Properties

Label 630.6.a.j.1.1
Level $630$
Weight $6$
Character 630.1
Self dual yes
Analytic conductor $101.042$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,6,Mod(1,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 630.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.041806482\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 630.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} -25.0000 q^{5} +49.0000 q^{7} +64.0000 q^{8} +O(q^{10})\) \(q+4.00000 q^{2} +16.0000 q^{4} -25.0000 q^{5} +49.0000 q^{7} +64.0000 q^{8} -100.000 q^{10} -555.000 q^{11} -241.000 q^{13} +196.000 q^{14} +256.000 q^{16} +1491.00 q^{17} -2038.00 q^{19} -400.000 q^{20} -2220.00 q^{22} +1230.00 q^{23} +625.000 q^{25} -964.000 q^{26} +784.000 q^{28} +5001.00 q^{29} +5696.00 q^{31} +1024.00 q^{32} +5964.00 q^{34} -1225.00 q^{35} -5602.00 q^{37} -8152.00 q^{38} -1600.00 q^{40} +2424.00 q^{41} +602.000 q^{43} -8880.00 q^{44} +4920.00 q^{46} +23163.0 q^{47} +2401.00 q^{49} +2500.00 q^{50} -3856.00 q^{52} +25296.0 q^{53} +13875.0 q^{55} +3136.00 q^{56} +20004.0 q^{58} -5724.00 q^{59} -36112.0 q^{61} +22784.0 q^{62} +4096.00 q^{64} +6025.00 q^{65} +66104.0 q^{67} +23856.0 q^{68} -4900.00 q^{70} -16080.0 q^{71} -80482.0 q^{73} -22408.0 q^{74} -32608.0 q^{76} -27195.0 q^{77} -64147.0 q^{79} -6400.00 q^{80} +9696.00 q^{82} +106284. q^{83} -37275.0 q^{85} +2408.00 q^{86} -35520.0 q^{88} +71676.0 q^{89} -11809.0 q^{91} +19680.0 q^{92} +92652.0 q^{94} +50950.0 q^{95} +151025. q^{97} +9604.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) −100.000 −0.316228
\(11\) −555.000 −1.38297 −0.691483 0.722393i \(-0.743042\pi\)
−0.691483 + 0.722393i \(0.743042\pi\)
\(12\) 0 0
\(13\) −241.000 −0.395511 −0.197756 0.980251i \(-0.563365\pi\)
−0.197756 + 0.980251i \(0.563365\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1491.00 1.25128 0.625641 0.780111i \(-0.284837\pi\)
0.625641 + 0.780111i \(0.284837\pi\)
\(18\) 0 0
\(19\) −2038.00 −1.29515 −0.647575 0.762002i \(-0.724217\pi\)
−0.647575 + 0.762002i \(0.724217\pi\)
\(20\) −400.000 −0.223607
\(21\) 0 0
\(22\) −2220.00 −0.977904
\(23\) 1230.00 0.484826 0.242413 0.970173i \(-0.422061\pi\)
0.242413 + 0.970173i \(0.422061\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) −964.000 −0.279669
\(27\) 0 0
\(28\) 784.000 0.188982
\(29\) 5001.00 1.10424 0.552118 0.833766i \(-0.313820\pi\)
0.552118 + 0.833766i \(0.313820\pi\)
\(30\) 0 0
\(31\) 5696.00 1.06455 0.532275 0.846572i \(-0.321337\pi\)
0.532275 + 0.846572i \(0.321337\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) 5964.00 0.884790
\(35\) −1225.00 −0.169031
\(36\) 0 0
\(37\) −5602.00 −0.672727 −0.336363 0.941732i \(-0.609197\pi\)
−0.336363 + 0.941732i \(0.609197\pi\)
\(38\) −8152.00 −0.915810
\(39\) 0 0
\(40\) −1600.00 −0.158114
\(41\) 2424.00 0.225202 0.112601 0.993640i \(-0.464082\pi\)
0.112601 + 0.993640i \(0.464082\pi\)
\(42\) 0 0
\(43\) 602.000 0.0496507 0.0248253 0.999692i \(-0.492097\pi\)
0.0248253 + 0.999692i \(0.492097\pi\)
\(44\) −8880.00 −0.691483
\(45\) 0 0
\(46\) 4920.00 0.342823
\(47\) 23163.0 1.52950 0.764751 0.644326i \(-0.222862\pi\)
0.764751 + 0.644326i \(0.222862\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 2500.00 0.141421
\(51\) 0 0
\(52\) −3856.00 −0.197756
\(53\) 25296.0 1.23698 0.618489 0.785793i \(-0.287745\pi\)
0.618489 + 0.785793i \(0.287745\pi\)
\(54\) 0 0
\(55\) 13875.0 0.618481
\(56\) 3136.00 0.133631
\(57\) 0 0
\(58\) 20004.0 0.780813
\(59\) −5724.00 −0.214077 −0.107038 0.994255i \(-0.534137\pi\)
−0.107038 + 0.994255i \(0.534137\pi\)
\(60\) 0 0
\(61\) −36112.0 −1.24259 −0.621294 0.783578i \(-0.713393\pi\)
−0.621294 + 0.783578i \(0.713393\pi\)
\(62\) 22784.0 0.752750
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 6025.00 0.176878
\(66\) 0 0
\(67\) 66104.0 1.79904 0.899520 0.436880i \(-0.143917\pi\)
0.899520 + 0.436880i \(0.143917\pi\)
\(68\) 23856.0 0.625641
\(69\) 0 0
\(70\) −4900.00 −0.119523
\(71\) −16080.0 −0.378565 −0.189282 0.981923i \(-0.560616\pi\)
−0.189282 + 0.981923i \(0.560616\pi\)
\(72\) 0 0
\(73\) −80482.0 −1.76763 −0.883816 0.467836i \(-0.845034\pi\)
−0.883816 + 0.467836i \(0.845034\pi\)
\(74\) −22408.0 −0.475690
\(75\) 0 0
\(76\) −32608.0 −0.647575
\(77\) −27195.0 −0.522712
\(78\) 0 0
\(79\) −64147.0 −1.15640 −0.578201 0.815895i \(-0.696245\pi\)
−0.578201 + 0.815895i \(0.696245\pi\)
\(80\) −6400.00 −0.111803
\(81\) 0 0
\(82\) 9696.00 0.159242
\(83\) 106284. 1.69345 0.846726 0.532030i \(-0.178571\pi\)
0.846726 + 0.532030i \(0.178571\pi\)
\(84\) 0 0
\(85\) −37275.0 −0.559591
