Properties

Label 630.6.a.b.1.1
Level $630$
Weight $6$
Character 630.1
Self dual yes
Analytic conductor $101.042$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,6,Mod(1,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 630.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.041806482\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 630.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} -25.0000 q^{5} -49.0000 q^{7} -64.0000 q^{8} +100.000 q^{10} +715.000 q^{11} +331.000 q^{13} +196.000 q^{14} +256.000 q^{16} +1699.00 q^{17} -1718.00 q^{19} -400.000 q^{20} -2860.00 q^{22} +3950.00 q^{23} +625.000 q^{25} -1324.00 q^{26} -784.000 q^{28} -4579.00 q^{29} +6756.00 q^{31} -1024.00 q^{32} -6796.00 q^{34} +1225.00 q^{35} -16518.0 q^{37} +6872.00 q^{38} +1600.00 q^{40} -18876.0 q^{41} +2258.00 q^{43} +11440.0 q^{44} -15800.0 q^{46} +537.000 q^{47} +2401.00 q^{49} -2500.00 q^{50} +5296.00 q^{52} +10984.0 q^{53} -17875.0 q^{55} +3136.00 q^{56} +18316.0 q^{58} +25956.0 q^{59} +39188.0 q^{61} -27024.0 q^{62} +4096.00 q^{64} -8275.00 q^{65} +4416.00 q^{67} +27184.0 q^{68} -4900.00 q^{70} +31880.0 q^{71} -5018.00 q^{73} +66072.0 q^{74} -27488.0 q^{76} -35035.0 q^{77} -27977.0 q^{79} -6400.00 q^{80} +75504.0 q^{82} -37644.0 q^{83} -42475.0 q^{85} -9032.00 q^{86} -45760.0 q^{88} +17216.0 q^{89} -16219.0 q^{91} +63200.0 q^{92} -2148.00 q^{94} +42950.0 q^{95} -63175.0 q^{97} -9604.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) 100.000 0.316228
\(11\) 715.000 1.78166 0.890829 0.454339i \(-0.150124\pi\)
0.890829 + 0.454339i \(0.150124\pi\)
\(12\) 0 0
\(13\) 331.000 0.543212 0.271606 0.962408i \(-0.412445\pi\)
0.271606 + 0.962408i \(0.412445\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1699.00 1.42584 0.712920 0.701245i \(-0.247372\pi\)
0.712920 + 0.701245i \(0.247372\pi\)
\(18\) 0 0
\(19\) −1718.00 −1.09179 −0.545895 0.837854i \(-0.683810\pi\)
−0.545895 + 0.837854i \(0.683810\pi\)
\(20\) −400.000 −0.223607
\(21\) 0 0
\(22\) −2860.00 −1.25982
\(23\) 3950.00 1.55696 0.778480 0.627669i \(-0.215991\pi\)
0.778480 + 0.627669i \(0.215991\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) −1324.00 −0.384109
\(27\) 0 0
\(28\) −784.000 −0.188982
\(29\) −4579.00 −1.01106 −0.505529 0.862810i \(-0.668702\pi\)
−0.505529 + 0.862810i \(0.668702\pi\)
\(30\) 0 0
\(31\) 6756.00 1.26266 0.631329 0.775516i \(-0.282510\pi\)
0.631329 + 0.775516i \(0.282510\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −6796.00 −1.00822
\(35\) 1225.00 0.169031
\(36\) 0 0
\(37\) −16518.0 −1.98360 −0.991798 0.127816i \(-0.959203\pi\)
−0.991798 + 0.127816i \(0.959203\pi\)
\(38\) 6872.00 0.772012
\(39\) 0 0
\(40\) 1600.00 0.158114
