Properties

Label 630.6.a.e.1.1
Level $630$
Weight $6$
Character 630.1
Self dual yes
Analytic conductor $101.042$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,6,Mod(1,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 630.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.041806482\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 630.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} +25.0000 q^{5} +49.0000 q^{7} -64.0000 q^{8} -100.000 q^{10} +267.000 q^{11} -1087.00 q^{13} -196.000 q^{14} +256.000 q^{16} +513.000 q^{17} -802.000 q^{19} +400.000 q^{20} -1068.00 q^{22} +1290.00 q^{23} +625.000 q^{25} +4348.00 q^{26} +784.000 q^{28} -1779.00 q^{29} -2584.00 q^{31} -1024.00 q^{32} -2052.00 q^{34} +1225.00 q^{35} +13862.0 q^{37} +3208.00 q^{38} -1600.00 q^{40} +11904.0 q^{41} -598.000 q^{43} +4272.00 q^{44} -5160.00 q^{46} +17019.0 q^{47} +2401.00 q^{49} -2500.00 q^{50} -17392.0 q^{52} -27852.0 q^{53} +6675.00 q^{55} -3136.00 q^{56} +7116.00 q^{58} -30912.0 q^{59} -1780.00 q^{61} +10336.0 q^{62} +4096.00 q^{64} -27175.0 q^{65} +25052.0 q^{67} +8208.00 q^{68} -4900.00 q^{70} +51984.0 q^{71} +47690.0 q^{73} -55448.0 q^{74} -12832.0 q^{76} +13083.0 q^{77} -102121. q^{79} +6400.00 q^{80} -47616.0 q^{82} +83676.0 q^{83} +12825.0 q^{85} +2392.00 q^{86} -17088.0 q^{88} +32400.0 q^{89} -53263.0 q^{91} +20640.0 q^{92} -68076.0 q^{94} -20050.0 q^{95} -148645. q^{97} -9604.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) −100.000 −0.316228
\(11\) 267.000 0.665318 0.332659 0.943047i \(-0.392054\pi\)
0.332659 + 0.943047i \(0.392054\pi\)
\(12\) 0 0
\(13\) −1087.00 −1.78390 −0.891951 0.452131i \(-0.850664\pi\)
−0.891951 + 0.452131i \(0.850664\pi\)
\(14\) −196.000 −0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 513.000 0.430522 0.215261 0.976557i \(-0.430940\pi\)
0.215261 + 0.976557i \(0.430940\pi\)
\(18\) 0 0
\(19\) −802.000 −0.509672 −0.254836 0.966984i \(-0.582021\pi\)
−0.254836 + 0.966984i \(0.582021\pi\)
\(20\) 400.000 0.223607
\(21\) 0 0
\(22\) −1068.00 −0.470451
\(23\) 1290.00 0.508476 0.254238 0.967142i \(-0.418175\pi\)
0.254238 + 0.967142i \(0.418175\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 4348.00 1.26141
\(27\) 0 0
\(28\) 784.000 0.188982
\(29\) −1779.00 −0.392809 −0.196404 0.980523i \(-0.562926\pi\)
−0.196404 + 0.980523i \(0.562926\pi\)
\(30\) 0 0
\(31\) −2584.00 −0.482935 −0.241467 0.970409i \(-0.577629\pi\)
−0.241467 + 0.970409i \(0.577629\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −2052.00 −0.304425
\(35\) 1225.00 0.169031
\(36\) 0 0
\(37\) 13862.0 1.66464 0.832322 0.554292i \(-0.187011\pi\)
0.832322 + 0.554292i \(0.187011\pi\)
\(38\) 3208.00 0.360392
\(39\) 0 0
\(40\) −1600.00 −0.158114
\(41\) 11904.0 1.10594 0.552972 0.833200i \(-0.313494\pi\)
0.552972 + 0.833200i \(0.313494\pi\)
\(42\) 0 0
\(43\) −598.000 −0.0493208 −0.0246604 0.999696i \(-0.507850\pi\)
−0.0246604 + 0.999696i \(0.507850\pi\)
\(44\) 4272.00 0.332659
\(45\) 0 0
\(46\) −5160.00 −0.359547
\(47\) 17019.0 1.12380 0.561900 0.827205i \(-0.310070\pi\)
0.561900 + 0.827205i \(0.310070\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) −2500.00 −0.141421
\(51\) 0 0
\(52\) −17392.0 −0.891951
\(53\) −27852.0 −1.36197 −0.680984 0.732299i \(-0.738448\pi\)
−0.680984 + 0.732299i \(0.738448\pi\)
\(54\) 0 0
\(55\) 6675.00 0.297539
\(56\) −3136.00 −0.133631
\(57\) 0 0
\(58\) 7116.00 0.277758
\(59\) −30912.0 −1.15610 −0.578052 0.816000i \(-0.696187\pi\)
−0.578052 + 0.816000i \(0.696187\pi\)
\(60\) 0 0
\(61\) −1780.00 −0.0612485 −0.0306242 0.999531i \(-0.509750\pi\)
−0.0306242 + 0.999531i \(0.509750\pi\)
\(62\) 10336.0 0.341486
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −27175.0 −0.797786
\(66\) 0 0
\(67\) 25052.0 0.681797 0.340899 0.940100i \(-0.389269\pi\)
0.340899 + 0.940100i \(0.389269\pi\)
\(68\) 8208.00 0.215261
\(69\) 0 0
\(70\) −4900.00 −0.119523
\(71\) 51984.0 1.22384 0.611919 0.790921i \(-0.290398\pi\)
0.611919 + 0.790921i \(0.290398\pi\)
\(72\) 0 0
\(73\) 47690.0 1.04742 0.523709 0.851897i \(-0.324548\pi\)
0.523709 + 0.851897i \(0.324548\pi\)
\(74\) −55448.0 −1.17708
\(75\) 0 0
\(76\) −12832.0 −0.254836
\(77\) 13083.0 0.251467
\(78\) 0 0
\(79\) −102121. −1.84097 −0.920486 0.390775i \(-0.872207\pi\)
−0.920486 + 0.390775i \(0.872207\pi\)
\(80\) 6400.00 0.111803
\(81\) 0 0
\(82\) −47616.0 −0.782021
\(83\) 83676.0 1.33323 0.666616 0.745401i \(-0.267742\pi\)
0.666616 + 0.745401i \(0.267742\pi\)
\(84\) 0 0
\(85\) 12825.0 0.192535
\(86\) 2392.00 0.0348751
\(87\) 0 0
\(88\) −17088.0 −0.235226
