Properties

Label 630.6.a.n.1.1
Level $630$
Weight $6$
Character 630.1
Self dual yes
Analytic conductor $101.042$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,6,Mod(1,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 630.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.041806482\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 630.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} +25.0000 q^{5} +49.0000 q^{7} +64.0000 q^{8} +100.000 q^{10} -405.000 q^{11} -391.000 q^{13} +196.000 q^{14} +256.000 q^{16} -999.000 q^{17} +2342.00 q^{19} +400.000 q^{20} -1620.00 q^{22} -2430.00 q^{23} +625.000 q^{25} -1564.00 q^{26} +784.000 q^{28} -8259.00 q^{29} +4016.00 q^{31} +1024.00 q^{32} -3996.00 q^{34} +1225.00 q^{35} -7042.00 q^{37} +9368.00 q^{38} +1600.00 q^{40} -3336.00 q^{41} -23518.0 q^{43} -6480.00 q^{44} -9720.00 q^{46} -10317.0 q^{47} +2401.00 q^{49} +2500.00 q^{50} -6256.00 q^{52} -3084.00 q^{53} -10125.0 q^{55} +3136.00 q^{56} -33036.0 q^{58} +18816.0 q^{59} +21668.0 q^{61} +16064.0 q^{62} +4096.00 q^{64} -9775.00 q^{65} +52124.0 q^{67} -15984.0 q^{68} +4900.00 q^{70} +28560.0 q^{71} -70342.0 q^{73} -28168.0 q^{74} +37472.0 q^{76} -19845.0 q^{77} +58823.0 q^{79} +6400.00 q^{80} -13344.0 q^{82} -756.000 q^{83} -24975.0 q^{85} -94072.0 q^{86} -25920.0 q^{88} -135384. q^{89} -19159.0 q^{91} -38880.0 q^{92} -41268.0 q^{94} +58550.0 q^{95} +110435. q^{97} +9604.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) 100.000 0.316228
\(11\) −405.000 −1.00919 −0.504595 0.863356i \(-0.668358\pi\)
−0.504595 + 0.863356i \(0.668358\pi\)
\(12\) 0 0
\(13\) −391.000 −0.641680 −0.320840 0.947133i \(-0.603965\pi\)
−0.320840 + 0.947133i \(0.603965\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −999.000 −0.838384 −0.419192 0.907898i \(-0.637687\pi\)
−0.419192 + 0.907898i \(0.637687\pi\)
\(18\) 0 0
\(19\) 2342.00 1.48834 0.744171 0.667989i \(-0.232845\pi\)
0.744171 + 0.667989i \(0.232845\pi\)
\(20\) 400.000 0.223607
\(21\) 0 0
\(22\) −1620.00 −0.713606
\(23\) −2430.00 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) −1564.00 −0.453736
\(27\) 0 0
\(28\) 784.000 0.188982
\(29\) −8259.00 −1.82361 −0.911806 0.410621i \(-0.865312\pi\)
−0.911806 + 0.410621i \(0.865312\pi\)
\(30\) 0 0
\(31\) 4016.00 0.750567 0.375284 0.926910i \(-0.377545\pi\)
0.375284 + 0.926910i \(0.377545\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) −3996.00 −0.592827
\(35\) 1225.00 0.169031
\(36\) 0 0
\(37\) −7042.00 −0.845652 −0.422826 0.906211i \(-0.638962\pi\)
−0.422826 + 0.906211i \(0.638962\pi\)
\(38\) 9368.00 1.05242
\(39\) 0 0
\(40\) 1600.00 0.158114
\(41\) −3336.00 −0.309932 −0.154966 0.987920i \(-0.549527\pi\)
−0.154966 + 0.987920i \(0.549527\pi\)
\(42\) 0 0
\(43\) −23518.0 −1.93968 −0.969838 0.243750i \(-0.921622\pi\)
−0.969838 + 0.243750i \(0.921622\pi\)
\(44\) −6480.00 −0.504595
\(45\) 0 0
\(46\) −9720.00 −0.677285
\(47\) −10317.0 −0.681254 −0.340627 0.940199i \(-0.610639\pi\)
−0.340627 + 0.940199i \(0.610639\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 2500.00 0.141421
\(51\) 0 0
\(52\) −6256.00 −0.320840
\(53\) −3084.00 −0.150808 −0.0754041 0.997153i \(-0.524025\pi\)
−0.0754041 + 0.997153i \(0.524025\pi\)
\(54\) 0 0
\(55\) −10125.0 −0.451324
\(56\) 3136.00 0.133631
\(57\) 0 0
\(58\) −33036.0 −1.28949
\(59\) 18816.0 0.703716 0.351858 0.936053i \(-0.385550\pi\)
0.351858 + 0.936053i \(0.385550\pi\)
\(60\) 0 0
\(61\) 21668.0 0.745580 0.372790 0.927916i \(-0.378401\pi\)
0.372790 + 0.927916i \(0.378401\pi\)
\(62\) 16064.0 0.530731
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −9775.00 −0.286968
\(66\) 0 0
\(67\) 52124.0 1.41857 0.709285 0.704922i \(-0.249018\pi\)
0.709285 + 0.704922i \(0.249018\pi\)
\(68\) −15984.0 −0.419192
\(69\) 0 0
\(70\) 4900.00 0.119523
\(71\) 28560.0 0.672376 0.336188 0.941795i \(-0.390862\pi\)
0.336188 + 0.941795i \(0.390862\pi\)
\(72\) 0 0
\(73\) −70342.0 −1.54493 −0.772463 0.635060i \(-0.780975\pi\)
−0.772463 + 0.635060i \(0.780975\pi\)
\(74\) −28168.0 −0.597966
\(75\) 0 0
\(76\) 37472.0 0.744171
\(77\) −19845.0 −0.381438
\(78\) 0 0
\(79\) 58823.0 1.06042 0.530212 0.847865i \(-0.322112\pi\)
0.530212 + 0.847865i \(0.322112\pi\)
\(80\) 6400.00 0.111803
\(81\) 0 0
\(82\) −13344.0 −0.219155
\(83\) −756.000 −0.0120455 −0.00602277 0.999982i \(-0.501917\pi\)
−0.00602277 + 0.999982i \(0.501917\pi\)
\(84\) 0 0
\(85\) −24975.0 −0.374937
\(86\) −94072.0 −1.37156
\(87\) 0 0
\(88\) −25920.0 −0.356803
\(89\) −135384. −1.81173 −0.905863 0.423572i \(-0.860776\pi\)