\(41\) −18876.0 −1.75368 −0.876840 0.480782i \(-0.840353\pi\)
−0.876840 + 0.480782i \(0.840353\pi\)
\(42\) 0 0
\(43\) 2258.00 0.186231 0.0931157 0.995655i \(-0.470317\pi\)
0.0931157 + 0.995655i \(0.470317\pi\)
\(44\) 11440.0 0.890829
\(45\) 0 0
\(46\) −15800.0 −1.10094
\(47\) 537.000 0.0354593 0.0177296 0.999843i \(-0.494356\pi\)
0.0177296 + 0.999843i \(0.494356\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) −2500.00 −0.141421
\(51\) 0 0
\(52\) 5296.00 0.271606
\(53\) 10984.0 0.537119 0.268560 0.963263i \(-0.413452\pi\)
0.268560 + 0.963263i \(0.413452\pi\)
\(54\) 0 0
\(55\) −17875.0 −0.796782
\(56\) 3136.00 0.133631
\(57\) 0 0
\(58\) 18316.0 0.714925
\(59\) 25956.0 0.970751 0.485375 0.874306i \(-0.338683\pi\)
0.485375 + 0.874306i \(0.338683\pi\)
\(60\) 0 0
\(61\) 39188.0 1.34843 0.674215 0.738535i \(-0.264482\pi\)
0.674215 + 0.738535i \(0.264482\pi\)
\(62\) −27024.0 −0.892833
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −8275.00 −0.242932
\(66\) 0 0
\(67\) 4416.00 0.120183 0.0600914 0.998193i \(-0.480861\pi\)
0.0600914 + 0.998193i \(0.480861\pi\)
\(68\) 27184.0 0.712920
\(69\) 0 0
\(70\) −4900.00 −0.119523
\(71\) 31880.0 0.750538 0.375269 0.926916i \(-0.377550\pi\)
0.375269 + 0.926916i \(0.377550\pi\)
\(72\) 0 0
\(73\) −5018.00 −0.110211 −0.0551053 0.998481i \(-0.517549\pi\)
−0.0551053 + 0.998481i \(0.517549\pi\)
\(74\) 66072.0 1.40261
\(75\) 0 0
\(76\) −27488.0 −0.545895
\(77\) −35035.0 −0.673403
\(78\) 0 0
\(79\) −27977.0 −0.504352 −0.252176 0.967681i \(-0.581146\pi\)
−0.252176 + 0.967681i \(0.581146\pi\)
\(80\) −6400.00 −0.111803
\(81\) 0 0
\(82\) 75504.0 1.24004
\(83\) −37644.0 −0.599792 −0.299896 0.953972i \(-0.596952\pi\)
−0.299896 + 0.953972i \(0.596952\pi\)
\(84\) 0 0
\(85\) −42475.0 −0.637655
\(86\) −9032.00 −0.131685
\(87\) 0 0
\(88\) −45760.0 −0.629911
\(89\) 17216.0 0.230387 0.115193 0.993343i \(-0.463251\pi\)
0.115193 + 0.993343i \(0.463251\pi\)
\(90\) 0 0
\(91\) −16219.0 −0.205315
\(92\) 63200.0 0.778480
\(93\) 0 0
\(94\) −2148.00 −0.0250735
\(95\) 42950.0 0.488263
\(96\) 0 0
\(97\) −63175.0 −0.681736 −0.340868 0.940111i \(-0.610721\pi\)
−0.340868 + 0.940111i \(0.610721\pi\)
\(98\) −9604.00 −0.101015
\(99\) 0 0
\(100\) 10000.0 0.100000
\(101\) 29250.0 0.285314 0.142657 0.989772i \(-0.454435\pi\)
0.142657 + 0.989772i \(0.454435\pi\)
\(102\) 0 0
\(103\) −149189. −1.38562 −0.692809 0.721121i \(-0.743627\pi\)
−0.692809 + 0.721121i \(0.743627\pi\)
\(104\) −21184.0 −0.192055
\(105\) 0 0
\(106\) −43936.0 −0.379801
\(107\) −83742.0 −0.707105 −0.353552 0.935415i \(-0.615026\pi\)
−0.353552 + 0.935415i \(0.615026\pi\)
\(108\) 0 0
\(109\) 105377. 0.849532 0.424766 0.905303i \(-0.360356\pi\)