\(89\) 32400.0 0.433581 0.216790 0.976218i \(-0.430441\pi\)
0.216790 + 0.976218i \(0.430441\pi\)
\(90\) 0 0
\(91\) −53263.0 −0.674252
\(92\) 20640.0 0.254238
\(93\) 0 0
\(94\) −68076.0 −0.794647
\(95\) −20050.0 −0.227932
\(96\) 0 0
\(97\) −148645. −1.60406 −0.802031 0.597283i \(-0.796247\pi\)
−0.802031 + 0.597283i \(0.796247\pi\)
\(98\) −9604.00 −0.101015
\(99\) 0 0
\(100\) 10000.0 0.100000
\(101\) 41310.0 0.402951 0.201475 0.979494i \(-0.435426\pi\)
0.201475 + 0.979494i \(0.435426\pi\)
\(102\) 0 0
\(103\) 108785. 1.01036 0.505180 0.863014i \(-0.331426\pi\)
0.505180 + 0.863014i \(0.331426\pi\)
\(104\) 69568.0 0.630705
\(105\) 0 0
\(106\) 111408. 0.963056
\(107\) 106098. 0.895876 0.447938 0.894065i \(-0.352159\pi\)
0.447938 + 0.894065i \(0.352159\pi\)
\(108\) 0 0
\(109\) −124111. −1.00056 −0.500281 0.865863i \(-0.666770\pi\)
−0.500281 + 0.865863i \(0.666770\pi\)
\(110\) −26700.0 −0.210392
\(111\) 0 0
\(112\) 12544.0 0.0944911
\(113\) −192834. −1.42065 −0.710326 0.703873i \(-0.751452\pi\)
−0.710326 + 0.703873i \(0.751452\pi\)
\(114\) 0 0
\(115\) 32250.0 0.227397
\(116\) −28464.0 −0.196404
\(117\) 0 0
\(118\) 123648. 0.817489
\(119\) 25137.0 0.162722
\(120\) 0 0
\(121\) −89762.0 −0.557351
\(122\) 7120.00 0.0433092
\(123\) 0 0
\(124\) −41344.0 −0.241467
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) 99248.0 0.546025 0.273012 0.962010i \(-0.411980\pi\)
0.273012 + 0.962010i \(0.411980\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) 108700. 0.564120
\(131\) 276810. 1.40930 0.704650 0.709555i \(-0.251104\pi\)
0.704650 + 0.709555i \(0.251104\pi\)
\(132\) 0 0
\(133\) −39298.0 −0.192638
\(134\) −100208. −0.482104
\(135\) 0 0
\(136\) −32832.0 −0.152212
\(137\) −237744. −1.08220 −0.541101 0.840958i \(-0.681992\pi\)
−0.541101 + 0.840958i \(0.681992\pi\)
\(138\) 0 0
\(139\) 160478. 0.704496 0.352248 0.935907i \(-0.385417\pi\)
0.352248 + 0.935907i \(0.385417\pi\)
\(140\) 19600.0 0.0845154
\(141\) 0 0
\(142\) −207936. −0.865384
\(143\) −290229. −1.18686
\(144\) 0 0
\(145\) −44475.0 −0.175669
\(146\) −190760. −0.740637
\(147\) 0 0
\(148\) 221792. 0.832322
\(149\) 99678.0 0.367819 0.183909 0.982943i \(-0.441125\pi\)
0.183909 + 0.982943i \(0.441125\pi\)
\(150\) 0 0
\(151\) −206017. −0.735293 −0.367647 0.929966i \(-0.619836\pi\)
−0.367647 + 0.929966i \(0.619836\pi\)
\(152\) 51328.0 0.180196
\(153\) 0 0
\(154\) −52332.0 −0.177814
\(155\) −64600.0 −0.215975
\(156\) 0 0
\(157\) 581150. 1.88165 0.940826 0.338891i \(-0.110052\pi\)
0.940826 + 0.338891i \(0.110052\pi\)
\(158\) 408484. 1.30176
\(159\) 0 0
\(160\) −25600.0 −0.0790569
\(161\) 63210.0 0.192186
\(162\) 0 0
\(163\) 346610. 1.02181 0.510907 0.859636i \(-0.329310\pi\)
0.510907 + 0.859636i \(0.329310\pi\)
\(164\) 190464. 0.552972
\(165\) 0 0
\(166\) −334704. −0.942737
\(167\) 448887. 1.24551 0.622753 0.782418i \(-0.286014\pi\)
0.622753 + 0.782418i \(0.286014\pi\)
\(168\) 0 0
\(169\) 810276. 2.18231
\(170\) −51300.0 −0.136143
\(171\) 0 0
\(172\) −9568.00 −0.0246604
\(173\) 262509. 0.666851 0.333426 0.942776i \(-0.391795\pi\)
0.333426 + 0.942776i \(0.391795\pi\)
\(174\) 0 0
\(175\) 30625.0 0.0755929
\(176\) 68352.0 0.166330
\(177\) 0 0
\(178\) −129600. −0.306588
\(179\) 111012. 0.258963 0.129481 0.991582i \(-0.458669\pi\)
0.129481 + 0.991582i \(0.458669\pi\)
\(180\) 0 0
\(181\) 112772. 0.255861 0.127931 0.991783i \(-0.459166\pi\)
0.127931 + 0.991783i \(0.459166\pi\)
\(182\) 213052. 0.476768
\(183\) 0 0
\(184\) −82560.0 −0.179773
\(185\) 346550. 0.744452
\(186\) 0 0
\(187\) 136971. 0.286434
\(188\) 272304. 0.561900
\(189\) 0 0
\(190\) 80200.0 0.161172
\(191\) 731991. 1.45185 0.725926 0.687773i \(-0.241411\pi\)
0.725926 + 0.687773i \(0.241411\pi\)
\(192\) 0 0
\(193\) −186040. −0.359512 −0.179756 0.983711i \(-0.557531\pi\)
−0.179756 + 0.983711i \(0.557531\pi\)
\(194\) 594580. 1.13424
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) −121356. −0.222790 −0.111395 0.993776i \(-0.535532\pi\)
−0.111395 + 0.993776i \(0.535532\pi\)
\(198\) 0 0
\(199\) 648584. 1.16100 0.580502 0.814259i \(-0.302856\pi\)
0.580502 + 0.814259i \(0.302856\pi\)
\(200\) −40000.0 −0.0707107
\(201\) 0 0
\(202\) −165240. −0.284929
\(203\) −87171.0 −0.148468
\(204\) 0 0
\(205\) 297600. 0.494593
\(206\) −435140. −0.714432
\(207\) 0 0
\(208\) −278272. −0.445976
\(209\) −214134. −0.339094
\(210\) 0 0
\(211\) −149773. −0.231594 −0.115797 0.993273i \(-0.536942\pi\)
−0.115797 + 0.993273i \(0.536942\pi\)
\(212\) −445632. −0.680984
\(213\) 0 0
\(214\) −424392. −0.633480
\(215\) −14950.0 −0.0220569