−0.905863 + 0.423572i \(0.860776\pi\)
\(90\) 0 0
\(91\) −19159.0 −0.242532
\(92\) −38880.0 −0.478913
\(93\) 0 0
\(94\) −41268.0 −0.481719
\(95\) 58550.0 0.665607
\(96\) 0 0
\(97\) 110435. 1.19173 0.595864 0.803085i \(-0.296810\pi\)
0.595864 + 0.803085i \(0.296810\pi\)
\(98\) 9604.00 0.101015
\(99\) 0 0
\(100\) 10000.0 0.100000
\(101\) −33450.0 −0.326282 −0.163141 0.986603i \(-0.552162\pi\)
−0.163141 + 0.986603i \(0.552162\pi\)
\(102\) 0 0
\(103\) −110311. −1.02453 −0.512266 0.858827i \(-0.671194\pi\)
−0.512266 + 0.858827i \(0.671194\pi\)
\(104\) −25024.0 −0.226868
\(105\) 0 0
\(106\) −12336.0 −0.106637
\(107\) −35358.0 −0.298558 −0.149279 0.988795i \(-0.547695\pi\)
−0.149279 + 0.988795i \(0.547695\pi\)
\(108\) 0 0
\(109\) −151183. −1.21881 −0.609406 0.792858i \(-0.708592\pi\)
−0.609406 + 0.792858i \(0.708592\pi\)
\(110\) −40500.0 −0.319134
\(111\) 0 0
\(112\) 12544.0 0.0944911
\(113\) 133686. 0.984895 0.492447 0.870342i \(-0.336102\pi\)
0.492447 + 0.870342i \(0.336102\pi\)
\(114\) 0 0
\(115\) −60750.0 −0.428353
\(116\) −132144. −0.911806
\(117\) 0 0
\(118\) 75264.0 0.497602
\(119\) −48951.0 −0.316880
\(120\) 0 0
\(121\) 2974.00 0.0184662
\(122\) 86672.0 0.527205
\(123\) 0 0
\(124\) 64256.0 0.375284
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −283984. −1.56237 −0.781186 0.624298i \(-0.785385\pi\)
−0.781186 + 0.624298i \(0.785385\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) −39100.0 −0.202917
\(131\) −261438. −1.33104 −0.665519 0.746381i \(-0.731790\pi\)
−0.665519 + 0.746381i \(0.731790\pi\)
\(132\) 0 0
\(133\) 114758. 0.562541
\(134\) 208496. 1.00308
\(135\) 0 0
\(136\) −63936.0 −0.296414
\(137\) −39672.0 −0.180585 −0.0902927 0.995915i \(-0.528780\pi\)
−0.0902927 + 0.995915i \(0.528780\pi\)
\(138\) 0 0
\(139\) −182626. −0.801725 −0.400863 0.916138i \(-0.631290\pi\)
−0.400863 + 0.916138i \(0.631290\pi\)
\(140\) 19600.0 0.0845154
\(141\) 0 0
\(142\) 114240. 0.475442
\(143\) 158355. 0.647577
\(144\) 0 0
\(145\) −206475. −0.815544
\(146\) −281368. −1.09243
\(147\) 0 0
\(148\) −112672. −0.422826
\(149\) 12078.0 0.0445686 0.0222843 0.999752i \(-0.492906\pi\)
0.0222843 + 0.999752i \(0.492906\pi\)
\(150\) 0 0
\(151\) −208417. −0.743859 −0.371930 0.928261i \(-0.621304\pi\)
−0.371930 + 0.928261i \(0.621304\pi\)
\(152\) 149888. 0.526209
\(153\) 0 0
\(154\) −79380.0 −0.269718
\(155\) 100400. 0.335664
\(156\) 0 0
\(157\) 364094. 1.17887 0.589433 0.807817i \(-0.299351\pi\)
0.589433 + 0.807817i \(0.299351\pi\)
\(158\) 235292. 0.749833
\(159\) 0 0
\(160\) 25600.0 0.0790569
\(161\) −119070. −0.362024
\(162\) 0 0
\(163\) 626.000 0.00184546 0.000922731 1.00000i \(-0.499706\pi\)
0.000922731 1.00000i \(0.499706\pi\)
\(164\) −53376.0 −0.154966
\(165\) 0 0
\(166\) −3024.00 −0.00851749
\(167\) −445617. −1.23643 −0.618216 0.786008i \(-0.712144\pi\)
−0.618216 + 0.786008i \(0.712144\pi\)
\(168\) 0 0
\(169\) −218412. −0.588247
\(170\) −99900.0 −0.265120
\(171\) 0 0
\(172\) −376288. −0.969838
\(173\) −643467. −1.63460 −0.817299 0.576214i \(-0.804530\pi\)
−0.817299 + 0.576214i \(0.804530\pi\)
\(174\) 0 0
\(175\) 30625.0 0.0755929
\(176\) −103680. −0.252298
\(177\) 0 0
\(178\) −541536. −1.28108
\(179\) −245148. −0.571868 −0.285934 0.958249i \(-0.592304\pi\)
−0.285934 + 0.958249i \(0.592304\pi\)
\(180\) 0 0
\(181\) 686180. 1.55683 0.778416 0.627749i \(-0.216024\pi\)
0.778416 + 0.627749i \(0.216024\pi\)
\(182\) −76636.0 −0.171496
\(183\) 0 0
\(184\) −155520. −0.338643
\(185\) −176050. −0.378187
\(186\) 0 0
\(187\) 404595. 0.846090
\(188\) −165072. −0.340627
\(189\) 0 0
\(190\) 234200. 0.470655
\(191\) 527031. 1.04533 0.522664 0.852539i \(-0.324938\pi\)
0.522664 + 0.852539i \(0.324938\pi\)
\(192\) 0 0
\(193\) 143216. 0.276757 0.138378 0.990379i \(-0.455811\pi\)
0.138378 + 0.990379i \(0.455811\pi\)
\(194\) 441740. 0.842679
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) −348468. −0.639731 −0.319865 0.947463i \(-0.603638\pi\)
−0.319865 + 0.947463i \(0.603638\pi\)
\(198\) 0 0
\(199\) 754520. 1.35064 0.675318 0.737527i \(-0.264007\pi\)
0.675318 + 0.737527i \(0.264007\pi\)
\(200\) 40000.0 0.0707107
\(201\) 0 0
\(202\) −133800. −0.230716
\(203\) −404691. −0.689261
\(204\) 0 0
\(205\) −83400.0 −0.138606
\(206\) −441244. −0.724454
\(207\) 0 0
\(208\) −100096. −0.160420
\(209\) −948510. −1.50202
\(210\) 0 0
\(211\) −590749. −0.913475 −0.456738 0.889601i \(-0.650982\pi\)
−0.456738 + 0.889601i \(0.650982\pi\)
\(212\) −49344.0 −0.0754041
\(213\) 0 0
\(214\) −141432. −0.211112
\(215\) −587950. −0.867450
\(216\) 0 0
\(217\) 196784. 0.283688