\(86\) 2408.00 0.0351083
\(87\) 0 0
\(88\) −35520.0 −0.488952
\(89\) 71676.0 0.959177 0.479588 0.877494i \(-0.340786\pi\)
0.479588 + 0.877494i \(0.340786\pi\)
\(90\) 0 0
\(91\) −11809.0 −0.149489
\(92\) 19680.0 0.242413
\(93\) 0 0
\(94\) 92652.0 1.08152
\(95\) 50950.0 0.579209
\(96\) 0 0
\(97\) 151025. 1.62974 0.814872 0.579641i \(-0.196807\pi\)
0.814872 + 0.579641i \(0.196807\pi\)
\(98\) 9604.00 0.101015
\(99\) 0 0
\(100\) 10000.0 0.100000
\(101\) 57150.0 0.557459 0.278729 0.960370i \(-0.410087\pi\)
0.278729 + 0.960370i \(0.410087\pi\)
\(102\) 0 0
\(103\) 115889. 1.07634 0.538170 0.842837i \(-0.319116\pi\)
0.538170 + 0.842837i \(0.319116\pi\)
\(104\) −15424.0 −0.139834
\(105\) 0 0
\(106\) 101184. 0.874676
\(107\) 137862. 1.16409 0.582043 0.813158i \(-0.302253\pi\)
0.582043 + 0.813158i \(0.302253\pi\)
\(108\) 0 0
\(109\) 88397.0 0.712642 0.356321 0.934364i \(-0.384031\pi\)
0.356321 + 0.934364i \(0.384031\pi\)
\(110\) 55500.0 0.437332
\(111\) 0 0
\(112\) 12544.0 0.0944911
\(113\) −205554. −1.51436 −0.757181 0.653205i \(-0.773424\pi\)
−0.757181 + 0.653205i \(0.773424\pi\)
\(114\) 0 0
\(115\) −30750.0 −0.216821
\(116\) 80016.0 0.552118
\(117\) 0 0
\(118\) −22896.0 −0.151375
\(119\) 73059.0 0.472940
\(120\) 0 0
\(121\) 146974. 0.912593
\(122\) −144448. −0.878642
\(123\) 0 0
\(124\) 91136.0 0.532275
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) 250916. 1.38044 0.690222 0.723597i \(-0.257513\pi\)
0.690222 + 0.723597i \(0.257513\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) 24100.0 0.125072
\(131\) 52122.0 0.265365 0.132682 0.991159i \(-0.457641\pi\)
0.132682 + 0.991159i \(0.457641\pi\)
\(132\) 0 0
\(133\) −99862.0 −0.489521
\(134\) 264416. 1.27211
\(135\) 0 0
\(136\) 95424.0 0.442395
\(137\) 135468. 0.616645 0.308323 0.951282i \(-0.400232\pi\)
0.308323 + 0.951282i \(0.400232\pi\)
\(138\) 0 0
\(139\) −349486. −1.53424 −0.767119 0.641505i \(-0.778310\pi\)
−0.767119 + 0.641505i \(0.778310\pi\)
\(140\) −19600.0 −0.0845154
\(141\) 0 0
\(142\) −64320.0 −0.267686
\(143\) 133755. 0.546978
\(144\) 0 0
\(145\) −125025. −0.493829
\(146\) −321928. −1.24990
\(147\) 0 0
\(148\) −89632.0 −0.336363
\(149\) −176082. −0.649754 −0.324877 0.945756i \(-0.605323\pi\)
−0.324877 + 0.945756i \(0.605323\pi\)
\(150\) 0 0
\(151\) 383333. 1.36815 0.684075 0.729411i \(-0.260206\pi\)
0.684075 + 0.729411i \(0.260206\pi\)
\(152\) −130432. −0.457905
\(153\) 0 0
\(154\) −108780. −0.369613
\(155\) −142400. −0.476081
\(156\) 0 0
\(157\) 345914. 1.12000 0.560001 0.828492i \(-0.310801\pi\)
0.560001 + 0.828492i \(0.310801\pi\)
\(158\) −256588. −0.817699
\(159\) 0 0
\(160\) −25600.0 −0.0790569
\(161\) 60270.0 0.183247
\(162\) 0 0
\(163\) 91586.0 0.269998 0.134999 0.990846i \(-0.456897\pi\)
0.134999 + 0.990846i \(0.456897\pi\)
\(164\) 38784.0 0.112601
\(165\) 0 0
\(166\) 425136. 1.19745
\(167\) −38097.0 −0.105706 −0.0528530 0.998602i \(-0.516831\pi\)
−0.0528530 + 0.998602i \(0.516831\pi\)
\(168\) 0 0
\(169\) −313212. −0.843571
\(170\) −149100. −0.395690
\(171\) 0 0
\(172\) 9632.00 0.0248253
\(173\) 541443. 1.37543 0.687713 0.725982i \(-0.258615\pi\)
0.687713 + 0.725982i \(0.258615\pi\)
\(174\) 0 0
\(175\) 30625.0 0.0755929
\(176\) −142080. −0.345741
\(177\) 0 0
\(178\) 286704. 0.678241
\(179\) −166188. −0.387674 −0.193837 0.981034i \(-0.562093\pi\)
−0.193837 + 0.981034i \(0.562093\pi\)
\(180\) 0 0
\(181\) −197320. −0.447687 −0.223844 0.974625i \(-0.571860\pi\)
−0.223844 + 0.974625i \(0.571860\pi\)
\(182\) −47236.0 −0.105705
\(183\) 0 0
\(184\) 78720.0 0.171412
\(185\) 140050. 0.300853
\(186\) 0 0
\(187\) −827505. −1.73048
\(188\) 370608. 0.764751
\(189\) 0 0
\(190\) 203800. 0.409562
\(191\) 337221. 0.668854 0.334427 0.942422i \(-0.391457\pi\)
0.334427 + 0.942422i \(0.391457\pi\)
\(192\) 0 0
\(193\) 260516. 0.503432 0.251716 0.967801i \(-0.419005\pi\)
0.251716 + 0.967801i \(0.419005\pi\)
\(194\) 604100. 1.15240
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 409212. 0.751247 0.375624 0.926772i \(-0.377429\pi\)
0.375624 + 0.926772i \(0.377429\pi\)
\(198\) 0 0
\(199\) 300980. 0.538772 0.269386 0.963032i \(-0.413179\pi\)
0.269386 + 0.963032i \(0.413179\pi\)
\(200\) 40000.0 0.0707107
\(201\) 0 0
\(202\) 228600. 0.394183
\(203\) 245049. 0.417362
\(204\) 0 0
\(205\) −60600.0 −0.100714
\(206\) 463556. 0.761087
\(207\) 0 0
\(208\) −61696.0 −0.0988778
\(209\) 1.13109e6 1.79115
\(210\) 0 0
\(211\) −1.22618e6 −1.89604 −0.948021 0.318209i \(-0.896919\pi\)
−0.948021 + 0.318209i \(0.896919\pi\)
\(212\) 404736. 0.618489
\(213\) 0 0
\(214\) 551448. 0.823133