0.424766 + 0.905303i \(0.360356\pi\)
\(110\) 71500.0 0.563410
\(111\) 0 0
\(112\) −12544.0 −0.0944911
\(113\) 122754. 0.904356 0.452178 0.891928i \(-0.350647\pi\)
0.452178 + 0.891928i \(0.350647\pi\)
\(114\) 0 0
\(115\) −98750.0 −0.696294
\(116\) −73264.0 −0.505529
\(117\) 0 0
\(118\) −103824. −0.686424
\(119\) −83251.0 −0.538917
\(120\) 0 0
\(121\) 350174. 2.17431
\(122\) −156752. −0.953484
\(123\) 0 0
\(124\) 108096. 0.631329
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −219196. −1.20593 −0.602967 0.797766i \(-0.706015\pi\)
−0.602967 + 0.797766i \(0.706015\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) 33100.0 0.171779
\(131\) 96682.0 0.492229 0.246115 0.969241i \(-0.420846\pi\)
0.246115 + 0.969241i \(0.420846\pi\)
\(132\) 0 0
\(133\) 84182.0 0.412658
\(134\) −17664.0 −0.0849820
\(135\) 0 0
\(136\) −108736. −0.504111
\(137\) −187288. −0.852528 −0.426264 0.904599i \(-0.640170\pi\)
−0.426264 + 0.904599i \(0.640170\pi\)
\(138\) 0 0
\(139\) 176894. 0.776562 0.388281 0.921541i \(-0.373069\pi\)
0.388281 + 0.921541i \(0.373069\pi\)
\(140\) 19600.0 0.0845154
\(141\) 0 0
\(142\) −127520. −0.530710
\(143\) 236665. 0.967819
\(144\) 0 0
\(145\) 114475. 0.452158
\(146\) 20072.0 0.0779307
\(147\) 0 0
\(148\) −264288. −0.991798
\(149\) 199078. 0.734611 0.367306 0.930100i \(-0.380280\pi\)
0.367306 + 0.930100i \(0.380280\pi\)
\(150\) 0 0
\(151\) 471583. 1.68312 0.841561 0.540162i \(-0.181637\pi\)
0.841561 + 0.540162i \(0.181637\pi\)
\(152\) 109952. 0.386006
\(153\) 0 0
\(154\) 140140. 0.476168
\(155\) −168900. −0.564677
\(156\) 0 0
\(157\) −72054.0 −0.233297 −0.116648 0.993173i \(-0.537215\pi\)
−0.116648 + 0.993173i \(0.537215\pi\)
\(158\) 111908. 0.356630
\(159\) 0 0
\(160\) 25600.0 0.0790569
\(161\) −193550. −0.588476
\(162\) 0 0
\(163\) 385334. 1.13597 0.567987 0.823038i \(-0.307722\pi\)
0.567987 + 0.823038i \(0.307722\pi\)
\(164\) −302016. −0.876840
\(165\) 0 0
\(166\) 150576. 0.424117
\(167\) 542957. 1.50652 0.753259 0.657724i \(-0.228481\pi\)
0.753259 + 0.657724i \(0.228481\pi\)
\(168\) 0 0
\(169\) −261732. −0.704920
\(170\) 169900. 0.450890
\(171\) 0 0
\(172\) 36128.0 0.0931157
\(173\) −370953. −0.942331 −0.471166 0.882045i \(-0.656167\pi\)
−0.471166 + 0.882045i \(0.656167\pi\)
\(174\) 0 0
\(175\) −30625.0 −0.0755929
\(176\) 183040. 0.445414
\(177\) 0 0
\(178\) −68864.0 −0.162908
\(179\) 754172. 1.75929 0.879646 0.475629i \(-0.157780\pi\)
0.879646 + 0.475629i \(0.157780\pi\)
\(180\) 0 0
\(181\) 303840. 0.689364 0.344682 0.938720i \(-0.387987\pi\)
0.344682 + 0.938720i \(0.387987\pi\)
\(182\) 64876.0 0.145180
\(183\) 0 0
\(184\) −252800. −0.550469
\(185\) 412950. 0.887091
\(186\) 0 0