\(218\) −604732. −0.861830
\(219\) 0 0
\(220\) −162000. −0.225662
\(221\) 390609. 0.537974
\(222\) 0 0
\(223\) −396103. −0.533391 −0.266696 0.963781i \(-0.585932\pi\)
−0.266696 + 0.963781i \(0.585932\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) 534744. 0.696426
\(227\) −9537.00 −0.0122842 −0.00614210 0.999981i \(-0.501955\pi\)
−0.00614210 + 0.999981i \(0.501955\pi\)
\(228\) 0 0
\(229\) 705056. 0.888454 0.444227 0.895914i \(-0.353478\pi\)
0.444227 + 0.895914i \(0.353478\pi\)
\(230\) −243000. −0.302891
\(231\) 0 0
\(232\) −528576. −0.644744
\(233\) −534216. −0.644655 −0.322327 0.946628i \(-0.604465\pi\)
−0.322327 + 0.946628i \(0.604465\pi\)
\(234\) 0 0
\(235\) −257925. −0.304666
\(236\) 301056. 0.351858
\(237\) 0 0
\(238\) −195804. −0.224068
\(239\) 901221. 1.02056 0.510278 0.860010i \(-0.329543\pi\)
0.510278 + 0.860010i \(0.329543\pi\)
\(240\) 0 0
\(241\) −952390. −1.05626 −0.528132 0.849162i \(-0.677107\pi\)
−0.528132 + 0.849162i \(0.677107\pi\)
\(242\) 11896.0 0.0130576
\(243\) 0 0
\(244\) 346688. 0.372790
\(245\) 60025.0 0.0638877
\(246\) 0 0
\(247\) −915722. −0.955039
\(248\) 257024. 0.265366
\(249\) 0 0
\(250\) 62500.0 0.0632456
\(251\) 1.10024e6 1.10231 0.551153 0.834404i \(-0.314188\pi\)
0.551153 + 0.834404i \(0.314188\pi\)
\(252\) 0 0
\(253\) 984150. 0.966629
\(254\) −1.13594e6 −1.10476
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.08230e6 1.02215 0.511074 0.859537i \(-0.329248\pi\)
0.511074 + 0.859537i \(0.329248\pi\)
\(258\) 0 0
\(259\) −345058. −0.319626
\(260\) −156400. −0.143484
\(261\) 0 0
\(262\) −1.04575e6 −0.941186
\(263\) −82950.0 −0.0739481 −0.0369740 0.999316i \(-0.511772\pi\)
−0.0369740 + 0.999316i \(0.511772\pi\)
\(264\) 0 0
\(265\) −77100.0 −0.0674434
\(266\) 459032. 0.397776
\(267\) 0 0
\(268\) 833984. 0.709285
\(269\) 633822. 0.534056 0.267028 0.963689i \(-0.413958\pi\)
0.267028 + 0.963689i \(0.413958\pi\)
\(270\) 0 0
\(271\) −278956. −0.230734 −0.115367 0.993323i \(-0.536804\pi\)
−0.115367 + 0.993323i \(0.536804\pi\)
\(272\) −255744. −0.209596
\(273\) 0 0
\(274\) −158688. −0.127693
\(275\) −253125. −0.201838
\(276\) 0 0
\(277\) 2.17523e6 1.70336 0.851679 0.524064i \(-0.175585\pi\)
0.851679 + 0.524064i \(0.175585\pi\)
\(278\) −730504. −0.566905
\(279\) 0 0
\(280\) 78400.0 0.0597614
\(281\) 692901. 0.523486 0.261743 0.965138i \(-0.415703\pi\)
0.261743 + 0.965138i \(0.415703\pi\)
\(282\) 0 0
\(283\) 1.04021e6 0.772065 0.386032 0.922485i \(-0.373845\pi\)
0.386032 + 0.922485i \(0.373845\pi\)
\(284\) 456960. 0.336188
\(285\) 0 0
\(286\) 633420. 0.457906
\(287\) −163464. −0.117143
\(288\) 0 0
\(289\) −421856. −0.297112
\(290\) −825900. −0.576677
\(291\) 0 0
\(292\) −1.12547e6 −0.772463
\(293\) 1.08565e6 0.738789 0.369394 0.929273i \(-0.379565\pi\)
0.369394 + 0.929273i \(0.379565\pi\)
\(294\) 0 0
\(295\) 470400. 0.314711
\(296\) −450688. −0.298983
\(297\) 0 0
\(298\) 48312.0 0.0315148
\(299\) 950130. 0.614618
\(300\) 0 0
\(301\) −1.15238e6 −0.733129
\(302\) −833668. −0.525988
\(303\) 0 0
\(304\) 599552. 0.372086
\(305\) 541700. 0.333434
\(306\) 0 0
\(307\) 1463.00 0.000885928 0 0.000442964 1.00000i \(-0.499859\pi\)
0.000442964 1.00000i \(0.499859\pi\)
\(308\) −317520. −0.190719
\(309\) 0 0
\(310\) 401600. 0.237350
\(311\) −3.11977e6 −1.82903 −0.914515 0.404551i \(-0.867428\pi\)
−0.914515 + 0.404551i \(0.867428\pi\)
\(312\) 0 0
\(313\) 831425. 0.479692 0.239846 0.970811i \(-0.422903\pi\)
0.239846 + 0.970811i \(0.422903\pi\)
\(314\) 1.45638e6 0.833584
\(315\) 0 0
\(316\) 941168. 0.530212
\(317\) 1.25851e6 0.703408 0.351704 0.936111i \(-0.385602\pi\)
0.351704 + 0.936111i \(0.385602\pi\)
\(318\) 0 0
\(319\) 3.34489e6 1.84037
\(320\) 102400. 0.0559017
\(321\) 0 0
\(322\) −476280. −0.255990
\(323\) −2.33966e6 −1.24780
\(324\) 0 0
\(325\) −244375. −0.128336
\(326\) 2504.00 0.00130494
\(327\) 0 0
\(328\) −213504. −0.109578
\(329\) −505533. −0.257490
\(330\) 0 0
\(331\) −2.30465e6 −1.15621 −0.578103 0.815964i \(-0.696207\pi\)
−0.578103 + 0.815964i \(0.696207\pi\)
\(332\) −12096.0 −0.00602277
\(333\) 0 0
\(334\) −1.78247e6 −0.874290
\(335\) 1.30310e6 0.634404
\(336\) 0 0
\(337\) 769166. 0.368931 0.184466 0.982839i \(-0.440945\pi\)
0.184466 + 0.982839i \(0.440945\pi\)
\(338\) −873648. −0.415953
\(339\) 0 0
\(340\) −399600. −0.187468
\(341\) −1.62648e6 −0.757465
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) −1.50515e6 −0.685779
\(345\) 0 0
\(346\) −2.57387e6 −1.15584
\(347\) −382074. −0.170343 −0.0851714 0.996366i \(-0.527144\pi\)
−0.0851714 + 0.996366i \(0.527144\pi\)
\(348\) 0 0