\(215\) −15050.0 −0.0222045
\(216\) 0 0
\(217\) 279104. 0.402362
\(218\) 353588. 0.503914
\(219\) 0 0
\(220\) 222000. 0.309240
\(221\) −359331. −0.494896
\(222\) 0 0
\(223\) 621257. 0.836583 0.418292 0.908313i \(-0.362629\pi\)
0.418292 + 0.908313i \(0.362629\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) −822216. −1.07082
\(227\) −1.29768e6 −1.67148 −0.835742 0.549123i \(-0.814962\pi\)
−0.835742 + 0.549123i \(0.814962\pi\)
\(228\) 0 0
\(229\) −124264. −0.156587 −0.0782937 0.996930i \(-0.524947\pi\)
−0.0782937 + 0.996930i \(0.524947\pi\)
\(230\) −123000. −0.153315
\(231\) 0 0
\(232\) 320064. 0.390406
\(233\) −1.08742e6 −1.31222 −0.656109 0.754666i \(-0.727799\pi\)
−0.656109 + 0.754666i \(0.727799\pi\)
\(234\) 0 0
\(235\) −579075. −0.684014
\(236\) −91584.0 −0.107038
\(237\) 0 0
\(238\) 292236. 0.334419
\(239\) 545631. 0.617880 0.308940 0.951081i \(-0.400026\pi\)
0.308940 + 0.951081i \(0.400026\pi\)
\(240\) 0 0
\(241\) 811310. 0.899796 0.449898 0.893080i \(-0.351460\pi\)
0.449898 + 0.893080i \(0.351460\pi\)
\(242\) 587896. 0.645301
\(243\) 0 0
\(244\) −577792. −0.621294
\(245\) −60025.0 −0.0638877
\(246\) 0 0
\(247\) 491158. 0.512246
\(248\) 364544. 0.376375
\(249\) 0 0
\(250\) −62500.0 −0.0632456
\(251\) 897738. 0.899426 0.449713 0.893173i \(-0.351526\pi\)
0.449713 + 0.893173i \(0.351526\pi\)
\(252\) 0 0
\(253\) −682650. −0.670497
\(254\) 1.00366e6 0.976122
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 594678. 0.561628 0.280814 0.959762i \(-0.409396\pi\)
0.280814 + 0.959762i \(0.409396\pi\)
\(258\) 0 0
\(259\) −274498. −0.254267
\(260\) 96400.0 0.0884390
\(261\) 0 0
\(262\) 208488. 0.187641
\(263\) −1.02837e6 −0.916769 −0.458385 0.888754i \(-0.651572\pi\)
−0.458385 + 0.888754i \(0.651572\pi\)
\(264\) 0 0
\(265\) −632400. −0.553194
\(266\) −399448. −0.346143
\(267\) 0 0
\(268\) 1.05766e6 0.899520
\(269\) 1.24390e6 1.04811 0.524053 0.851685i \(-0.324419\pi\)
0.524053 + 0.851685i \(0.324419\pi\)
\(270\) 0 0
\(271\) 737624. 0.610115 0.305058 0.952334i \(-0.401324\pi\)
0.305058 + 0.952334i \(0.401324\pi\)
\(272\) 381696. 0.312821
\(273\) 0 0
\(274\) 541872. 0.436034
\(275\) −346875. −0.276593
\(276\) 0 0
\(277\) −2.20063e6 −1.72325 −0.861624 0.507548i \(-0.830552\pi\)
−0.861624 + 0.507548i \(0.830552\pi\)
\(278\) −1.39794e6 −1.08487
\(279\) 0 0
\(280\) −78400.0 −0.0597614
\(281\) −173979. −0.131441 −0.0657205 0.997838i \(-0.520935\pi\)
−0.0657205 + 0.997838i \(0.520935\pi\)
\(282\) 0 0
\(283\) −551053. −0.409004 −0.204502 0.978866i \(-0.565557\pi\)
−0.204502 + 0.978866i \(0.565557\pi\)
\(284\) −257280. −0.189282
\(285\) 0 0
\(286\) 535020. 0.386772
\(287\) 118776. 0.0851185
\(288\) 0 0
\(289\) 803224. 0.565708
\(290\) −500100. −0.349190
\(291\) 0 0
\(292\) −1.28771e6 −0.883816
\(293\) 1.67512e6 1.13993 0.569963 0.821670i \(-0.306958\pi\)
0.569963 + 0.821670i \(0.306958\pi\)
\(294\) 0 0
\(295\) 143100. 0.0957381
\(296\) −358528. −0.237845
\(297\) 0 0
\(298\) −704328. −0.459446
\(299\) −296430. −0.191754
\(300\) 0 0
\(301\) 29498.0 0.0187662
\(302\) 1.53333e6 0.967428
\(303\) 0 0
\(304\) −521728. −0.323788
\(305\) 902800. 0.555702
\(306\) 0 0
\(307\) 2.33060e6 1.41131 0.705655 0.708556i \(-0.250653\pi\)
0.705655 + 0.708556i \(0.250653\pi\)
\(308\) −435120. −0.261356
\(309\) 0 0
\(310\) −569600. −0.336640
\(311\) −706266. −0.414064 −0.207032 0.978334i \(-0.566380\pi\)
−0.207032 + 0.978334i \(0.566380\pi\)
\(312\) 0 0
\(313\) −183565. −0.105908 −0.0529540 0.998597i \(-0.516864\pi\)
−0.0529540 + 0.998597i \(0.516864\pi\)
\(314\) 1.38366e6 0.791961
\(315\) 0 0
\(316\) −1.02635e6 −0.578201
\(317\) −2.70665e6 −1.51281 −0.756405 0.654103i \(-0.773046\pi\)
−0.756405 + 0.654103i \(0.773046\pi\)
\(318\) 0 0
\(319\) −2.77556e6 −1.52712
\(320\) −102400. −0.0559017
\(321\) 0 0
\(322\) 241080. 0.129575
\(323\) −3.03866e6 −1.62060
\(324\) 0 0
\(325\) −150625. −0.0791022
\(326\) 366344. 0.190917
\(327\) 0 0
\(328\) 155136. 0.0796211
\(329\) 1.13499e6 0.578098
\(330\) 0 0
\(331\) −2.14337e6 −1.07529 −0.537647 0.843170i \(-0.680687\pi\)
−0.537647 + 0.843170i \(0.680687\pi\)
\(332\) 1.70054e6 0.846726
\(333\) 0 0
\(334\) −152388. −0.0747454
\(335\) −1.65260e6 −0.804555
\(336\) 0 0
\(337\) 655346. 0.314337 0.157169 0.987572i \(-0.449763\pi\)
0.157169 + 0.987572i \(0.449763\pi\)
\(338\) −1.25285e6 −0.596495
\(339\) 0 0
\(340\) −596400. −0.279795
\(341\) −3.16128e6 −1.47223
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 38528.0 0.0175542
\(345\) 0 0
\(346\) 2.16577e6 0.972574
\(347\) 4.22275e6 1.88266 0.941329 0.337491i \(-0.109578\pi\)