\(216\) 0 0
\(217\) −126616. −0.182532
\(218\) 496444. 0.707504
\(219\) 0 0
\(220\) 106800. 0.148770
\(221\) −557631. −0.768009
\(222\) 0 0
\(223\) −1.10096e6 −1.48255 −0.741274 0.671202i \(-0.765778\pi\)
−0.741274 + 0.671202i \(0.765778\pi\)
\(224\) −50176.0 −0.0668153
\(225\) 0 0
\(226\) 771336. 1.00455
\(227\) 695127. 0.895364 0.447682 0.894193i \(-0.352250\pi\)
0.447682 + 0.894193i \(0.352250\pi\)
\(228\) 0 0
\(229\) 463736. 0.584362 0.292181 0.956363i \(-0.405619\pi\)
0.292181 + 0.956363i \(0.405619\pi\)
\(230\) −129000. −0.160794
\(231\) 0 0
\(232\) 113856. 0.138879
\(233\) 1.57654e6 1.90245 0.951227 0.308492i \(-0.0998244\pi\)
0.951227 + 0.308492i \(0.0998244\pi\)
\(234\) 0 0
\(235\) 425475. 0.502579
\(236\) −494592. −0.578052
\(237\) 0 0
\(238\) −100548. −0.115062
\(239\) 512037. 0.579838 0.289919 0.957051i \(-0.406372\pi\)
0.289919 + 0.957051i \(0.406372\pi\)
\(240\) 0 0
\(241\) 989330. 1.09723 0.548616 0.836074i \(-0.315155\pi\)
0.548616 + 0.836074i \(0.315155\pi\)
\(242\) 359048. 0.394107
\(243\) 0 0
\(244\) −28480.0 −0.0306242
\(245\) 60025.0 0.0638877
\(246\) 0 0
\(247\) 871774. 0.909204
\(248\) 165376. 0.170743
\(249\) 0 0
\(250\) −62500.0 −0.0632456
\(251\) 61230.0 0.0613451 0.0306726 0.999529i \(-0.490235\pi\)
0.0306726 + 0.999529i \(0.490235\pi\)
\(252\) 0 0
\(253\) 344430. 0.338298
\(254\) −396992. −0.386098
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −1.33887e6 −1.26446 −0.632231 0.774780i \(-0.717861\pi\)
−0.632231 + 0.774780i \(0.717861\pi\)
\(258\) 0 0
\(259\) 679238. 0.629177
\(260\) −434800. −0.398893
\(261\) 0 0
\(262\) −1.10724e6 −0.996526
\(263\) 1.65619e6 1.47645 0.738227 0.674553i \(-0.235663\pi\)
0.738227 + 0.674553i \(0.235663\pi\)
\(264\) 0 0
\(265\) −696300. −0.609090
\(266\) 157192. 0.136215
\(267\) 0 0
\(268\) 400832. 0.340899
\(269\) 750606. 0.632457 0.316229 0.948683i \(-0.397583\pi\)
0.316229 + 0.948683i \(0.397583\pi\)
\(270\) 0 0
\(271\) −557908. −0.461466 −0.230733 0.973017i \(-0.574112\pi\)
−0.230733 + 0.973017i \(0.574112\pi\)
\(272\) 131328. 0.107630
\(273\) 0 0
\(274\) 950976. 0.765232
\(275\) 166875. 0.133064
\(276\) 0 0
\(277\) 1.77256e6 1.38804 0.694018 0.719957i \(-0.255839\pi\)
0.694018 + 0.719957i \(0.255839\pi\)
\(278\) −641912. −0.498154
\(279\) 0 0
\(280\) −78400.0 −0.0597614
\(281\) 1.09893e6 0.830243 0.415122 0.909766i \(-0.363739\pi\)
0.415122 + 0.909766i \(0.363739\pi\)
\(282\) 0 0
\(283\) −320569. −0.237933 −0.118967 0.992898i \(-0.537958\pi\)
−0.118967 + 0.992898i \(0.537958\pi\)
\(284\) 831744. 0.611919
\(285\) 0 0
\(286\) 1.16092e6 0.839239
\(287\) 583296. 0.418008
\(288\) 0 0
\(289\) −1.15669e6 −0.814651
\(290\) 177900. 0.124217
\(291\) 0 0
\(292\) 763040. 0.523709
\(293\) 1.62337e6 1.10471 0.552355 0.833609i \(-0.313729\pi\)
0.552355 + 0.833609i \(0.313729\pi\)
\(294\) 0 0
\(295\) −772800. −0.517026
\(296\) −887168. −0.588541
\(297\) 0 0
\(298\) −398712. −0.260087
\(299\) −1.40223e6 −0.907071
\(300\) 0 0
\(301\) −29302.0 −0.0186415
\(302\) 824068. 0.519931
\(303\) 0 0
\(304\) −205312. −0.127418
\(305\) −44500.0 −0.0273912
\(306\) 0 0
\(307\) 995087. 0.602581 0.301290 0.953532i \(-0.402583\pi\)
0.301290 + 0.953532i \(0.402583\pi\)
\(308\) 209328. 0.125733
\(309\) 0 0
\(310\) 258400. 0.152717
\(311\) −1.34398e6 −0.787939 −0.393969 0.919124i \(-0.628898\pi\)
−0.393969 + 0.919124i \(0.628898\pi\)
\(312\) 0 0
\(313\) 1.91971e6 1.10758 0.553788 0.832658i \(-0.313182\pi\)
0.553788 + 0.832658i \(0.313182\pi\)
\(314\) −2.32460e6 −1.33053
\(315\) 0 0
\(316\) −1.63394e6 −0.920486
\(317\) 1.91366e6 1.06959 0.534794 0.844983i \(-0.320389\pi\)
0.534794 + 0.844983i \(0.320389\pi\)
\(318\) 0 0
\(319\) −474993. −0.261343
\(320\) 102400. 0.0559017
\(321\) 0 0
\(322\) −252840. −0.135896
\(323\) −411426. −0.219425
\(324\) 0 0
\(325\) −679375. −0.356781
\(326\) −1.38644e6 −0.722532
\(327\) 0 0
\(328\) −761856. −0.391010
\(329\) 833931. 0.424757
\(330\) 0 0
\(331\) −2.25694e6 −1.13227 −0.566135 0.824313i \(-0.691562\pi\)
−0.566135 + 0.824313i \(0.691562\pi\)
\(332\) 1.33882e6 0.666616
\(333\) 0 0
\(334\) −1.79555e6 −0.880706
\(335\) 626300. 0.304909
\(336\) 0 0
\(337\) −1.45016e6 −0.695571 −0.347786 0.937574i \(-0.613066\pi\)
−0.347786 + 0.937574i \(0.613066\pi\)
\(338\) −3.24110e6 −1.54313
\(339\) 0 0
\(340\) 205200. 0.0962676
\(341\) −689928. −0.321305
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 38272.0 0.0174375
\(345\) 0 0
\(346\) −1.05004e6 −0.471535
\(347\) −856386. −0.381809 −0.190904 0.981609i \(-0.561142\pi\)
−0.190904 + 0.981609i \(0.561142\pi\)