\(349\) −3.88710e6 −1.70829 −0.854146 0.520034i \(-0.825919\pi\)
−0.854146 + 0.520034i \(0.825919\pi\)
\(350\) 122500. 0.0534522
\(351\) 0 0
\(352\) −414720. −0.178401
\(353\) 366453. 0.156524 0.0782621 0.996933i \(-0.475063\pi\)
0.0782621 + 0.996933i \(0.475063\pi\)
\(354\) 0 0
\(355\) 714000. 0.300696
\(356\) −2.16614e6 −0.905863
\(357\) 0 0
\(358\) −980592. −0.404372
\(359\) 3.14858e6 1.28937 0.644687 0.764446i \(-0.276988\pi\)
0.644687 + 0.764446i \(0.276988\pi\)
\(360\) 0 0
\(361\) 3.00887e6 1.21516
\(362\) 2.74472e6 1.10085
\(363\) 0 0
\(364\) −306544. −0.121266
\(365\) −1.75855e6 −0.690912
\(366\) 0 0
\(367\) 2.13740e6 0.828362 0.414181 0.910195i \(-0.364068\pi\)
0.414181 + 0.910195i \(0.364068\pi\)
\(368\) −622080. −0.239457
\(369\) 0 0
\(370\) −704200. −0.267419
\(371\) −151116. −0.0570001
\(372\) 0 0
\(373\) −205624. −0.0765247 −0.0382624 0.999268i \(-0.512182\pi\)
−0.0382624 + 0.999268i \(0.512182\pi\)
\(374\) 1.61838e6 0.598276
\(375\) 0 0
\(376\) −660288. −0.240860
\(377\) 3.22927e6 1.17018
\(378\) 0 0
\(379\) 3.50536e6 1.25353 0.626766 0.779208i \(-0.284378\pi\)
0.626766 + 0.779208i \(0.284378\pi\)
\(380\) 936800. 0.332804
\(381\) 0 0
\(382\) 2.10812e6 0.739159
\(383\) −1.12904e6 −0.393291 −0.196645 0.980475i \(-0.563005\pi\)
−0.196645 + 0.980475i \(0.563005\pi\)
\(384\) 0 0
\(385\) −496125. −0.170584
\(386\) 572864. 0.195697
\(387\) 0 0
\(388\) 1.76696e6 0.595864
\(389\) 1.20003e6 0.402084 0.201042 0.979583i \(-0.435567\pi\)
0.201042 + 0.979583i \(0.435567\pi\)
\(390\) 0 0
\(391\) 2.42757e6 0.803026
\(392\) 153664. 0.0505076
\(393\) 0 0
\(394\) −1.39387e6 −0.452358
\(395\) 1.47058e6 0.474236
\(396\) 0 0
\(397\) −4.41836e6 −1.40697 −0.703486 0.710709i \(-0.748374\pi\)
−0.703486 + 0.710709i \(0.748374\pi\)
\(398\) 3.01808e6 0.955043
\(399\) 0 0
\(400\) 160000. 0.0500000
\(401\) 3.13278e6 0.972903 0.486451 0.873708i \(-0.338291\pi\)
0.486451 + 0.873708i \(0.338291\pi\)
\(402\) 0 0
\(403\) −1.57026e6 −0.481624
\(404\) −535200. −0.163141
\(405\) 0 0
\(406\) −1.61876e6 −0.487381
\(407\) 2.85201e6 0.853424
\(408\) 0 0
\(409\) 861494. 0.254650 0.127325 0.991861i \(-0.459361\pi\)
0.127325 + 0.991861i \(0.459361\pi\)
\(410\) −333600. −0.0980091
\(411\) 0 0
\(412\) −1.76498e6 −0.512266
\(413\) 921984. 0.265980
\(414\) 0 0
\(415\) −18900.0 −0.00538693
\(416\) −400384. −0.113434
\(417\) 0 0
\(418\) −3.79404e6 −1.06209
\(419\) −4.65796e6 −1.29617 −0.648083 0.761570i \(-0.724429\pi\)
−0.648083 + 0.761570i \(0.724429\pi\)
\(420\) 0 0
\(421\) 6.99894e6 1.92454 0.962271 0.272093i \(-0.0877159\pi\)
0.962271 + 0.272093i \(0.0877159\pi\)
\(422\) −2.36300e6 −0.645925
\(423\) 0 0
\(424\) −197376. −0.0533187
\(425\) −624375. −0.167677
\(426\) 0 0
\(427\) 1.06173e6 0.281803
\(428\) −565728. −0.149279
\(429\) 0 0
\(430\) −2.35180e6 −0.613379
\(431\) 227091. 0.0588853 0.0294426 0.999566i \(-0.490627\pi\)
0.0294426 + 0.999566i \(0.490627\pi\)
\(432\) 0 0
\(433\) −7.09613e6 −1.81887 −0.909435 0.415846i \(-0.863485\pi\)
−0.909435 + 0.415846i \(0.863485\pi\)
\(434\) 787136. 0.200597
\(435\) 0 0
\(436\) −2.41893e6 −0.609406
\(437\) −5.69106e6 −1.42557
\(438\) 0 0
\(439\) 593258. 0.146920 0.0734602 0.997298i \(-0.476596\pi\)
0.0734602 + 0.997298i \(0.476596\pi\)
\(440\) −648000. −0.159567
\(441\) 0 0
\(442\) 1.56244e6 0.380405
\(443\) 3.27692e6 0.793334 0.396667 0.917963i \(-0.370167\pi\)
0.396667 + 0.917963i \(0.370167\pi\)
\(444\) 0 0
\(445\) −3.38460e6 −0.810228
\(446\) −1.58441e6 −0.377165
\(447\) 0 0
\(448\) 200704. 0.0472456
\(449\) 4.32930e6 1.01345 0.506724 0.862108i \(-0.330856\pi\)
0.506724 + 0.862108i \(0.330856\pi\)
\(450\) 0 0
\(451\) 1.35108e6 0.312781
\(452\) 2.13898e6 0.492447
\(453\) 0 0
\(454\) −38148.0 −0.00868625
\(455\) −478975. −0.108464
\(456\) 0 0
\(457\) −4.91638e6 −1.10117 −0.550586 0.834779i \(-0.685596\pi\)
−0.550586 + 0.834779i \(0.685596\pi\)
\(458\) 2.82022e6 0.628232
\(459\) 0 0
\(460\) −972000. −0.214176
\(461\) −7.02919e6 −1.54047 −0.770235 0.637761i \(-0.779861\pi\)
−0.770235 + 0.637761i \(0.779861\pi\)
\(462\) 0 0
\(463\) 2.88559e6 0.625579 0.312789 0.949823i \(-0.398737\pi\)
0.312789 + 0.949823i \(0.398737\pi\)
\(464\) −2.11430e6 −0.455903
\(465\) 0 0
\(466\) −2.13686e6 −0.455840
\(467\) 6.00583e6 1.27433 0.637163 0.770729i \(-0.280108\pi\)
0.637163 + 0.770729i \(0.280108\pi\)
\(468\) 0 0
\(469\) 2.55408e6 0.536169
\(470\) −1.03170e6 −0.215431
\(471\) 0 0
\(472\) 1.20422e6 0.248801
\(473\) 9.52479e6 1.95750
\(474\) 0 0
\(475\) 1.46375e6 0.297669
\(476\) −783216. −0.158440
\(477\) 0 0