0.941329 + 0.337491i \(0.109578\pi\)
\(348\) 0 0
\(349\) 3.01710e6 1.32595 0.662974 0.748643i \(-0.269294\pi\)
0.662974 + 0.748643i \(0.269294\pi\)
\(350\) 122500. 0.0534522
\(351\) 0 0
\(352\) −568320. −0.244476
\(353\) −2.25258e6 −0.962150 −0.481075 0.876679i \(-0.659754\pi\)
−0.481075 + 0.876679i \(0.659754\pi\)
\(354\) 0 0
\(355\) 402000. 0.169299
\(356\) 1.14682e6 0.479588
\(357\) 0 0
\(358\) −664752. −0.274127
\(359\) 1.83950e6 0.753294 0.376647 0.926357i \(-0.377077\pi\)
0.376647 + 0.926357i \(0.377077\pi\)
\(360\) 0 0
\(361\) 1.67735e6 0.677414
\(362\) −789280. −0.316563
\(363\) 0 0
\(364\) −188944. −0.0747446
\(365\) 2.01205e6 0.790509
\(366\) 0 0
\(367\) −1.68832e6 −0.654320 −0.327160 0.944969i \(-0.606092\pi\)
−0.327160 + 0.944969i \(0.606092\pi\)
\(368\) 314880. 0.121206
\(369\) 0 0
\(370\) 560200. 0.212735
\(371\) 1.23950e6 0.467534
\(372\) 0 0
\(373\) 1.81212e6 0.674394 0.337197 0.941434i \(-0.390521\pi\)
0.337197 + 0.941434i \(0.390521\pi\)
\(374\) −3.31002e6 −1.22363
\(375\) 0 0
\(376\) 1.48243e6 0.540761
\(377\) −1.20524e6 −0.436738
\(378\) 0 0
\(379\) −4.76708e6 −1.70472 −0.852362 0.522952i \(-0.824831\pi\)
−0.852362 + 0.522952i \(0.824831\pi\)
\(380\) 815200. 0.289604
\(381\) 0 0
\(382\) 1.34888e6 0.472951
\(383\) 69996.0 0.0243824 0.0121912 0.999926i \(-0.496119\pi\)
0.0121912 + 0.999926i \(0.496119\pi\)
\(384\) 0 0
\(385\) 679875. 0.233764
\(386\) 1.04206e6 0.355980
\(387\) 0 0
\(388\) 2.41640e6 0.814872
\(389\) −3.98895e6 −1.33655 −0.668275 0.743915i \(-0.732967\pi\)
−0.668275 + 0.743915i \(0.732967\pi\)
\(390\) 0 0
\(391\) 1.83393e6 0.606654
\(392\) 153664. 0.0505076
\(393\) 0 0
\(394\) 1.63685e6 0.531212
\(395\) 1.60367e6 0.517158
\(396\) 0 0
\(397\) −3.05904e6 −0.974110 −0.487055 0.873371i \(-0.661929\pi\)
−0.487055 + 0.873371i \(0.661929\pi\)
\(398\) 1.20392e6 0.380969
\(399\) 0 0
\(400\) 160000. 0.0500000
\(401\) −4.30794e6 −1.33785 −0.668927 0.743329i \(-0.733246\pi\)
−0.668927 + 0.743329i \(0.733246\pi\)
\(402\) 0 0
\(403\) −1.37274e6 −0.421041
\(404\) 914400. 0.278729
\(405\) 0 0
\(406\) 980196. 0.295119
\(407\) 3.10911e6 0.930358
\(408\) 0 0
\(409\) −239206. −0.0707072 −0.0353536 0.999375i \(-0.511256\pi\)
−0.0353536 + 0.999375i \(0.511256\pi\)
\(410\) −242400. −0.0712152
\(411\) 0 0
\(412\) 1.85422e6 0.538170
\(413\) −280476. −0.0809134
\(414\) 0 0
\(415\) −2.65710e6 −0.757334
\(416\) −246784. −0.0699171
\(417\) 0 0
\(418\) 4.52436e6 1.26653
\(419\) −4.63462e6 −1.28967 −0.644835 0.764322i \(-0.723074\pi\)
−0.644835 + 0.764322i \(0.723074\pi\)
\(420\) 0 0
\(421\) −2.10108e6 −0.577745 −0.288873 0.957368i \(-0.593280\pi\)
−0.288873 + 0.957368i \(0.593280\pi\)
\(422\) −4.90472e6 −1.34070
\(423\) 0 0
\(424\) 1.61894e6 0.437338
\(425\) 931875. 0.250256
\(426\) 0 0
\(427\) −1.76949e6 −0.469654
\(428\) 2.20579e6 0.582043
\(429\) 0 0
\(430\) −60200.0 −0.0157009
\(431\) −1.65484e6 −0.429104 −0.214552 0.976713i \(-0.568829\pi\)
−0.214552 + 0.976713i \(0.568829\pi\)
\(432\) 0 0
\(433\) −1.84031e6 −0.471705 −0.235852 0.971789i \(-0.575788\pi\)
−0.235852 + 0.971789i \(0.575788\pi\)
\(434\) 1.11642e6 0.284513
\(435\) 0 0
\(436\) 1.41435e6 0.356321
\(437\) −2.50674e6 −0.627922
\(438\) 0 0
\(439\) 5.83684e6 1.44549 0.722747 0.691113i \(-0.242879\pi\)
0.722747 + 0.691113i \(0.242879\pi\)
\(440\) 888000. 0.218666
\(441\) 0 0
\(442\) −1.43732e6 −0.349944
\(443\) −1.19704e6 −0.289801 −0.144901 0.989446i \(-0.546286\pi\)
−0.144901 + 0.989446i \(0.546286\pi\)
\(444\) 0 0
\(445\) −1.79190e6 −0.428957
\(446\) 2.48503e6 0.591554
\(447\) 0 0
\(448\) 200704. 0.0472456
\(449\) 3.42570e6 0.801924 0.400962 0.916095i \(-0.368676\pi\)
0.400962 + 0.916095i \(0.368676\pi\)
\(450\) 0 0
\(451\) −1.34532e6 −0.311447
\(452\) −3.28886e6 −0.757181
\(453\) 0 0
\(454\) −5.19071e6 −1.18192
\(455\) 295225. 0.0668536
\(456\) 0 0
\(457\) 5.29742e6 1.18652 0.593258 0.805012i \(-0.297841\pi\)
0.593258 + 0.805012i \(0.297841\pi\)
\(458\) −497056. −0.110724
\(459\) 0 0
\(460\) −492000. −0.108410
\(461\) −8.87731e6 −1.94549 −0.972745 0.231876i \(-0.925514\pi\)
−0.972745 + 0.231876i \(0.925514\pi\)
\(462\) 0 0
\(463\) −2.17475e6 −0.471473 −0.235737 0.971817i \(-0.575750\pi\)
−0.235737 + 0.971817i \(0.575750\pi\)
\(464\) 1.28026e6 0.276059
\(465\) 0 0
\(466\) −4.34966e6 −0.927878
\(467\) 378969. 0.0804103 0.0402051 0.999191i \(-0.487199\pi\)
0.0402051 + 0.999191i \(0.487199\pi\)
\(468\) 0 0
\(469\) 3.23910e6 0.679973
\(470\) −2.31630e6 −0.483671
\(471\) 0 0
\(472\) −366336. −0.0756876
\(473\) −334110. −0.0686652
\(474\) 0 0
