 + T \)
show more
show less