\(187\) 1.21478e6 2.54036
\(188\) 8592.00 0.0177296
\(189\) 0 0
\(190\) −171800. −0.345254
\(191\) 186271. 0.369455 0.184728 0.982790i \(-0.440860\pi\)
0.184728 + 0.982790i \(0.440860\pi\)
\(192\) 0 0
\(193\) 92504.0 0.178759 0.0893794 0.995998i \(-0.471512\pi\)
0.0893794 + 0.995998i \(0.471512\pi\)
\(194\) 252700. 0.482060
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 736368. 1.35185 0.675926 0.736969i \(-0.263744\pi\)
0.675926 + 0.736969i \(0.263744\pi\)
\(198\) 0 0
\(199\) −481620. −0.862128 −0.431064 0.902321i \(-0.641862\pi\)
−0.431064 + 0.902321i \(0.641862\pi\)
\(200\) −40000.0 −0.0707107
\(201\) 0 0
\(202\) −117000. −0.201747
\(203\) 224371. 0.382144
\(204\) 0 0
\(205\) 471900. 0.784269
\(206\) 596756. 0.979780
\(207\) 0 0
\(208\) 84736.0 0.135803
\(209\) −1.22837e6 −1.94520
\(210\) 0 0
\(211\) 189531. 0.293072 0.146536 0.989205i \(-0.453188\pi\)
0.146536 + 0.989205i \(0.453188\pi\)
\(212\) 175744. 0.268560
\(213\) 0 0
\(214\) 334968. 0.499999
\(215\) −56450.0 −0.0832852
\(216\) 0 0
\(217\) −331044. −0.477240
\(218\) −421508. −0.600710
\(219\) 0 0
\(220\) −286000. −0.398391
\(221\) 562369. 0.774534
\(222\) 0 0
\(223\) −22597.0 −0.0304291 −0.0152145 0.999884i \(-0.504843\pi\)
−0.0152145 + 0.999884i \(0.504843\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) −491016. −0.639476
\(227\) 998117. 1.28563 0.642816 0.766020i \(-0.277766\pi\)
0.642816 + 0.766020i \(0.277766\pi\)
\(228\) 0 0
\(229\) −854644. −1.07695 −0.538476 0.842641i \(-0.681000\pi\)
−0.538476 + 0.842641i \(0.681000\pi\)
\(230\) 395000. 0.492354
\(231\) 0 0
\(232\) 293056. 0.357463
\(233\) −1.25818e6 −1.51829 −0.759144 0.650922i \(-0.774382\pi\)
−0.759144 + 0.650922i \(0.774382\pi\)
\(234\) 0 0
\(235\) −13425.0 −0.0158579
\(236\) 415296. 0.485375
\(237\) 0 0
\(238\) 333004. 0.381072
\(239\) 706581. 0.800142 0.400071 0.916484i \(-0.368985\pi\)
0.400071 + 0.916484i \(0.368985\pi\)
\(240\) 0 0
\(241\) 616330. 0.683551 0.341775 0.939782i \(-0.388972\pi\)
0.341775 + 0.939782i \(0.388972\pi\)
\(242\) −1.40070e6 −1.53747
\(243\) 0 0
\(244\) 627008. 0.674215
\(245\) −60025.0 −0.0638877
\(246\) 0 0
\(247\) −568658. −0.593074
\(248\) −432384. −0.446417
\(249\) 0 0
\(250\) 62500.0 0.0632456
\(251\) −190842. −0.191201 −0.0956004 0.995420i \(-0.530477\pi\)
−0.0956004 + 0.995420i \(0.530477\pi\)
\(252\) 0 0
\(253\) 2.82425e6 2.77397
\(254\) 876784. 0.852724
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.13094e6 1.06809 0.534045 0.845456i \(-0.320671\pi\)
0.534045 + 0.845456i \(0.320671\pi\)
\(258\) 0 0
\(259\) 809382. 0.749729
\(260\) −132400. −0.121466
\(261\) 0 0
\(262\) −386728. −0.348059
\(263\) 1.67377e6 1.49213 0.746065 0.665874i \(-0.231941\pi\)