\(475\) −1.27375e6 −0.259030
\(476\) 1.16894e6 0.236470
\(477\) 0 0
\(478\) 2.18252e6 0.436907
\(479\) −1.88489e6 −0.375360 −0.187680 0.982230i \(-0.560097\pi\)
−0.187680 + 0.982230i \(0.560097\pi\)
\(480\) 0 0
\(481\) 1.35008e6 0.266071
\(482\) 3.24524e6 0.636252
\(483\) 0 0
\(484\) 2.35158e6 0.456296
\(485\) −3.77562e6 −0.728844
\(486\) 0 0
\(487\) 3.67689e6 0.702518 0.351259 0.936278i \(-0.385754\pi\)
0.351259 + 0.936278i \(0.385754\pi\)
\(488\) −2.31117e6 −0.439321
\(489\) 0 0
\(490\) −240100. −0.0451754
\(491\) −9.54015e6 −1.78588 −0.892939 0.450178i \(-0.851360\pi\)
−0.892939 + 0.450178i \(0.851360\pi\)
\(492\) 0 0
\(493\) 7.45649e6 1.38171
\(494\) 1.96463e6 0.362213
\(495\) 0 0
\(496\) 1.45818e6 0.266137
\(497\) −787920. −0.143084
\(498\) 0 0
\(499\) 4.78243e6 0.859800 0.429900 0.902877i \(-0.358549\pi\)
0.429900 + 0.902877i \(0.358549\pi\)
\(500\) −250000. −0.0447214
\(501\) 0 0
\(502\) 3.59095e6 0.635990
\(503\) 1.08395e7 1.91024 0.955120 0.296220i \(-0.0957260\pi\)
0.955120 + 0.296220i \(0.0957260\pi\)
\(504\) 0 0
\(505\) −1.42875e6 −0.249303
\(506\) −2.73060e6 −0.474113
\(507\) 0 0
\(508\) 4.01466e6 0.690222
\(509\) 7.64177e6 1.30737 0.653687 0.756765i \(-0.273221\pi\)
0.653687 + 0.756765i \(0.273221\pi\)
\(510\) 0 0
\(511\) −3.94362e6 −0.668102
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) 2.37871e6 0.397131
\(515\) −2.89723e6 −0.481354
\(516\) 0 0
\(517\) −1.28555e7 −2.11525
\(518\) −1.09799e6 −0.179794
\(519\) 0 0
\(520\) 385600. 0.0625358
\(521\) −6.44011e6 −1.03944 −0.519719 0.854337i \(-0.673963\pi\)
−0.519719 + 0.854337i \(0.673963\pi\)
\(522\) 0 0
\(523\) −4.77929e6 −0.764028 −0.382014 0.924157i \(-0.624769\pi\)
−0.382014 + 0.924157i \(0.624769\pi\)
\(524\) 833952. 0.132682
\(525\) 0 0
\(526\) −4.11348e6 −0.648254
\(527\) 8.49274e6 1.33205
\(528\) 0 0
\(529\) −4.92344e6 −0.764944
\(530\) −2.52960e6 −0.391167
\(531\) 0 0
\(532\) −1.59779e6 −0.244760
\(533\) −584184. −0.0890700
\(534\) 0 0
\(535\) −3.44655e6 −0.520595
\(536\) 4.23066e6 0.636057
\(537\) 0 0
\(538\) 4.97561e6 0.741123
\(539\) −1.33256e6 −0.197566
\(540\) 0 0
\(541\) −2.05678e6 −0.302130 −0.151065 0.988524i \(-0.548270\pi\)
−0.151065 + 0.988524i \(0.548270\pi\)
\(542\) 2.95050e6 0.431417
\(543\) 0 0
\(544\) 1.52678e6 0.221198
\(545\) −2.20992e6 −0.318703
\(546\) 0 0
\(547\) −1.20189e7 −1.71750 −0.858751 0.512393i \(-0.828759\pi\)
−0.858751 + 0.512393i \(0.828759\pi\)
\(548\) 2.16749e6 0.308323
\(549\) 0 0
\(550\) −1.38750e6 −0.195581
\(551\) −1.01920e7 −1.43015
\(552\) 0 0
\(553\) −3.14320e6 −0.437079
\(554\) −8.80252e6 −1.21852
\(555\) 0 0
\(556\) −5.59178e6 −0.767119
\(557\) −8.69942e6 −1.18810 −0.594049 0.804429i \(-0.702472\pi\)
−0.594049 + 0.804429i \(0.702472\pi\)
\(558\) 0 0
\(559\) −145082. −0.0196374
\(560\) −313600. −0.0422577
\(561\) 0 0
\(562\) −695916. −0.0929429
\(563\) 7.35942e6 0.978527 0.489263 0.872136i \(-0.337266\pi\)
0.489263 + 0.872136i \(0.337266\pi\)
\(564\) 0 0
\(565\) 5.13885e6 0.677243
\(566\) −2.20421e6 −0.289209
\(567\) 0 0
\(568\) −1.02912e6 −0.133843
\(569\) 7.50029e6 0.971175 0.485588 0.874188i \(-0.338606\pi\)
0.485588 + 0.874188i \(0.338606\pi\)
\(570\) 0 0
\(571\) −2.22879e6 −0.286074 −0.143037 0.989717i \(-0.545687\pi\)
−0.143037 + 0.989717i \(0.545687\pi\)
\(572\) 2.14008e6 0.273489
\(573\) 0 0
\(574\) 475104. 0.0601879
\(575\) 768750. 0.0969651
\(576\) 0 0
\(577\) −5.10946e6 −0.638903 −0.319452 0.947603i \(-0.603499\pi\)
−0.319452 + 0.947603i \(0.603499\pi\)
\(578\) 3.21290e6 0.400016
\(579\) 0 0
\(580\) −2.00040e6 −0.246915
\(581\) 5.20792e6 0.640064
\(582\) 0 0
\(583\) −1.40393e7 −1.71070
\(584\) −5.15085e6 −0.624952
\(585\) 0 0
\(586\) 6.70048e6 0.806049
\(587\) −1.10646e7 −1.32537 −0.662687 0.748896i \(-0.730584\pi\)
−0.662687 + 0.748896i \(0.730584\pi\)
\(588\) 0 0
\(589\) −1.16084e7 −1.37875
\(590\) 572400. 0.0676970
\(591\) 0 0
\(592\) −1.43411e6 −0.168182
\(593\) −9.10043e6 −1.06274 −0.531368 0.847141i \(-0.678322\pi\)
−0.531368 + 0.847141i \(0.678322\pi\)
\(594\) 0 0
\(595\) −1.82648e6 −0.211505
\(596\) −2.81731e6 −0.324877
\(597\) 0 0
\(598\) −1.18572e6 −0.135590
\(599\) 1.28615e7 1.46462 0.732309 0.680973i \(-0.238443\pi\)
0.732309 + 0.680973i \(0.238443\pi\)
\(600\) 0 0
\(601\) 1.58163e6 0.178615 0.0893074 0.996004i \(-0.471535\pi\)
0.0893074 + 0.996004i \(0.471535\pi\)
\(602\) 117992. 0.0132697
\(603\) 0 0
\(604\) 6.13333e6 0.684075
\(605\) −3.67435e6 −0.408124
\(606\) 0 0
\(607\) −688297. −0.0758236 −0.0379118 0.999281i \(-0.512071\pi\)
−0.0379118 + 0.999281i \(0.512071\pi\)