\(348\) 0 0
\(349\) −347602. −0.152763 −0.0763816 0.997079i \(-0.524337\pi\)
−0.0763816 + 0.997079i \(0.524337\pi\)
\(350\) −122500. −0.0534522
\(351\) 0 0
\(352\) −273408. −0.117613
\(353\) 2.21860e6 0.947640 0.473820 0.880622i \(-0.342875\pi\)
0.473820 + 0.880622i \(0.342875\pi\)
\(354\) 0 0
\(355\) 1.29960e6 0.547317
\(356\) 518400. 0.216790
\(357\) 0 0
\(358\) −444048. −0.183114
\(359\) −2.94338e6 −1.20534 −0.602672 0.797989i \(-0.705897\pi\)
−0.602672 + 0.797989i \(0.705897\pi\)
\(360\) 0 0
\(361\) −1.83290e6 −0.740235
\(362\) −451088. −0.180921
\(363\) 0 0
\(364\) −852208. −0.337126
\(365\) 1.19225e6 0.468420
\(366\) 0 0
\(367\) 2.33000e6 0.903005 0.451503 0.892270i \(-0.350888\pi\)
0.451503 + 0.892270i \(0.350888\pi\)
\(368\) 330240. 0.127119
\(369\) 0 0
\(370\) −1.38620e6 −0.526407
\(371\) −1.36475e6 −0.514775
\(372\) 0 0
\(373\) 1.69246e6 0.629865 0.314932 0.949114i \(-0.398018\pi\)
0.314932 + 0.949114i \(0.398018\pi\)
\(374\) −547884. −0.202539
\(375\) 0 0
\(376\) −1.08922e6 −0.397324
\(377\) 1.93377e6 0.700732
\(378\) 0 0
\(379\) −1.50075e6 −0.536673 −0.268337 0.963325i \(-0.586474\pi\)
−0.268337 + 0.963325i \(0.586474\pi\)
\(380\) −320800. −0.113966
\(381\) 0 0
\(382\) −2.92796e6 −1.02661
\(383\) −3.48522e6 −1.21404 −0.607020 0.794686i \(-0.707635\pi\)
−0.607020 + 0.794686i \(0.707635\pi\)
\(384\) 0 0
\(385\) 327075. 0.112459
\(386\) 744160. 0.254213
\(387\) 0 0
\(388\) −2.37832e6 −0.802031
\(389\) 3.60598e6 1.20823 0.604114 0.796898i \(-0.293527\pi\)
0.604114 + 0.796898i \(0.293527\pi\)
\(390\) 0 0
\(391\) 661770. 0.218910
\(392\) −153664. −0.0505076
\(393\) 0 0
\(394\) 485424. 0.157536
\(395\) −2.55302e6 −0.823308
\(396\) 0 0
\(397\) 4.74380e6 1.51060 0.755302 0.655377i \(-0.227490\pi\)
0.755302 + 0.655377i \(0.227490\pi\)
\(398\) −2.59434e6 −0.820953
\(399\) 0 0
\(400\) 160000. 0.0500000
\(401\) −5.26539e6 −1.63520 −0.817598 0.575789i \(-0.804695\pi\)
−0.817598 + 0.575789i \(0.804695\pi\)
\(402\) 0 0
\(403\) 2.80881e6 0.861508
\(404\) 660960. 0.201475
\(405\) 0 0
\(406\) 348684. 0.104983
\(407\) 3.70115e6 1.10752
\(408\) 0 0
\(409\) 1.37015e6 0.405004 0.202502 0.979282i \(-0.435093\pi\)
0.202502 + 0.979282i \(0.435093\pi\)
\(410\) −1.19040e6 −0.349730
\(411\) 0 0
\(412\) 1.74056e6 0.505180
\(413\) −1.51469e6 −0.436966
\(414\) 0 0
\(415\) 2.09190e6 0.596239
\(416\) 1.11309e6 0.315352
\(417\) 0 0
\(418\) 856536. 0.239776
\(419\) −6.16429e6 −1.71533 −0.857666 0.514207i \(-0.828086\pi\)
−0.857666 + 0.514207i \(0.828086\pi\)
\(420\) 0 0
\(421\) 2.45358e6 0.674677 0.337338 0.941383i \(-0.390473\pi\)
0.337338 + 0.941383i \(0.390473\pi\)
\(422\) 599092. 0.163762
\(423\) 0 0
\(424\) 1.78253e6 0.481528
\(425\) 320625. 0.0861043
\(426\) 0 0
\(427\) −87220.0 −0.0231498
\(428\) 1.69757e6 0.447938
\(429\) 0 0
\(430\) 59800.0 0.0155966
\(431\) −7.66771e6 −1.98826 −0.994128 0.108207i \(-0.965489\pi\)
−0.994128 + 0.108207i \(0.965489\pi\)
\(432\) 0 0
\(433\) −5.00285e6 −1.28232 −0.641161 0.767406i \(-0.721547\pi\)
−0.641161 + 0.767406i \(0.721547\pi\)
\(434\) 506464. 0.129070
\(435\) 0 0
\(436\) −1.98578e6 −0.500281
\(437\) −1.03458e6 −0.259156
\(438\) 0 0
\(439\) 1.86363e6 0.461527 0.230764 0.973010i \(-0.425878\pi\)
0.230764 + 0.973010i \(0.425878\pi\)
\(440\) −427200. −0.105196
\(441\) 0 0
\(442\) 2.23052e6 0.543064
\(443\) −2.60747e6 −0.631263 −0.315632 0.948882i \(-0.602216\pi\)
−0.315632 + 0.948882i \(0.602216\pi\)
\(444\) 0 0
\(445\) 810000. 0.193903
\(446\) 4.40384e6 1.04832
\(447\) 0 0
\(448\) 200704. 0.0472456
\(449\) 4.78007e6 1.11897 0.559484 0.828841i \(-0.310999\pi\)
0.559484 + 0.828841i \(0.310999\pi\)
\(450\) 0 0
\(451\) 3.17837e6 0.735805
\(452\) −3.08534e6 −0.710326
\(453\) 0 0
\(454\) −2.78051e6 −0.633118
\(455\) −1.33157e6 −0.301535
\(456\) 0 0
\(457\) −7.96757e6 −1.78458 −0.892289 0.451465i \(-0.850902\pi\)
−0.892289 + 0.451465i \(0.850902\pi\)
\(458\) −1.85494e6 −0.413206
\(459\) 0 0
\(460\) 516000. 0.113699
\(461\) −1.77665e6 −0.389358 −0.194679 0.980867i \(-0.562367\pi\)
−0.194679 + 0.980867i \(0.562367\pi\)
\(462\) 0 0
\(463\) −998548. −0.216479 −0.108240 0.994125i \(-0.534521\pi\)
−0.108240 + 0.994125i \(0.534521\pi\)
\(464\) −455424. −0.0982021
\(465\) 0 0
\(466\) −6.30614e6 −1.34524
\(467\) 5.08478e6 1.07890 0.539449 0.842019i \(-0.318633\pi\)
0.539449 + 0.842019i \(0.318633\pi\)
\(468\) 0 0
\(469\) 1.22755e6 0.257695
\(470\) −1.70190e6 −0.355377
\(471\) 0 0
\(472\) 1.97837e6 0.408745
\(473\) −159666. −0.0328140
\(474\) 0 0
\(475\) −501250. −0.101934
\(476\) 402192. 0.0813610