\(478\) 3.60488e6 0.721642
\(479\) −941094. −0.187411 −0.0937053 0.995600i \(-0.529871\pi\)
−0.0937053 + 0.995600i \(0.529871\pi\)
\(480\) 0 0
\(481\) 2.75342e6 0.542638
\(482\) −3.80956e6 −0.746891
\(483\) 0 0
\(484\) 47584.0 0.00923310
\(485\) 2.76087e6 0.532957
\(486\) 0 0
\(487\) 1.91121e6 0.365162 0.182581 0.983191i \(-0.441555\pi\)
0.182581 + 0.983191i \(0.441555\pi\)
\(488\) 1.38675e6 0.263602
\(489\) 0 0
\(490\) 240100. 0.0451754
\(491\) −3.95490e6 −0.740342 −0.370171 0.928964i \(-0.620701\pi\)
−0.370171 + 0.928964i \(0.620701\pi\)
\(492\) 0 0
\(493\) 8.25074e6 1.52889
\(494\) −3.66289e6 −0.675315
\(495\) 0 0
\(496\) 1.02810e6 0.187642
\(497\) 1.39944e6 0.254134
\(498\) 0 0
\(499\) 7.09708e6 1.27593 0.637967 0.770063i \(-0.279775\pi\)
0.637967 + 0.770063i \(0.279775\pi\)
\(500\) 250000. 0.0447214
\(501\) 0 0
\(502\) 4.40095e6 0.779448
\(503\) 9.15982e6 1.61424 0.807118 0.590390i \(-0.201026\pi\)
0.807118 + 0.590390i \(0.201026\pi\)
\(504\) 0 0
\(505\) −836250. −0.145918
\(506\) 3.93660e6 0.683510
\(507\) 0 0
\(508\) −4.54374e6 −0.781186
\(509\) 9.42509e6 1.61247 0.806234 0.591596i \(-0.201502\pi\)
0.806234 + 0.591596i \(0.201502\pi\)
\(510\) 0 0
\(511\) −3.44676e6 −0.583927
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) 4.32919e6 0.722768
\(515\) −2.75778e6 −0.458185
\(516\) 0 0
\(517\) 4.17838e6 0.687515
\(518\) −1.38023e6 −0.226010
\(519\) 0 0
\(520\) −625600. −0.101458
\(521\) 6.18917e6 0.998938 0.499469 0.866332i \(-0.333529\pi\)
0.499469 + 0.866332i \(0.333529\pi\)
\(522\) 0 0
\(523\) −3.81497e6 −0.609870 −0.304935 0.952373i \(-0.598635\pi\)
−0.304935 + 0.952373i \(0.598635\pi\)
\(524\) −4.18301e6 −0.665519
\(525\) 0 0
\(526\) −331800. −0.0522892
\(527\) −4.01198e6 −0.629264
\(528\) 0 0
\(529\) −531443. −0.0825691
\(530\) −308400. −0.0476897
\(531\) 0 0
\(532\) 1.83613e6 0.281270
\(533\) 1.30438e6 0.198877
\(534\) 0 0
\(535\) −883950. −0.133519
\(536\) 3.33594e6 0.501540
\(537\) 0 0
\(538\) 2.53529e6 0.377634
\(539\) −972405. −0.144170
\(540\) 0 0
\(541\) 6.30404e6 0.926032 0.463016 0.886350i \(-0.346767\pi\)
0.463016 + 0.886350i \(0.346767\pi\)
\(542\) −1.11582e6 −0.163154
\(543\) 0 0
\(544\) −1.02298e6 −0.148207
\(545\) −3.77957e6 −0.545069
\(546\) 0 0
\(547\) −8.48475e6 −1.21247 −0.606234 0.795286i \(-0.707321\pi\)
−0.606234 + 0.795286i \(0.707321\pi\)
\(548\) −634752. −0.0902927
\(549\) 0 0
\(550\) −1.01250e6 −0.142721
\(551\) −1.93426e7 −2.71416
\(552\) 0 0
\(553\) 2.88233e6 0.400802
\(554\) 8.70092e6 1.20446
\(555\) 0 0
\(556\) −2.92202e6 −0.400863
\(557\) −6.87794e6 −0.939335 −0.469668 0.882843i \(-0.655626\pi\)
−0.469668 + 0.882843i \(0.655626\pi\)
\(558\) 0 0
\(559\) 9.19554e6 1.24465
\(560\) 313600. 0.0422577
\(561\) 0 0
\(562\) 2.77160e6 0.370161
\(563\) 1.02257e7 1.35964 0.679820 0.733379i \(-0.262058\pi\)
0.679820 + 0.733379i \(0.262058\pi\)
\(564\) 0 0
\(565\) 3.34215e6 0.440458
\(566\) 4.16083e6 0.545932
\(567\) 0 0
\(568\) 1.82784e6 0.237721
\(569\) 1.26751e7 1.64123 0.820614 0.571482i \(-0.193631\pi\)
0.820614 + 0.571482i \(0.193631\pi\)
\(570\) 0 0
\(571\) −6.67155e6 −0.856321 −0.428160 0.903703i \(-0.640838\pi\)
−0.428160 + 0.903703i \(0.640838\pi\)
\(572\) 2.53368e6 0.323789
\(573\) 0 0
\(574\) −653856. −0.0828328
\(575\) −1.51875e6 −0.191565
\(576\) 0 0
\(577\) −3.36511e6 −0.420784 −0.210392 0.977617i \(-0.567474\pi\)
−0.210392 + 0.977617i \(0.567474\pi\)
\(578\) −1.68742e6 −0.210090
\(579\) 0 0
\(580\) −3.30360e6 −0.407772
\(581\) −37044.0 −0.00455279
\(582\) 0 0
\(583\) 1.24902e6 0.152194
\(584\) −4.50189e6 −0.546214
\(585\) 0 0
\(586\) 4.34260e6 0.522403
\(587\) 1.10055e7 1.31830 0.659150 0.752012i \(-0.270916\pi\)
0.659150 + 0.752012i \(0.270916\pi\)
\(588\) 0 0
\(589\) 9.40547e6 1.11710
\(590\) 1.88160e6 0.222534
\(591\) 0 0
\(592\) −1.80275e6 −0.211413
\(593\) −1.40222e6 −0.163749 −0.0818747 0.996643i \(-0.526091\pi\)
−0.0818747 + 0.996643i \(0.526091\pi\)
\(594\) 0 0
\(595\) −1.22378e6 −0.141713
\(596\) 193248. 0.0222843
\(597\) 0 0
\(598\) 3.80052e6 0.434600
\(599\) −1.93034e6 −0.219820 −0.109910 0.993942i \(-0.535056\pi\)
−0.109910 + 0.993942i \(0.535056\pi\)
\(600\) 0 0
\(601\) −1.82271e6 −0.205841 −0.102921 0.994690i \(-0.532819\pi\)
−0.102921 + 0.994690i \(0.532819\pi\)
\(602\) −4.60953e6 −0.518400
\(603\) 0 0
\(604\) −3.33467e6 −0.371930
\(605\) 74350.0 0.00825834
\(606\) 0 0
\(607\) −1.36917e7 −1.50830 −0.754148 0.656704i \(-0.771950\pi\)
−0.754148 + 0.656704i \(0.771950\pi\)
\(608\) 2.39821e6 0.263104
\(609\) 0 0
\(610\) 2.16680e6 0.235773