\(608\) −2.08691e6 −0.228952
\(609\) 0 0
\(610\) 3.61120e6 0.392941
\(611\) −5.58228e6 −0.604935
\(612\) 0 0
\(613\) −6.02150e6 −0.647223 −0.323611 0.946190i \(-0.604897\pi\)
−0.323611 + 0.946190i \(0.604897\pi\)
\(614\) 9.32241e6 0.997947
\(615\) 0 0
\(616\) −1.74048e6 −0.184807
\(617\) −3.36137e6 −0.355471 −0.177735 0.984078i \(-0.556877\pi\)
−0.177735 + 0.984078i \(0.556877\pi\)
\(618\) 0 0
\(619\) 1.31769e7 1.38225 0.691126 0.722734i \(-0.257115\pi\)
0.691126 + 0.722734i \(0.257115\pi\)
\(620\) −2.27840e6 −0.238040
\(621\) 0 0
\(622\) −2.82506e6 −0.292787
\(623\) 3.51212e6 0.362535
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) −734260. −0.0748883
\(627\) 0 0
\(628\) 5.53462e6 0.560001
\(629\) −8.35258e6 −0.841771
\(630\) 0 0
\(631\) 1.26264e6 0.126243 0.0631213 0.998006i \(-0.479895\pi\)
0.0631213 + 0.998006i \(0.479895\pi\)
\(632\) −4.10541e6 −0.408850
\(633\) 0 0
\(634\) −1.08266e7 −1.06972
\(635\) −6.27290e6 −0.617354
\(636\) 0 0
\(637\) −578641. −0.0565016
\(638\) −1.11022e7 −1.07984
\(639\) 0 0
\(640\) −409600. −0.0395285
\(641\) 1.58859e7 1.52710 0.763550 0.645749i \(-0.223455\pi\)
0.763550 + 0.645749i \(0.223455\pi\)
\(642\) 0 0
\(643\) 1.80880e6 0.172529 0.0862647 0.996272i \(-0.472507\pi\)
0.0862647 + 0.996272i \(0.472507\pi\)
\(644\) 964320. 0.0916234
\(645\) 0 0
\(646\) −1.21546e7 −1.14594
\(647\) −95712.0 −0.00898888 −0.00449444 0.999990i \(-0.501431\pi\)
−0.00449444 + 0.999990i \(0.501431\pi\)
\(648\) 0 0
\(649\) 3.17682e6 0.296061
\(650\) −602500. −0.0559337
\(651\) 0 0
\(652\) 1.46538e6 0.134999
\(653\) −3.06736e6 −0.281502 −0.140751 0.990045i \(-0.544952\pi\)
−0.140751 + 0.990045i \(0.544952\pi\)
\(654\) 0 0
\(655\) −1.30305e6 −0.118675
\(656\) 620544. 0.0563006
\(657\) 0 0
\(658\) 4.53995e6 0.408777
\(659\) 1.32961e6 0.119264 0.0596321 0.998220i \(-0.481007\pi\)
0.0596321 + 0.998220i \(0.481007\pi\)
\(660\) 0 0
\(661\) −7.37188e6 −0.656258 −0.328129 0.944633i \(-0.606418\pi\)
−0.328129 + 0.944633i \(0.606418\pi\)
\(662\) −8.57349e6 −0.760348
\(663\) 0 0
\(664\) 6.80218e6 0.598725
\(665\) 2.49655e6 0.218920
\(666\) 0 0
\(667\) 6.15123e6 0.535362
\(668\) −609552. −0.0528530
\(669\) 0 0
\(670\) −6.61040e6 −0.568906
\(671\) 2.00422e7 1.71846
\(672\) 0 0
\(673\) 8.48476e6 0.722108 0.361054 0.932545i \(-0.382417\pi\)
0.361054 + 0.932545i \(0.382417\pi\)
\(674\) 2.62138e6 0.222270
\(675\) 0 0
\(676\) −5.01139e6 −0.421785
\(677\) 4.35891e6 0.365516 0.182758 0.983158i \(-0.441497\pi\)
0.182758 + 0.983158i \(0.441497\pi\)
\(678\) 0 0
\(679\) 7.40022e6 0.615985
\(680\) −2.38560e6 −0.197845
\(681\) 0 0
\(682\) −1.26451e7 −1.04103
\(683\) 1.58732e7 1.30200 0.651001 0.759077i \(-0.274349\pi\)
0.651001 + 0.759077i \(0.274349\pi\)
\(684\) 0 0
\(685\) −3.38670e6 −0.275772
\(686\) 470596. 0.0381802
\(687\) 0 0
\(688\) 154112. 0.0124127
\(689\) −6.09634e6 −0.489239
\(690\) 0 0
\(691\) −554956. −0.0442144 −0.0221072 0.999756i \(-0.507038\pi\)
−0.0221072 + 0.999756i \(0.507038\pi\)
\(692\) 8.66309e6 0.687713
\(693\) 0 0
\(694\) 1.68910e7 1.33124
\(695\) 8.73715e6 0.686132
\(696\) 0 0
\(697\) 3.61418e6 0.281792
\(698\) 1.20684e7 0.937587
\(699\) 0 0
\(700\) 490000. 0.0377964
\(701\) 7.74720e6 0.595456 0.297728 0.954651i \(-0.403771\pi\)
0.297728 + 0.954651i \(0.403771\pi\)
\(702\) 0 0
\(703\) 1.14169e7 0.871282
\(704\) −2.27328e6 −0.172871
\(705\) 0 0
\(706\) −9.01031e6 −0.680343
\(707\) 2.80035e6 0.210700
\(708\) 0 0
\(709\) −1.89055e7 −1.41245 −0.706225 0.707987i \(-0.749603\pi\)
−0.706225 + 0.707987i \(0.749603\pi\)
\(710\) 1.60800e6 0.119713
\(711\) 0 0
\(712\) 4.58726e6 0.339120
\(713\) 7.00608e6 0.516121
\(714\) 0 0
\(715\) −3.34388e6 −0.244616
\(716\) −2.65901e6 −0.193837
\(717\) 0 0
\(718\) 7.35802e6 0.532659
\(719\) 1.83928e7 1.32686 0.663430 0.748238i \(-0.269100\pi\)
0.663430 + 0.748238i \(0.269100\pi\)
\(720\) 0 0
\(721\) 5.67856e6 0.406818
\(722\) 6.70938e6 0.479004
\(723\) 0 0
\(724\) −3.15712e6 −0.223844
\(725\) 3.12562e6 0.220847
\(726\) 0 0
\(727\) −1.34259e7 −0.942123 −0.471061 0.882100i \(-0.656129\pi\)
−0.471061 + 0.882100i \(0.656129\pi\)
\(728\) −755776. −0.0528524
\(729\) 0 0
\(730\) 8.04820e6 0.558974
\(731\) 897582. 0.0621270
\(732\) 0 0
\(733\) 1.08473e7 0.745697 0.372848 0.927892i \(-0.378381\pi\)
0.372848 + 0.927892i \(0.378381\pi\)
\(734\) −6.75329e6 −0.462674
\(735\) 0 0
\(736\) 1.25952e6 0.0857059
\(737\) −3.66877e7 −2.48801
\(738\) 0 0
\(739\) 2.64323e7 1.78043 0.890214 0.455542i \(-0.150555\pi\)
0.890214 + 0.455542i \(0.150555\pi\)
\(740\) 2.24080e6 0.150426
\(741\) 0 0