\(477\) 0 0
\(478\) −2.04815e6 −0.410007
\(479\) −3.71936e6 −0.740678 −0.370339 0.928897i \(-0.620758\pi\)
−0.370339 + 0.928897i \(0.620758\pi\)
\(480\) 0 0
\(481\) −1.50680e7 −2.96956
\(482\) −3.95732e6 −0.775860
\(483\) 0 0
\(484\) −1.43619e6 −0.278676
\(485\) −3.71612e6 −0.717358
\(486\) 0 0
\(487\) −9.12035e6 −1.74256 −0.871282 0.490782i \(-0.836711\pi\)
−0.871282 + 0.490782i \(0.836711\pi\)
\(488\) 113920. 0.0216546
\(489\) 0 0
\(490\) −240100. −0.0451754
\(491\) 7.83774e6 1.46719 0.733596 0.679586i \(-0.237840\pi\)
0.733596 + 0.679586i \(0.237840\pi\)
\(492\) 0 0
\(493\) −912627. −0.169113
\(494\) −3.48710e6 −0.642905
\(495\) 0 0
\(496\) −661504. −0.120734
\(497\) 2.54722e6 0.462567
\(498\) 0 0
\(499\) −96103.0 −0.0172777 −0.00863884 0.999963i \(-0.502750\pi\)
−0.00863884 + 0.999963i \(0.502750\pi\)
\(500\) 250000. 0.0447214
\(501\) 0 0
\(502\) −244920. −0.0433775
\(503\) 2.37577e6 0.418682 0.209341 0.977843i \(-0.432868\pi\)
0.209341 + 0.977843i \(0.432868\pi\)
\(504\) 0 0
\(505\) 1.03275e6 0.180205
\(506\) −1.37772e6 −0.239213
\(507\) 0 0
\(508\) 1.58797e6 0.273012
\(509\) −5.91484e6 −1.01193 −0.505963 0.862555i \(-0.668863\pi\)
−0.505963 + 0.862555i \(0.668863\pi\)
\(510\) 0 0
\(511\) 2.33681e6 0.395887
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 5.35548e6 0.894109
\(515\) 2.71963e6 0.451847
\(516\) 0 0
\(517\) 4.54407e6 0.747685
\(518\) −2.71695e6 −0.444895
\(519\) 0 0
\(520\) 1.73920e6 0.282060
\(521\) −1.46099e6 −0.235806 −0.117903 0.993025i \(-0.537617\pi\)
−0.117903 + 0.993025i \(0.537617\pi\)
\(522\) 0 0
\(523\) −2.90691e6 −0.464705 −0.232352 0.972632i \(-0.574642\pi\)
−0.232352 + 0.972632i \(0.574642\pi\)
\(524\) 4.42896e6 0.704650
\(525\) 0 0
\(526\) −6.62474e6 −1.04401
\(527\) −1.32559e6 −0.207914
\(528\) 0 0
\(529\) −4.77224e6 −0.741453
\(530\) 2.78520e6 0.430692
\(531\) 0 0
\(532\) −628768. −0.0963189
\(533\) −1.29396e7 −1.97290
\(534\) 0 0
\(535\) 2.65245e6 0.400648
\(536\) −1.60333e6 −0.241052
\(537\) 0 0
\(538\) −3.00242e6 −0.447215
\(539\) 641067. 0.0950455
\(540\) 0 0
\(541\) 5.28092e6 0.775741 0.387870 0.921714i \(-0.373211\pi\)
0.387870 + 0.921714i \(0.373211\pi\)
\(542\) 2.23163e6 0.326305
\(543\) 0 0
\(544\) −525312. −0.0761062
\(545\) −3.10278e6 −0.447465
\(546\) 0 0
\(547\) 1.31999e7 1.88626 0.943132 0.332419i \(-0.107865\pi\)
0.943132 + 0.332419i \(0.107865\pi\)
\(548\) −3.80390e6 −0.541101
\(549\) 0 0
\(550\) −667500. −0.0940902
\(551\) 1.42676e6 0.200203
\(552\) 0 0
\(553\) −5.00393e6 −0.695822
\(554\) −7.09023e6 −0.981490
\(555\) 0 0
\(556\) 2.56765e6 0.352248
\(557\) 1.39920e7 1.91091 0.955457 0.295131i \(-0.0953633\pi\)
0.955457 + 0.295131i \(0.0953633\pi\)
\(558\) 0 0
\(559\) 650026. 0.0879835
\(560\) 313600. 0.0422577
\(561\) 0 0
\(562\) −4.39573e6 −0.587071
\(563\) 5.12689e6 0.681684 0.340842 0.940121i \(-0.389288\pi\)
0.340842 + 0.940121i \(0.389288\pi\)
\(564\) 0 0
\(565\) −4.82085e6 −0.635335
\(566\) 1.28228e6 0.168244
\(567\) 0 0
\(568\) −3.32698e6 −0.432692
\(569\) 8.29102e6 1.07356 0.536781 0.843721i \(-0.319640\pi\)
0.536781 + 0.843721i \(0.319640\pi\)
\(570\) 0 0
\(571\) 6.21372e6 0.797556 0.398778 0.917048i \(-0.369434\pi\)
0.398778 + 0.917048i \(0.369434\pi\)
\(572\) −4.64366e6 −0.593432
\(573\) 0 0
\(574\) −2.33318e6 −0.295576
\(575\) 806250. 0.101695
\(576\) 0 0
\(577\) 1.14818e7 1.43572 0.717861 0.696186i \(-0.245121\pi\)
0.717861 + 0.696186i \(0.245121\pi\)
\(578\) 4.62675e6 0.576045
\(579\) 0 0
\(580\) −711600. −0.0878347
\(581\) 4.10012e6 0.503914
\(582\) 0 0
\(583\) −7.43648e6 −0.906142
\(584\) −3.05216e6 −0.370318
\(585\) 0 0
\(586\) −6.49348e6 −0.781148
\(587\) −641856. −0.0768851 −0.0384426 0.999261i \(-0.512240\pi\)
−0.0384426 + 0.999261i \(0.512240\pi\)
\(588\) 0 0
\(589\) 2.07237e6 0.246138
\(590\) 3.09120e6 0.365592
\(591\) 0 0
\(592\) 3.54867e6 0.416161
\(593\) 2.80572e6 0.327648 0.163824 0.986490i \(-0.447617\pi\)
0.163824 + 0.986490i \(0.447617\pi\)
\(594\) 0 0
\(595\) 628425. 0.0727715
\(596\) 1.59485e6 0.183909
\(597\) 0 0
\(598\) 5.60892e6 0.641396
\(599\) −7.74415e6 −0.881874 −0.440937 0.897538i \(-0.645354\pi\)
−0.440937 + 0.897538i \(0.645354\pi\)
\(600\) 0 0
\(601\) 2.88868e6 0.326222 0.163111 0.986608i \(-0.447847\pi\)
0.163111 + 0.986608i \(0.447847\pi\)
\(602\) 117208. 0.0131815
\(603\) 0 0
\(604\) −3.29627e6 −0.367647
\(605\) −2.24405e6 −0.249255
\(606\) 0 0
\(607\) 1.22095e7 1.34501 0.672504 0.740093i \(-0.265219\pi\)
0.672504 + 0.740093i \(0.265219\pi\)
\(608\) 821248. 0.0900980
\(609\) 0 0
\(610\) 178000. 0.0193685