\(611\) 4.03395e6 0.437147
\(612\) 0 0
\(613\) 1.11975e7 1.20357 0.601785 0.798658i \(-0.294456\pi\)
0.601785 + 0.798658i \(0.294456\pi\)
\(614\) 5852.00 0.000626446 0
\(615\) 0 0
\(616\) −1.27008e6 −0.134859
\(617\) 1.37060e7 1.44944 0.724718 0.689045i \(-0.241970\pi\)
0.724718 + 0.689045i \(0.241970\pi\)
\(618\) 0 0
\(619\) −7.93359e6 −0.832230 −0.416115 0.909312i \(-0.636609\pi\)
−0.416115 + 0.909312i \(0.636609\pi\)
\(620\) 1.60640e6 0.167832
\(621\) 0 0
\(622\) −1.24791e7 −1.29332
\(623\) −6.63382e6 −0.684768
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 3.32570e6 0.339193
\(627\) 0 0
\(628\) 5.82550e6 0.589433
\(629\) 7.03496e6 0.708981
\(630\) 0 0
\(631\) −1.31143e7 −1.31121 −0.655604 0.755105i \(-0.727586\pi\)
−0.655604 + 0.755105i \(0.727586\pi\)
\(632\) 3.76467e6 0.374916
\(633\) 0 0
\(634\) 5.03402e6 0.497384
\(635\) −7.09960e6 −0.698714
\(636\) 0 0
\(637\) −938791. −0.0916685
\(638\) 1.33796e7 1.30134
\(639\) 0 0
\(640\) 409600. 0.0395285
\(641\) 1.27270e7 1.22344 0.611719 0.791075i \(-0.290478\pi\)
0.611719 + 0.791075i \(0.290478\pi\)
\(642\) 0 0
\(643\) 1.88399e7 1.79701 0.898505 0.438964i \(-0.144655\pi\)
0.898505 + 0.438964i \(0.144655\pi\)
\(644\) −1.90512e6 −0.181012
\(645\) 0 0
\(646\) −9.35863e6 −0.882330
\(647\) 944688. 0.0887213 0.0443606 0.999016i \(-0.485875\pi\)
0.0443606 + 0.999016i \(0.485875\pi\)
\(648\) 0 0
\(649\) −7.62048e6 −0.710184
\(650\) −977500. −0.0907472
\(651\) 0 0
\(652\) 10016.0 0.000922731 0
\(653\) −2.01024e7 −1.84486 −0.922432 0.386158i \(-0.873802\pi\)
−0.922432 + 0.386158i \(0.873802\pi\)
\(654\) 0 0
\(655\) −6.53595e6 −0.595258
\(656\) −854016. −0.0774830
\(657\) 0 0
\(658\) −2.02213e6 −0.182073
\(659\) 1.97097e7 1.76793 0.883967 0.467549i \(-0.154863\pi\)
0.883967 + 0.467549i \(0.154863\pi\)
\(660\) 0 0
\(661\) −227080. −0.0202151 −0.0101075 0.999949i \(-0.503217\pi\)
−0.0101075 + 0.999949i \(0.503217\pi\)
\(662\) −9.21861e6 −0.817561
\(663\) 0 0
\(664\) −48384.0 −0.00425874
\(665\) 2.86895e6 0.251576
\(666\) 0 0
\(667\) 2.00694e7 1.74670
\(668\) −7.12987e6 −0.618216
\(669\) 0 0
\(670\) 5.21240e6 0.448591
\(671\) −8.77554e6 −0.752433
\(672\) 0 0
\(673\) 1.93220e7 1.64443 0.822214 0.569178i \(-0.192739\pi\)
0.822214 + 0.569178i \(0.192739\pi\)
\(674\) 3.07666e6 0.260874
\(675\) 0 0
\(676\) −3.49459e6 −0.294124
\(677\) −3.35334e6 −0.281194 −0.140597 0.990067i \(-0.544902\pi\)
−0.140597 + 0.990067i \(0.544902\pi\)
\(678\) 0 0
\(679\) 5.41132e6 0.450431
\(680\) −1.59840e6 −0.132560
\(681\) 0 0
\(682\) −6.50592e6 −0.535609
\(683\) −1.60555e7 −1.31696 −0.658481 0.752598i \(-0.728801\pi\)
−0.658481 + 0.752598i \(0.728801\pi\)
\(684\) 0 0
\(685\) −991800. −0.0807603
\(686\) 470596. 0.0381802
\(687\) 0 0
\(688\) −6.02061e6 −0.484919
\(689\) 1.20584e6 0.0967705
\(690\) 0 0
\(691\) 1.35824e7 1.08213 0.541066 0.840980i \(-0.318021\pi\)
0.541066 + 0.840980i \(0.318021\pi\)
\(692\) −1.02955e7 −0.817299
\(693\) 0 0
\(694\) −1.52830e6 −0.120451
\(695\) −4.56565e6 −0.358542
\(696\) 0 0
\(697\) 3.33266e6 0.259842
\(698\) −1.55484e7 −1.20794
\(699\) 0 0
\(700\) 490000. 0.0377964
\(701\) −2.05454e7 −1.57913 −0.789567 0.613664i \(-0.789695\pi\)
−0.789567 + 0.613664i \(0.789695\pi\)
\(702\) 0 0
\(703\) −1.64924e7 −1.25862
\(704\) −1.65888e6 −0.126149
\(705\) 0 0
\(706\) 1.46581e6 0.110679
\(707\) −1.63905e6 −0.123323
\(708\) 0 0
\(709\) 2.57278e7 1.92215 0.961075 0.276287i \(-0.0891040\pi\)
0.961075 + 0.276287i \(0.0891040\pi\)
\(710\) 2.85600e6 0.212624
\(711\) 0 0
\(712\) −8.66458e6 −0.640542
\(713\) −9.75888e6 −0.718913
\(714\) 0 0
\(715\) 3.95888e6 0.289605
\(716\) −3.92237e6 −0.285934
\(717\) 0 0
\(718\) 1.25943e7 0.911726
\(719\) −7.04806e6 −0.508449 −0.254225 0.967145i \(-0.581820\pi\)
−0.254225 + 0.967145i \(0.581820\pi\)
\(720\) 0 0
\(721\) −5.40524e6 −0.387237
\(722\) 1.20355e7 0.859250
\(723\) 0 0
\(724\) 1.09789e7 0.778416
\(725\) −5.16187e6 −0.364722
\(726\) 0 0
\(727\) −1.90997e7 −1.34027 −0.670134 0.742240i \(-0.733763\pi\)
−0.670134 + 0.742240i \(0.733763\pi\)
\(728\) −1.22618e6 −0.0857481
\(729\) 0 0
\(730\) −7.03420e6 −0.488548
\(731\) 2.34945e7 1.62619
\(732\) 0 0
\(733\) −2.30424e6 −0.158404 −0.0792021 0.996859i \(-0.525237\pi\)
−0.0792021 + 0.996859i \(0.525237\pi\)
\(734\) 8.54959e6 0.585740
\(735\) 0 0
\(736\) −2.48832e6 −0.169321
\(737\) −2.11102e7 −1.43161
\(738\) 0 0
\(739\) 3.62955e6 0.244479 0.122240 0.992501i \(-0.460992\pi\)
0.122240 + 0.992501i \(0.460992\pi\)
\(740\) −2.81680e6 −0.189094
\(741\) 0 0
\(742\) −604464. −0.0403052