\(742\) 4.95802e6 0.330596
\(743\) −2.03120e7 −1.34984 −0.674918 0.737893i \(-0.735821\pi\)
−0.674918 + 0.737893i \(0.735821\pi\)
\(744\) 0 0
\(745\) 4.40205e6 0.290579
\(746\) 7.24846e6 0.476869
\(747\) 0 0
\(748\) −1.32401e7 −0.865240
\(749\) 6.75524e6 0.439983
\(750\) 0 0
\(751\) −3.95388e6 −0.255813 −0.127907 0.991786i \(-0.540826\pi\)
−0.127907 + 0.991786i \(0.540826\pi\)
\(752\) 5.92973e6 0.382376
\(753\) 0 0
\(754\) −4.82096e6 −0.308820
\(755\) −9.58332e6 −0.611855
\(756\) 0 0
\(757\) −2.62165e7 −1.66278 −0.831391 0.555688i \(-0.812455\pi\)
−0.831391 + 0.555688i \(0.812455\pi\)
\(758\) −1.90683e7 −1.20542
\(759\) 0 0
\(760\) 3.26080e6 0.204781
\(761\) −1.14329e7 −0.715638 −0.357819 0.933791i \(-0.616479\pi\)
−0.357819 + 0.933791i \(0.616479\pi\)
\(762\) 0 0
\(763\) 4.33145e6 0.269353
\(764\) 5.39554e6 0.334427
\(765\) 0 0
\(766\) 279984. 0.0172410
\(767\) 1.37948e6 0.0846697
\(768\) 0 0
\(769\) 2.37076e7 1.44568 0.722840 0.691015i \(-0.242836\pi\)
0.722840 + 0.691015i \(0.242836\pi\)
\(770\) 2.71950e6 0.165296
\(771\) 0 0
\(772\) 4.16826e6 0.251716
\(773\) 1.24180e7 0.747484 0.373742 0.927533i \(-0.378075\pi\)
0.373742 + 0.927533i \(0.378075\pi\)
\(774\) 0 0
\(775\) 3.56000e6 0.212910
\(776\) 9.66560e6 0.576202
\(777\) 0 0
\(778\) −1.59558e7 −0.945083
\(779\) −4.94011e6 −0.291671
\(780\) 0 0
\(781\) 8.92440e6 0.523542
\(782\) 7.33572e6 0.428969
\(783\) 0 0
\(784\) 614656. 0.0357143
\(785\) −8.64785e6 −0.500880
\(786\) 0 0
\(787\) 3.06553e7 1.76428 0.882142 0.470984i \(-0.156101\pi\)
0.882142 + 0.470984i \(0.156101\pi\)
\(788\) 6.54739e6 0.375624
\(789\) 0 0
\(790\) 6.41470e6 0.365686
\(791\) −1.00721e7 −0.572375
\(792\) 0 0
\(793\) 8.70299e6 0.491457
\(794\) −1.22361e7 −0.688800
\(795\) 0 0
\(796\) 4.81568e6 0.269386
\(797\) 1.51870e7 0.846886 0.423443 0.905923i \(-0.360821\pi\)
0.423443 + 0.905923i \(0.360821\pi\)
\(798\) 0 0
\(799\) 3.45360e7 1.91384
\(800\) 640000. 0.0353553
\(801\) 0 0
\(802\) −1.72317e7 −0.946005
\(803\) 4.46675e7 2.44457
\(804\) 0 0
\(805\) −1.50675e6 −0.0819505
\(806\) −5.49094e6 −0.297721
\(807\) 0 0
\(808\) 3.65760e6 0.197091
\(809\) −539721. −0.0289933 −0.0144967 0.999895i \(-0.504615\pi\)
−0.0144967 + 0.999895i \(0.504615\pi\)
\(810\) 0 0
\(811\) 1.39772e7 0.746221 0.373111 0.927787i \(-0.378291\pi\)
0.373111 + 0.927787i \(0.378291\pi\)
\(812\) 3.92078e6 0.208681
\(813\) 0 0
\(814\) 1.24364e7 0.657862
\(815\) −2.28965e6 −0.120747
\(816\) 0 0
\(817\) −1.22688e6 −0.0643051
\(818\) −956824. −0.0499976
\(819\) 0 0
\(820\) −969600. −0.0503568
\(821\) 1.78137e7 0.922350 0.461175 0.887309i \(-0.347428\pi\)
0.461175 + 0.887309i \(0.347428\pi\)
\(822\) 0 0
\(823\) 1.91010e7 0.983005 0.491502 0.870876i \(-0.336448\pi\)
0.491502 + 0.870876i \(0.336448\pi\)
\(824\) 7.41690e6 0.380543
\(825\) 0 0
\(826\) −1.12190e6 −0.0572144
\(827\) −3.19225e6 −0.162305 −0.0811526 0.996702i \(-0.525860\pi\)
−0.0811526 + 0.996702i \(0.525860\pi\)
\(828\) 0 0
\(829\) 8.56842e6 0.433026 0.216513 0.976280i \(-0.430532\pi\)
0.216513 + 0.976280i \(0.430532\pi\)
\(830\) −1.06284e7 −0.535516
\(831\) 0 0
\(832\) −987136. −0.0494389
\(833\) 3.57989e6 0.178755
\(834\) 0 0
\(835\) 952425. 0.0472732
\(836\) 1.80974e7 0.895574
\(837\) 0 0
\(838\) −1.85385e7 −0.911935
\(839\) −3.56751e7 −1.74969 −0.874843 0.484407i \(-0.839036\pi\)
−0.874843 + 0.484407i \(0.839036\pi\)
\(840\) 0 0
\(841\) 4.49885e6 0.219337
\(842\) −8.40430e6 −0.408528
\(843\) 0 0
\(844\) −1.96189e7 −0.948021
\(845\) 7.83030e6 0.377256
\(846\) 0 0
\(847\) 7.20173e6 0.344928
\(848\) 6.47578e6 0.309245
\(849\) 0 0
\(850\) 3.72750e6 0.176958
\(851\) −6.89046e6 −0.326155
\(852\) 0 0
\(853\) 3.06355e7 1.44163 0.720814 0.693129i \(-0.243768\pi\)
0.720814 + 0.693129i \(0.243768\pi\)
\(854\) −7.07795e6 −0.332095
\(855\) 0 0
\(856\) 8.82317e6 0.411567
\(857\) 4.46188e6 0.207523 0.103761 0.994602i \(-0.466912\pi\)
0.103761 + 0.994602i \(0.466912\pi\)
\(858\) 0 0
\(859\) 2.63974e7 1.22061 0.610307 0.792165i \(-0.291046\pi\)
0.610307 + 0.792165i \(0.291046\pi\)
\(860\) −240800. −0.0111022
\(861\) 0 0
\(862\) −6.61936e6 −0.303422
\(863\) 2.17530e7 0.994244 0.497122 0.867681i \(-0.334390\pi\)
0.497122 + 0.867681i \(0.334390\pi\)
\(864\) 0 0
\(865\) −1.35361e7 −0.615110
\(866\) −7.36122e6 −0.333546
\(867\) 0 0
\(868\) 4.46566e6 0.201181
\(869\) 3.56016e7 1.59926
\(870\) 0 0
\(871\) −1.59311e7 −0.711540
\(872\) 5.65741e6 0.251957
\(873\) 0 0
\(874\) −1.00270e7 −0.444008
\(875\) −765625. −0.0338062
\(876\) 0 0
\(877\) −1.58383e7 −0.695361 −0.347680 0.937613i \(-0.613031\pi\)