\(611\) −1.84997e7 −2.00475
\(612\) 0 0
\(613\) 1.51667e7 1.63019 0.815096 0.579326i \(-0.196684\pi\)
0.815096 + 0.579326i \(0.196684\pi\)
\(614\) −3.98035e6 −0.426089
\(615\) 0 0
\(616\) −837312. −0.0889069
\(617\) −1.53927e7 −1.62780 −0.813899 0.581006i \(-0.802659\pi\)
−0.813899 + 0.581006i \(0.802659\pi\)
\(618\) 0 0
\(619\) −1.40843e7 −1.47744 −0.738720 0.674013i \(-0.764569\pi\)
−0.738720 + 0.674013i \(0.764569\pi\)
\(620\) −1.03360e6 −0.107987
\(621\) 0 0
\(622\) 5.37593e6 0.557157
\(623\) 1.58760e6 0.163878
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) −7.67882e6 −0.783175
\(627\) 0 0
\(628\) 9.29840e6 0.940826
\(629\) 7.11121e6 0.716666
\(630\) 0 0
\(631\) 1.56178e7 1.56152 0.780760 0.624831i \(-0.214832\pi\)
0.780760 + 0.624831i \(0.214832\pi\)
\(632\) 6.53574e6 0.650882
\(633\) 0 0
\(634\) −7.65463e6 −0.756312
\(635\) 2.48120e6 0.244190
\(636\) 0 0
\(637\) −2.60989e6 −0.254843
\(638\) 1.89997e6 0.184797
\(639\) 0 0
\(640\) −409600. −0.0395285
\(641\) −4.04157e6 −0.388513 −0.194256 0.980951i \(-0.562229\pi\)
−0.194256 + 0.980951i \(0.562229\pi\)
\(642\) 0 0
\(643\) −1.71035e7 −1.63139 −0.815693 0.578485i \(-0.803644\pi\)
−0.815693 + 0.578485i \(0.803644\pi\)
\(644\) 1.01136e6 0.0960929
\(645\) 0 0
\(646\) 1.64570e6 0.155157
\(647\) 8.83546e6 0.829790 0.414895 0.909869i \(-0.363818\pi\)
0.414895 + 0.909869i \(0.363818\pi\)
\(648\) 0 0
\(649\) −8.25350e6 −0.769178
\(650\) 2.71750e6 0.252282
\(651\) 0 0
\(652\) 5.54576e6 0.510907
\(653\) −9.36125e6 −0.859115 −0.429557 0.903040i \(-0.641330\pi\)
−0.429557 + 0.903040i \(0.641330\pi\)
\(654\) 0 0
\(655\) 6.92025e6 0.630258
\(656\) 3.04742e6 0.276486
\(657\) 0 0
\(658\) −3.33572e6 −0.300348
\(659\) 366111. 0.0328397 0.0164199 0.999865i \(-0.494773\pi\)
0.0164199 + 0.999865i \(0.494773\pi\)
\(660\) 0 0
\(661\) 2.05164e7 1.82640 0.913202 0.407508i \(-0.133602\pi\)
0.913202 + 0.407508i \(0.133602\pi\)
\(662\) 9.02776e6 0.800636
\(663\) 0 0
\(664\) −5.35526e6 −0.471369
\(665\) −982450. −0.0861502
\(666\) 0 0
\(667\) −2.29491e6 −0.199734
\(668\) 7.18219e6 0.622753
\(669\) 0 0
\(670\) −2.50520e6 −0.215603
\(671\) −475260. −0.0407498
\(672\) 0 0
\(673\) 7.48189e6 0.636757 0.318378 0.947964i \(-0.396862\pi\)
0.318378 + 0.947964i \(0.396862\pi\)
\(674\) 5.80065e6 0.491843
\(675\) 0 0
\(676\) 1.29644e7 1.09115
\(677\) −1.21459e7 −1.01849 −0.509247 0.860621i \(-0.670076\pi\)
−0.509247 + 0.860621i \(0.670076\pi\)
\(678\) 0 0
\(679\) −7.28360e6 −0.606278
\(680\) −820800. −0.0680715
\(681\) 0 0
\(682\) 2.75971e6 0.227197
\(683\) 1.15232e7 0.945197 0.472599 0.881278i \(-0.343316\pi\)
0.472599 + 0.881278i \(0.343316\pi\)
\(684\) 0 0
\(685\) −5.94360e6 −0.483975
\(686\) −470596. −0.0381802
\(687\) 0 0
\(688\) −153088. −0.0123302
\(689\) 3.02751e7 2.42962
\(690\) 0 0
\(691\) −1.71185e7 −1.36386 −0.681931 0.731417i \(-0.738859\pi\)
−0.681931 + 0.731417i \(0.738859\pi\)
\(692\) 4.20014e6 0.333426
\(693\) 0 0
\(694\) 3.42554e6 0.269980
\(695\) 4.01195e6 0.315060
\(696\) 0 0
\(697\) 6.10675e6 0.476133
\(698\) 1.39041e6 0.108020
\(699\) 0 0
\(700\) 490000. 0.0377964
\(701\) −9.72758e6 −0.747669 −0.373835 0.927495i \(-0.621957\pi\)
−0.373835 + 0.927495i \(0.621957\pi\)
\(702\) 0 0
\(703\) −1.11173e7 −0.848422
\(704\) 1.09363e6 0.0831648
\(705\) 0 0
\(706\) −8.87442e6 −0.670082
\(707\) 2.02419e6 0.152301
\(708\) 0 0
\(709\) −673813. −0.0503412 −0.0251706 0.999683i \(-0.508013\pi\)
−0.0251706 + 0.999683i \(0.508013\pi\)
\(710\) −5.19840e6 −0.387011
\(711\) 0 0
\(712\) −2.07360e6 −0.153294
\(713\) −3.33336e6 −0.245560
\(714\) 0 0
\(715\) −7.25572e6 −0.530781
\(716\) 1.77619e6 0.129481
\(717\) 0 0
\(718\) 1.17735e7 0.852307
\(719\) −2.77719e6 −0.200347 −0.100174 0.994970i \(-0.531940\pi\)
−0.100174 + 0.994970i \(0.531940\pi\)
\(720\) 0 0
\(721\) 5.33046e6 0.381880
\(722\) 7.33158e6 0.523425
\(723\) 0 0
\(724\) 1.80435e6 0.127931
\(725\) −1.11188e6 −0.0785617
\(726\) 0 0
\(727\) 1.16385e7 0.816700 0.408350 0.912825i \(-0.366104\pi\)
0.408350 + 0.912825i \(0.366104\pi\)
\(728\) 3.40883e6 0.238384
\(729\) 0 0
\(730\) −4.76900e6 −0.331223
\(731\) −306774. −0.0212337
\(732\) 0 0
\(733\) −1.32013e7 −0.907522 −0.453761 0.891123i \(-0.649918\pi\)
−0.453761 + 0.891123i \(0.649918\pi\)
\(734\) −9.31999e6 −0.638521
\(735\) 0 0
\(736\) −1.32096e6 −0.0898866
\(737\) 6.68888e6 0.453612
\(738\) 0 0
\(739\) 3.25476e6 0.219234 0.109617 0.993974i \(-0.465038\pi\)
0.109617 + 0.993974i \(0.465038\pi\)
\(740\) 5.54480e6 0.372226
\(741\) 0 0
\(742\) 5.45899e6 0.364001