\(743\) 9.73856e6 0.647177 0.323588 0.946198i \(-0.395111\pi\)
0.323588 + 0.946198i \(0.395111\pi\)
\(744\) 0 0
\(745\) 301950. 0.0199317
\(746\) −822496. −0.0541111
\(747\) 0 0
\(748\) 6.47352e6 0.423045
\(749\) −1.73254e6 −0.112844
\(750\) 0 0
\(751\) −2.48272e7 −1.60630 −0.803152 0.595774i \(-0.796845\pi\)
−0.803152 + 0.595774i \(0.796845\pi\)
\(752\) −2.64115e6 −0.170313
\(753\) 0 0
\(754\) 1.29171e7 0.827439
\(755\) −5.21043e6 −0.332664
\(756\) 0 0
\(757\) −1.28400e7 −0.814376 −0.407188 0.913344i \(-0.633491\pi\)
−0.407188 + 0.913344i \(0.633491\pi\)
\(758\) 1.40215e7 0.886380
\(759\) 0 0
\(760\) 3.74720e6 0.235328
\(761\) −2.89560e7 −1.81250 −0.906249 0.422744i \(-0.861067\pi\)
−0.906249 + 0.422744i \(0.861067\pi\)
\(762\) 0 0
\(763\) −7.40797e6 −0.460668
\(764\) 8.43250e6 0.522664
\(765\) 0 0
\(766\) −4.51618e6 −0.278099
\(767\) −7.35706e6 −0.451560
\(768\) 0 0
\(769\) −1.78116e7 −1.08614 −0.543071 0.839687i \(-0.682739\pi\)
−0.543071 + 0.839687i \(0.682739\pi\)
\(770\) −1.98450e6 −0.120621
\(771\) 0 0
\(772\) 2.29146e6 0.138378
\(773\) −1.73536e7 −1.04458 −0.522290 0.852768i \(-0.674922\pi\)
−0.522290 + 0.852768i \(0.674922\pi\)
\(774\) 0 0
\(775\) 2.51000e6 0.150113
\(776\) 7.06784e6 0.421340
\(777\) 0 0
\(778\) 4.80011e6 0.284316
\(779\) −7.81291e6 −0.461285
\(780\) 0 0
\(781\) −1.15668e7 −0.678556
\(782\) 9.71028e6 0.567825
\(783\) 0 0
\(784\) 614656. 0.0357143
\(785\) 9.10235e6 0.527205
\(786\) 0 0
\(787\) 812177. 0.0467427 0.0233714 0.999727i \(-0.492560\pi\)
0.0233714 + 0.999727i \(0.492560\pi\)
\(788\) −5.57549e6 −0.319865
\(789\) 0 0
\(790\) 5.88230e6 0.335335
\(791\) 6.55061e6 0.372255
\(792\) 0 0
\(793\) −8.47219e6 −0.478424
\(794\) −1.76735e7 −0.994879
\(795\) 0 0
\(796\) 1.20723e7 0.675318
\(797\) 8.58201e6 0.478568 0.239284 0.970950i \(-0.423087\pi\)
0.239284 + 0.970950i \(0.423087\pi\)
\(798\) 0 0
\(799\) 1.03067e7 0.571152
\(800\) 640000. 0.0353553
\(801\) 0 0
\(802\) 1.25311e7 0.687946
\(803\) 2.84885e7 1.55912
\(804\) 0 0
\(805\) −2.97675e6 −0.161902
\(806\) −6.28102e6 −0.340559
\(807\) 0 0
\(808\) −2.14080e6 −0.115358
\(809\) 2.83000e6 0.152025 0.0760125 0.997107i \(-0.475781\pi\)
0.0760125 + 0.997107i \(0.475781\pi\)
\(810\) 0 0
\(811\) −1.06484e7 −0.568504 −0.284252 0.958750i \(-0.591745\pi\)
−0.284252 + 0.958750i \(0.591745\pi\)
\(812\) −6.47506e6 −0.344630
\(813\) 0 0
\(814\) 1.14080e7 0.603462
\(815\) 15650.0 0.000825316 0
\(816\) 0 0
\(817\) −5.50792e7 −2.88690
\(818\) 3.44598e6 0.180065
\(819\) 0 0
\(820\) −1.33440e6 −0.0693029
\(821\) 2.59970e7 1.34606 0.673032 0.739613i \(-0.264992\pi\)
0.673032 + 0.739613i \(0.264992\pi\)
\(822\) 0 0
\(823\) −2.03099e7 −1.04522 −0.522611 0.852571i \(-0.675042\pi\)
−0.522611 + 0.852571i \(0.675042\pi\)
\(824\) −7.05990e6 −0.362227
\(825\) 0 0
\(826\) 3.68794e6 0.188076
\(827\) −1.68001e6 −0.0854175 −0.0427088 0.999088i \(-0.513599\pi\)
−0.0427088 + 0.999088i \(0.513599\pi\)
\(828\) 0 0
\(829\) −6.71070e6 −0.339142 −0.169571 0.985518i \(-0.554238\pi\)
−0.169571 + 0.985518i \(0.554238\pi\)
\(830\) −75600.0 −0.00380914
\(831\) 0 0
\(832\) −1.60154e6 −0.0802100
\(833\) −2.39860e6 −0.119769
\(834\) 0 0
\(835\) −1.11404e7 −0.552950
\(836\) −1.51762e7 −0.751011
\(837\) 0 0
\(838\) −1.86318e7 −0.916527
\(839\) −2.60856e7 −1.27937 −0.639686 0.768637i \(-0.720935\pi\)
−0.639686 + 0.768637i \(0.720935\pi\)
\(840\) 0 0
\(841\) 4.76999e7 2.32556
\(842\) 2.79958e7 1.36086
\(843\) 0 0
\(844\) −9.45198e6 −0.456738
\(845\) −5.46030e6 −0.263072
\(846\) 0 0
\(847\) 145726. 0.00697957
\(848\) −789504. −0.0377020
\(849\) 0 0
\(850\) −2.49750e6 −0.118565
\(851\) 1.71121e7 0.809988
\(852\) 0 0
\(853\) 9.54873e6 0.449338 0.224669 0.974435i \(-0.427870\pi\)
0.224669 + 0.974435i \(0.427870\pi\)
\(854\) 4.24693e6 0.199265
\(855\) 0 0
\(856\) −2.26291e6 −0.105556
\(857\) −3.51377e7 −1.63426 −0.817130 0.576453i \(-0.804436\pi\)
−0.817130 + 0.576453i \(0.804436\pi\)
\(858\) 0 0
\(859\) −1.60428e7 −0.741816 −0.370908 0.928670i \(-0.620953\pi\)
−0.370908 + 0.928670i \(0.620953\pi\)
\(860\) −9.40720e6 −0.433725
\(861\) 0 0
\(862\) 908364. 0.0416382
\(863\) 2.77776e7 1.26960 0.634802 0.772675i \(-0.281082\pi\)
0.634802 + 0.772675i \(0.281082\pi\)
\(864\) 0 0
\(865\) −1.60867e7 −0.731015
\(866\) −2.83845e7 −1.28614
\(867\) 0 0
\(868\) 3.14854e6 0.141844
\(869\) −2.38233e7 −1.07017
\(870\) 0 0
\(871\) −2.03805e7 −0.910268
\(872\) −9.67571e6 −0.430915
\(873\) 0 0
\(874\) −2.27642e7 −1.00803
\(875\) 765625. 0.0338062
\(876\) 0 0
\(877\) 2.46748e7 1.08332 0.541658 0.840599i \(-0.317797\pi\)