−0.347680 + 0.937613i \(0.613031\pi\)
\(878\) 2.33474e7 1.02212
\(879\) 0 0
\(880\) 3.55200e6 0.154620
\(881\) −1.97427e7 −0.856974 −0.428487 0.903548i \(-0.640953\pi\)
−0.428487 + 0.903548i \(0.640953\pi\)
\(882\) 0 0
\(883\) −1.72899e7 −0.746263 −0.373131 0.927779i \(-0.621716\pi\)
−0.373131 + 0.927779i \(0.621716\pi\)
\(884\) −5.74930e6 −0.247448
\(885\) 0 0
\(886\) −4.78817e6 −0.204920
\(887\) 4.44693e7 1.89780 0.948901 0.315574i \(-0.102197\pi\)
0.948901 + 0.315574i \(0.102197\pi\)
\(888\) 0 0
\(889\) 1.22949e7 0.521759
\(890\) −7.16760e6 −0.303318
\(891\) 0 0
\(892\) 9.94011e6 0.418292
\(893\) −4.72062e7 −1.98094
\(894\) 0 0
\(895\) 4.15470e6 0.173373
\(896\) 802816. 0.0334077
\(897\) 0 0
\(898\) 1.37028e7 0.567046
\(899\) 2.84857e7 1.17551
\(900\) 0 0
\(901\) 3.77163e7 1.54781
\(902\) −5.38128e6 −0.220226
\(903\) 0 0
\(904\) −1.31555e7 −0.535408
\(905\) 4.93300e6 0.200212
\(906\) 0 0
\(907\) 2.56887e6 0.103687 0.0518434 0.998655i \(-0.483490\pi\)
0.0518434 + 0.998655i \(0.483490\pi\)
\(908\) −2.07628e7 −0.835742
\(909\) 0 0
\(910\) 1.18090e6 0.0472726
\(911\) −1.12692e7 −0.449882 −0.224941 0.974372i \(-0.572219\pi\)
−0.224941 + 0.974372i \(0.572219\pi\)
\(912\) 0 0
\(913\) −5.89876e7 −2.34198
\(914\) 2.11897e7 0.838994
\(915\) 0 0
\(916\) −1.98822e6 −0.0782937
\(917\) 2.55398e6 0.100298
\(918\) 0 0
\(919\) 3.18378e7 1.24353 0.621763 0.783205i \(-0.286417\pi\)
0.621763 + 0.783205i \(0.286417\pi\)
\(920\) −1.96800e6 −0.0766577
\(921\) 0 0
\(922\) −3.55092e7 −1.37567
\(923\) 3.87528e6 0.149727
\(924\) 0 0
\(925\) −3.50125e6 −0.134545
\(926\) −8.69901e6 −0.333382
\(927\) 0 0
\(928\) 5.12102e6 0.195203
\(929\) −1.88558e7 −0.716813 −0.358407 0.933566i \(-0.616680\pi\)
−0.358407 + 0.933566i \(0.616680\pi\)
\(930\) 0 0
\(931\) −4.89324e6 −0.185021
\(932\) −1.73987e7 −0.656109
\(933\) 0 0
\(934\) 1.51588e6 0.0568586
\(935\) 2.06876e7 0.773894
\(936\) 0 0
\(937\) 1.12946e7 0.420265 0.210132 0.977673i \(-0.432610\pi\)
0.210132 + 0.977673i \(0.432610\pi\)
\(938\) 1.29564e7 0.480814
\(939\) 0 0
\(940\) −9.26520e6 −0.342007
\(941\) 2.91941e7 1.07478 0.537392 0.843333i \(-0.319410\pi\)
0.537392 + 0.843333i \(0.319410\pi\)
\(942\) 0 0
\(943\) 2.98152e6 0.109184
\(944\) −1.46534e6 −0.0535192
\(945\) 0 0
\(946\) −1.33644e6 −0.0485536
\(947\) −1.05892e7 −0.383697 −0.191848 0.981425i \(-0.561448\pi\)
−0.191848 + 0.981425i \(0.561448\pi\)
\(948\) 0 0
\(949\) 1.93962e7 0.699118
\(950\) −5.09500e6 −0.183162
\(951\) 0 0
\(952\) 4.67578e6 0.167210
\(953\) 3.90317e7 1.39215 0.696074 0.717970i \(-0.254929\pi\)
0.696074 + 0.717970i \(0.254929\pi\)
\(954\) 0 0
\(955\) −8.43052e6 −0.299121
\(956\) 8.73010e6 0.308940
\(957\) 0 0
\(958\) −7.53958e6 −0.265420
\(959\) 6.63793e6 0.233070
\(960\) 0 0
\(961\) 3.81526e6 0.133265
\(962\) 5.40033e6 0.188141
\(963\) 0 0
\(964\) 1.29810e7 0.449898
\(965\) −6.51290e6 −0.225142
\(966\) 0 0
\(967\) −3.43395e7 −1.18094 −0.590470 0.807059i \(-0.701058\pi\)
−0.590470 + 0.807059i \(0.701058\pi\)
\(968\) 9.40634e6 0.322650
\(969\) 0 0
\(970\) −1.51025e7 −0.515370
\(971\) 1.81464e7 0.617651 0.308826 0.951119i \(-0.400064\pi\)
0.308826 + 0.951119i \(0.400064\pi\)
\(972\) 0 0
\(973\) −1.71248e7 −0.579888
\(974\) 1.47075e7 0.496756
\(975\) 0 0
\(976\) −9.24467e6 −0.310647
\(977\) 1.05223e7 0.352675 0.176338 0.984330i \(-0.443575\pi\)
0.176338 + 0.984330i \(0.443575\pi\)
\(978\) 0 0
\(979\) −3.97802e7 −1.32651
\(980\) −960400. −0.0319438
\(981\) 0 0
\(982\) −3.81606e7 −1.26281
\(983\) 7.91353e6 0.261208 0.130604 0.991435i \(-0.458308\pi\)
0.130604 + 0.991435i \(0.458308\pi\)
\(984\) 0 0
\(985\) −1.02303e7 −0.335968
\(986\) 2.98260e7 0.977017
\(987\) 0 0
\(988\) 7.85853e6 0.256123
\(989\) 740460. 0.0240719
\(990\) 0 0
\(991\) 4.01556e7 1.29886 0.649429 0.760422i \(-0.275008\pi\)
0.649429 + 0.760422i \(0.275008\pi\)
\(992\) 5.83270e6 0.188187
\(993\) 0 0
\(994\) −3.15168e6 −0.101176
\(995\) −7.52450e6 −0.240946
\(996\) 0 0
\(997\) −4.93478e7 −1.57228 −0.786140 0.618048i \(-0.787924\pi\)
−0.786140 + 0.618048i \(0.787924\pi\)
\(998\) 1.91297e7 0.607970
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.6.a.j.1.1 1
3.2 odd 2 70.6.a.a.1.1 1
12.11 even 2 560.6.a.i.1.1 1
15.2 even 4 350.6.c.h.99.1 2
15.8 even 4 350.6.c.h.99.2 2
15.14 odd 2 350.6.a.n.1.1 1
21.20 even 2 490.6.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.a.1.1 1 3.2 odd 2
350.6.a.n.1.1 1 15.14 odd 2
350.6.c.h.99.1 2 15.2 even 4
350.6.c.h.99.2 2 15.8 even 4
490.6.a.i.1.1 1 21.20 even 2
560.6.a.i.1.1 1 12.11 even 2
630.6.a.j.1.1 1 1.1 even 1 trivial