\(743\) 7.61596e6 0.506119 0.253059 0.967451i \(-0.418563\pi\)
0.253059 + 0.967451i \(0.418563\pi\)
\(744\) 0 0
\(745\) 2.49195e6 0.164493
\(746\) −6.76986e6 −0.445382
\(747\) 0 0
\(748\) 2.19154e6 0.143217
\(749\) 5.19880e6 0.338609
\(750\) 0 0
\(751\) 655199. 0.0423910 0.0211955 0.999775i \(-0.493253\pi\)
0.0211955 + 0.999775i \(0.493253\pi\)
\(752\) 4.35686e6 0.280950
\(753\) 0 0
\(754\) −7.73509e6 −0.495493
\(755\) −5.15042e6 −0.328833
\(756\) 0 0
\(757\) 1.85111e7 1.17406 0.587032 0.809564i \(-0.300296\pi\)
0.587032 + 0.809564i \(0.300296\pi\)
\(758\) 6.00299e6 0.379485
\(759\) 0 0
\(760\) 1.28320e6 0.0805861
\(761\) 1.85291e7 1.15983 0.579914 0.814678i \(-0.303086\pi\)
0.579914 + 0.814678i \(0.303086\pi\)
\(762\) 0 0
\(763\) −6.08144e6 −0.378177
\(764\) 1.17119e7 0.725926
\(765\) 0 0
\(766\) 1.39409e7 0.858456
\(767\) 3.36013e7 2.06238
\(768\) 0 0
\(769\) −1.48414e7 −0.905024 −0.452512 0.891758i \(-0.649472\pi\)
−0.452512 + 0.891758i \(0.649472\pi\)
\(770\) −1.30830e6 −0.0795208
\(771\) 0 0
\(772\) −2.97664e6 −0.179756
\(773\) −3.93042e6 −0.236586 −0.118293 0.992979i \(-0.537742\pi\)
−0.118293 + 0.992979i \(0.537742\pi\)
\(774\) 0 0
\(775\) −1.61500e6 −0.0965869
\(776\) 9.51328e6 0.567121
\(777\) 0 0
\(778\) −1.44239e7 −0.854347
\(779\) −9.54701e6 −0.563668
\(780\) 0 0
\(781\) 1.38797e7 0.814242
\(782\) −2.64708e6 −0.154793
\(783\) 0 0
\(784\) 614656. 0.0357143
\(785\) 1.45288e7 0.841500
\(786\) 0 0
\(787\) 1.17824e7 0.678105 0.339053 0.940767i \(-0.389893\pi\)
0.339053 + 0.940767i \(0.389893\pi\)
\(788\) −1.94170e6 −0.111395
\(789\) 0 0
\(790\) 1.02121e7 0.582167
\(791\) −9.44887e6 −0.536956
\(792\) 0 0
\(793\) 1.93486e6 0.109261
\(794\) −1.89752e7 −1.06816
\(795\) 0 0
\(796\) 1.03773e7 0.580502
\(797\) 5.40952e6 0.301657 0.150828 0.988560i \(-0.451806\pi\)
0.150828 + 0.988560i \(0.451806\pi\)
\(798\) 0 0
\(799\) 8.73075e6 0.483821
\(800\) −640000. −0.0353553
\(801\) 0 0
\(802\) 2.10616e7 1.15626
\(803\) 1.27332e7 0.696867
\(804\) 0 0
\(805\) 1.58025e6 0.0859481
\(806\) −1.12352e7 −0.609178
\(807\) 0 0
\(808\) −2.64384e6 −0.142465
\(809\) 7.12264e6 0.382622 0.191311 0.981529i \(-0.438726\pi\)
0.191311 + 0.981529i \(0.438726\pi\)
\(810\) 0 0
\(811\) −3.03045e7 −1.61791 −0.808956 0.587869i \(-0.799967\pi\)
−0.808956 + 0.587869i \(0.799967\pi\)
\(812\) −1.39474e6 −0.0742338
\(813\) 0 0
\(814\) −1.48046e7 −0.783134
\(815\) 8.66525e6 0.456969
\(816\) 0 0
\(817\) 479596. 0.0251374
\(818\) −5.48060e6 −0.286381
\(819\) 0 0
\(820\) 4.76160e6 0.247297
\(821\) −2.82181e7 −1.46106 −0.730532 0.682878i \(-0.760728\pi\)
−0.730532 + 0.682878i \(0.760728\pi\)
\(822\) 0 0
\(823\) −2.64534e7 −1.36139 −0.680694 0.732567i \(-0.738322\pi\)
−0.680694 + 0.732567i \(0.738322\pi\)
\(824\) −6.96224e6 −0.357216
\(825\) 0 0
\(826\) 6.05875e6 0.308982
\(827\) −4.44481e6 −0.225990 −0.112995 0.993596i \(-0.536044\pi\)
−0.112995 + 0.993596i \(0.536044\pi\)
\(828\) 0 0
\(829\) −2.80386e6 −0.141700 −0.0708501 0.997487i \(-0.522571\pi\)
−0.0708501 + 0.997487i \(0.522571\pi\)
\(830\) −8.36760e6 −0.421605
\(831\) 0 0
\(832\) −4.45235e6 −0.222988
\(833\) 1.23171e6 0.0615031
\(834\) 0 0
\(835\) 1.12222e7 0.557007
\(836\) −3.42614e6 −0.169547
\(837\) 0 0
\(838\) 2.46572e7 1.21292
\(839\) −2.59804e7 −1.27421 −0.637104 0.770778i \(-0.719868\pi\)
−0.637104 + 0.770778i \(0.719868\pi\)
\(840\) 0 0
\(841\) −1.73463e7 −0.845701
\(842\) −9.81434e6 −0.477069
\(843\) 0 0
\(844\) −2.39637e6 −0.115797
\(845\) 2.02569e7 0.975958
\(846\) 0 0
\(847\) −4.39834e6 −0.210659
\(848\) −7.13011e6 −0.340492
\(849\) 0 0
\(850\) −1.28250e6 −0.0608850
\(851\) 1.78820e7 0.846431
\(852\) 0 0
\(853\) 1.18392e7 0.557121 0.278560 0.960419i \(-0.410143\pi\)
0.278560 + 0.960419i \(0.410143\pi\)
\(854\) 348880. 0.0163693
\(855\) 0 0
\(856\) −6.79027e6 −0.316740
\(857\) 2.99283e6 0.139197 0.0695985 0.997575i \(-0.477828\pi\)
0.0695985 + 0.997575i \(0.477828\pi\)
\(858\) 0 0
\(859\) 2.80980e7 1.29925 0.649626 0.760254i \(-0.274926\pi\)
0.649626 + 0.760254i \(0.274926\pi\)
\(860\) −239200. −0.0110285
\(861\) 0 0
\(862\) 3.06708e7 1.40591
\(863\) −1.15833e7 −0.529424 −0.264712 0.964328i \(-0.585277\pi\)
−0.264712 + 0.964328i \(0.585277\pi\)
\(864\) 0 0
\(865\) 6.56272e6 0.298225
\(866\) 2.00114e7 0.906739
\(867\) 0 0
\(868\) −2.02586e6 −0.0912661
\(869\) −2.72663e7 −1.22483
\(870\) 0 0
\(871\) −2.72315e7 −1.21626
\(872\) 7.94310e6 0.353752
\(873\) 0 0
\(874\) 4.13832e6 0.183251
\(875\) 765625. 0.0338062
\(876\) 0 0
\(877\) 4.12538e7 1.81119 0.905596 0.424141i \(-0.139424\pi\)