0.541658 + 0.840599i \(0.317797\pi\)
\(878\) 2.37303e6 0.103888
\(879\) 0 0
\(880\) −2.59200e6 −0.112831
\(881\) 1.27792e7 0.554707 0.277353 0.960768i \(-0.410543\pi\)
0.277353 + 0.960768i \(0.410543\pi\)
\(882\) 0 0
\(883\) −2.63417e7 −1.13695 −0.568476 0.822700i \(-0.692467\pi\)
−0.568476 + 0.822700i \(0.692467\pi\)
\(884\) 6.24974e6 0.268987
\(885\) 0 0
\(886\) 1.31077e7 0.560972
\(887\) −2.60037e7 −1.10975 −0.554877 0.831932i \(-0.687235\pi\)
−0.554877 + 0.831932i \(0.687235\pi\)
\(888\) 0 0
\(889\) −1.39152e7 −0.590521
\(890\) −1.35384e7 −0.572918
\(891\) 0 0
\(892\) −6.33765e6 −0.266696
\(893\) −2.41624e7 −1.01394
\(894\) 0 0
\(895\) −6.12870e6 −0.255747
\(896\) 802816. 0.0334077
\(897\) 0 0
\(898\) 1.73172e7 0.716616
\(899\) −3.31681e7 −1.36874
\(900\) 0 0
\(901\) 3.08092e6 0.126435
\(902\) 5.40432e6 0.221169
\(903\) 0 0
\(904\) 8.55590e6 0.348213
\(905\) 1.71545e7 0.696236
\(906\) 0 0
\(907\) −4.11852e7 −1.66235 −0.831177 0.556008i \(-0.812332\pi\)
−0.831177 + 0.556008i \(0.812332\pi\)
\(908\) −152592. −0.00614210
\(909\) 0 0
\(910\) −1.91590e6 −0.0766954
\(911\) 7.92211e6 0.316261 0.158130 0.987418i \(-0.449453\pi\)
0.158130 + 0.987418i \(0.449453\pi\)
\(912\) 0 0
\(913\) 306180. 0.0121563
\(914\) −1.96655e7 −0.778646
\(915\) 0 0
\(916\) 1.12809e7 0.444227
\(917\) −1.28105e7 −0.503085
\(918\) 0 0
\(919\) 1.59154e7 0.621624 0.310812 0.950471i \(-0.399399\pi\)
0.310812 + 0.950471i \(0.399399\pi\)
\(920\) −3.88800e6 −0.151446
\(921\) 0 0
\(922\) −2.81168e7 −1.08928
\(923\) −1.11670e7 −0.431450
\(924\) 0 0
\(925\) −4.40125e6 −0.169130
\(926\) 1.15424e7 0.442351
\(927\) 0 0
\(928\) −8.45722e6 −0.322372
\(929\) 3.37148e7 1.28169 0.640843 0.767672i \(-0.278585\pi\)
0.640843 + 0.767672i \(0.278585\pi\)
\(930\) 0 0
\(931\) 5.62314e6 0.212620
\(932\) −8.54746e6 −0.322327
\(933\) 0 0
\(934\) 2.40233e7 0.901085
\(935\) 1.01149e7 0.378383
\(936\) 0 0
\(937\) −4.04362e7 −1.50460 −0.752300 0.658820i \(-0.771056\pi\)
−0.752300 + 0.658820i \(0.771056\pi\)
\(938\) 1.02163e7 0.379129
\(939\) 0 0
\(940\) −4.12680e6 −0.152333
\(941\) −3.62378e7 −1.33410 −0.667048 0.745015i \(-0.732443\pi\)
−0.667048 + 0.745015i \(0.732443\pi\)
\(942\) 0 0
\(943\) 8.10648e6 0.296861
\(944\) 4.81690e6 0.175929
\(945\) 0 0
\(946\) 3.80992e7 1.38416
\(947\) −2.94238e7 −1.06616 −0.533082 0.846064i \(-0.678966\pi\)
−0.533082 + 0.846064i \(0.678966\pi\)
\(948\) 0 0
\(949\) 2.75037e7 0.991348
\(950\) 5.85500e6 0.210483
\(951\) 0 0
\(952\) −3.13286e6 −0.112034
\(953\) −3.59497e7 −1.28222 −0.641110 0.767449i \(-0.721526\pi\)
−0.641110 + 0.767449i \(0.721526\pi\)
\(954\) 0 0
\(955\) 1.31758e7 0.467485
\(956\) 1.44195e7 0.510278
\(957\) 0 0
\(958\) −3.76438e6 −0.132519
\(959\) −1.94393e6 −0.0682549
\(960\) 0 0
\(961\) −1.25009e7 −0.436649
\(962\) 1.10137e7 0.383703
\(963\) 0 0
\(964\) −1.52382e7 −0.528132
\(965\) 3.58040e6 0.123769
\(966\) 0 0
\(967\) 1.19506e6 0.0410982 0.0205491 0.999789i \(-0.493459\pi\)
0.0205491 + 0.999789i \(0.493459\pi\)
\(968\) 190336. 0.00652879
\(969\) 0 0
\(970\) 1.10435e7 0.376858
\(971\) −3.26221e7 −1.11036 −0.555180 0.831730i \(-0.687351\pi\)
−0.555180 + 0.831730i \(0.687351\pi\)
\(972\) 0 0
\(973\) −8.94867e6 −0.303024
\(974\) 7.64482e6 0.258208
\(975\) 0 0
\(976\) 5.54701e6 0.186395
\(977\) −5.36858e7 −1.79938 −0.899690 0.436529i \(-0.856208\pi\)
−0.899690 + 0.436529i \(0.856208\pi\)
\(978\) 0 0
\(979\) 5.48305e7 1.82838
\(980\) 960400. 0.0319438
\(981\) 0 0
\(982\) −1.58196e7 −0.523501
\(983\) 3.31124e7 1.09297 0.546484 0.837469i \(-0.315966\pi\)
0.546484 + 0.837469i \(0.315966\pi\)
\(984\) 0 0
\(985\) −8.71170e6 −0.286096
\(986\) 3.30030e7 1.08109
\(987\) 0 0
\(988\) −1.46516e7 −0.477520
\(989\) 5.71487e7 1.85787
\(990\) 0 0
\(991\) −1.97082e7 −0.637475 −0.318738 0.947843i \(-0.603259\pi\)
−0.318738 + 0.947843i \(0.603259\pi\)
\(992\) 4.11238e6 0.132683
\(993\) 0 0
\(994\) 5.59776e6 0.179700
\(995\) 1.88630e7 0.604022
\(996\) 0 0
\(997\) 3.31940e7 1.05760 0.528800 0.848747i \(-0.322642\pi\)
0.528800 + 0.848747i \(0.322642\pi\)
\(998\) 2.83883e7 0.902222
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.6.a.n.1.1 1
3.2 odd 2 70.6.a.c.1.1 1
12.11 even 2 560.6.a.d.1.1 1
15.2 even 4 350.6.c.e.99.1 2
15.8 even 4 350.6.c.e.99.2 2
15.14 odd 2 350.6.a.k.1.1 1
21.20 even 2 490.6.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.c.1.1 1 3.2 odd 2
350.6.a.k.1.1 1 15.14 odd 2
350.6.c.e.99.1 2 15.2 even 4
350.6.c.e.99.2 2 15.8 even 4
490.6.a.e.1.1 1 21.20 even 2
560.6.a.d.1.1 1 12.11 even 2
630.6.a.n.1.1 1 1.1 even 1 trivial