0.905596 + 0.424141i \(0.139424\pi\)
\(878\) −7.45450e6 −0.326349
\(879\) 0 0
\(880\) 1.70880e6 0.0743849
\(881\) 1.32541e7 0.575321 0.287661 0.957732i \(-0.407123\pi\)
0.287661 + 0.957732i \(0.407123\pi\)
\(882\) 0 0
\(883\) −3.19208e7 −1.37776 −0.688878 0.724877i \(-0.741897\pi\)
−0.688878 + 0.724877i \(0.741897\pi\)
\(884\) −8.92210e6 −0.384004
\(885\) 0 0
\(886\) 1.04299e7 0.446371
\(887\) −1.74303e7 −0.743866 −0.371933 0.928260i \(-0.621305\pi\)
−0.371933 + 0.928260i \(0.621305\pi\)
\(888\) 0 0
\(889\) 4.86315e6 0.206378
\(890\) −3.24000e6 −0.137110
\(891\) 0 0
\(892\) −1.76153e7 −0.741274
\(893\) −1.36492e7 −0.572769
\(894\) 0 0
\(895\) 2.77530e6 0.115812
\(896\) −802816. −0.0334077
\(897\) 0 0
\(898\) −1.91203e7 −0.791230
\(899\) 4.59694e6 0.189701
\(900\) 0 0
\(901\) −1.42881e7 −0.586357
\(902\) −1.27135e7 −0.520293
\(903\) 0 0
\(904\) 1.23414e7 0.502276
\(905\) 2.81930e6 0.114425
\(906\) 0 0
\(907\) −3.15066e7 −1.27170 −0.635848 0.771815i \(-0.719349\pi\)
−0.635848 + 0.771815i \(0.719349\pi\)
\(908\) 1.11220e7 0.447682
\(909\) 0 0
\(910\) 5.32630e6 0.213217
\(911\) 4.91214e7 1.96099 0.980494 0.196548i \(-0.0629732\pi\)
0.980494 + 0.196548i \(0.0629732\pi\)
\(912\) 0 0
\(913\) 2.23415e7 0.887024
\(914\) 3.18703e7 1.26189
\(915\) 0 0
\(916\) 7.41978e6 0.292181
\(917\) 1.35637e7 0.532665
\(918\) 0 0
\(919\) −4.51238e7 −1.76245 −0.881226 0.472696i \(-0.843281\pi\)
−0.881226 + 0.472696i \(0.843281\pi\)
\(920\) −2.06400e6 −0.0803971
\(921\) 0 0
\(922\) 7.10659e6 0.275318
\(923\) −5.65066e7 −2.18321
\(924\) 0 0
\(925\) 8.66375e6 0.332929
\(926\) 3.99419e6 0.153074
\(927\) 0 0
\(928\) 1.82170e6 0.0694394
\(929\) 3.68196e7 1.39972 0.699858 0.714282i \(-0.253247\pi\)
0.699858 + 0.714282i \(0.253247\pi\)
\(930\) 0 0
\(931\) −1.92560e6 −0.0728102
\(932\) 2.52246e7 0.951227
\(933\) 0 0
\(934\) −2.03391e7 −0.762896
\(935\) 3.42428e6 0.128097
\(936\) 0 0
\(937\) 1.71904e7 0.639641 0.319820 0.947478i \(-0.396377\pi\)
0.319820 + 0.947478i \(0.396377\pi\)
\(938\) −4.91019e6 −0.182218
\(939\) 0 0
\(940\) 6.80760e6 0.251290
\(941\) 8.10352e6 0.298332 0.149166 0.988812i \(-0.452341\pi\)
0.149166 + 0.988812i \(0.452341\pi\)
\(942\) 0 0
\(943\) 1.53562e7 0.562346
\(944\) −7.91347e6 −0.289026
\(945\) 0 0
\(946\) 638664. 0.0232030
\(947\) −1.83337e7 −0.664317 −0.332158 0.943224i \(-0.607777\pi\)
−0.332158 + 0.943224i \(0.607777\pi\)
\(948\) 0 0
\(949\) −5.18390e7 −1.86849
\(950\) 2.00500e6 0.0720784
\(951\) 0 0
\(952\) −1.60877e6 −0.0575309
\(953\) −6.03035e6 −0.215085 −0.107542 0.994200i \(-0.534298\pi\)
−0.107542 + 0.994200i \(0.534298\pi\)
\(954\) 0 0
\(955\) 1.82998e7 0.649288
\(956\) 8.19259e6 0.289919
\(957\) 0 0
\(958\) 1.48774e7 0.523738
\(959\) −1.16495e7 −0.409034
\(960\) 0 0
\(961\) −2.19521e7 −0.766774
\(962\) 6.02720e7 2.09980
\(963\) 0 0
\(964\) 1.58293e7 0.548616
\(965\) −4.65100e6 −0.160779
\(966\) 0 0
\(967\) −3.09228e7 −1.06344 −0.531720 0.846920i \(-0.678454\pi\)
−0.531720 + 0.846920i \(0.678454\pi\)
\(968\) 5.74477e6 0.197053
\(969\) 0 0
\(970\) 1.48645e7 0.507249
\(971\) 2.47924e6 0.0843859 0.0421929 0.999109i \(-0.486566\pi\)
0.0421929 + 0.999109i \(0.486566\pi\)
\(972\) 0 0
\(973\) 7.86342e6 0.266274
\(974\) 3.64814e7 1.23218
\(975\) 0 0
\(976\) −455680. −0.0153121
\(977\) 2.09758e6 0.0703044 0.0351522 0.999382i \(-0.488808\pi\)
0.0351522 + 0.999382i \(0.488808\pi\)
\(978\) 0 0
\(979\) 8.65080e6 0.288469
\(980\) 960400. 0.0319438
\(981\) 0 0
\(982\) −3.13509e7 −1.03746
\(983\) 4.45491e7 1.47047 0.735233 0.677814i \(-0.237073\pi\)
0.735233 + 0.677814i \(0.237073\pi\)
\(984\) 0 0
\(985\) −3.03390e6 −0.0996347
\(986\) 3.65051e6 0.119581
\(987\) 0 0
\(988\) 1.39484e7 0.454602
\(989\) −771420. −0.0250784
\(990\) 0 0
\(991\) −1.95104e7 −0.631075 −0.315538 0.948913i \(-0.602185\pi\)
−0.315538 + 0.948913i \(0.602185\pi\)
\(992\) 2.64602e6 0.0853716
\(993\) 0 0
\(994\) −1.01889e7 −0.327084
\(995\) 1.62146e7 0.519217
\(996\) 0 0
\(997\) −2.00678e7 −0.639385 −0.319692 0.947521i \(-0.603580\pi\)
−0.319692 + 0.947521i \(0.603580\pi\)
\(998\) 384412. 0.0122172
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.6.a.e.1.1 1
3.2 odd 2 70.6.a.f.1.1 1
12.11 even 2 560.6.a.f.1.1 1
15.2 even 4 350.6.c.b.99.2 2
15.8 even 4 350.6.c.b.99.1 2
15.14 odd 2 350.6.a.d.1.1 1
21.20 even 2 490.6.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.f.1.1 1 3.2 odd 2
350.6.a.d.1.1 1 15.14 odd 2
350.6.c.b.99.1 2 15.8 even 4
350.6.c.b.99.2 2 15.2 even 4
490.6.a.l.1.1 1 21.20 even 2
560.6.a.f.1.1 1 12.11 even 2
630.6.a.e.1.1 1 1.1 even 1 trivial