0.746065 + 0.665874i \(0.231941\pi\)
\(264\) 0 0
\(265\) −274600. −0.240207
\(266\) −336728. −0.291793
\(267\) 0 0
\(268\) 70656.0 0.0600914
\(269\) 630942. 0.531629 0.265815 0.964024i \(-0.414359\pi\)
0.265815 + 0.964024i \(0.414359\pi\)
\(270\) 0 0
\(271\) −372476. −0.308088 −0.154044 0.988064i \(-0.549230\pi\)
−0.154044 + 0.988064i \(0.549230\pi\)
\(272\) 434944. 0.356460
\(273\) 0 0
\(274\) 749152. 0.602828
\(275\) 446875. 0.356332
\(276\) 0 0
\(277\) 867010. 0.678930 0.339465 0.940619i \(-0.389754\pi\)
0.339465 + 0.940619i \(0.389754\pi\)
\(278\) −707576. −0.549112
\(279\) 0 0
\(280\) −78400.0 −0.0597614
\(281\) 1.94498e6 1.46943 0.734716 0.678375i \(-0.237315\pi\)
0.734716 + 0.678375i \(0.237315\pi\)
\(282\) 0 0
\(283\) 1.18501e6 0.879543 0.439771 0.898110i \(-0.355059\pi\)
0.439771 + 0.898110i \(0.355059\pi\)
\(284\) 510080. 0.375269
\(285\) 0 0
\(286\) −946660. −0.684351
\(287\) 924924. 0.662829
\(288\) 0 0
\(289\) 1.46674e6 1.03302
\(290\) −457900. −0.319724
\(291\) 0 0
\(292\) −80288.0 −0.0551053
\(293\) −33669.0 −0.0229119 −0.0114560 0.999934i \(-0.503647\pi\)
−0.0114560 + 0.999934i \(0.503647\pi\)
\(294\) 0 0
\(295\) −648900. −0.434133
\(296\) 1.05715e6 0.701307
\(297\) 0 0
\(298\) −796312. −0.519449
\(299\) 1.30745e6 0.845760
\(300\) 0 0
\(301\) −110642. −0.0703888
\(302\) −1.88633e6 −1.19015
\(303\) 0 0
\(304\) −439808. −0.272948
\(305\) −979700. −0.603036
\(306\) 0 0
\(307\) −27043.0 −0.0163760 −0.00818802 0.999966i \(-0.502606\pi\)
−0.00818802 + 0.999966i \(0.502606\pi\)
\(308\) −560560. −0.336702
\(309\) 0 0
\(310\) 675600. 0.399287
\(311\) −2.14919e6 −1.26001 −0.630004 0.776592i \(-0.716947\pi\)
−0.630004 + 0.776592i \(0.716947\pi\)
\(312\) 0 0
\(313\) −2.67052e6 −1.54076 −0.770381 0.637583i \(-0.779934\pi\)
−0.770381 + 0.637583i \(0.779934\pi\)
\(314\) 288216. 0.164966
\(315\) 0 0
\(316\) −447632. −0.252176
\(317\) 250514. 0.140018 0.0700090 0.997546i \(-0.477697\pi\)
0.0700090 + 0.997546i \(0.477697\pi\)
\(318\) 0 0
\(319\) −3.27398e6 −1.80136
\(320\) −102400. −0.0559017
\(321\) 0 0
\(322\) 774200. 0.416115
\(323\) −2.91888e6 −1.55672
\(324\) 0 0
\(325\) 206875. 0.108642
\(326\) −1.54134e6 −0.803255
\(327\) 0 0
\(328\) 1.20806e6 0.620019
\(329\) −26313.0 −0.0134023
\(330\) 0 0
\(331\) 1.05899e6 0.531277 0.265639 0.964073i \(-0.414417\pi\)
0.265639 + 0.964073i \(0.414417\pi\)
\(332\) −602304. −0.299896
\(333\) 0 0
\(334\) −2.17183e6 −1.06527
\(335\) −110400. −0.0537473
\(336\) 0 0
\(337\) −2.85025e6 −1.36712 −0.683562 0.729893i \(-0.739570\pi\)
−0.683562 + 0.729893i \(0.739570\pi\)
\(338\) 1.04693e6 0.498454
\(339\) 0 0
\(340\) −679600. −0.318828
\(341\) 4.83054e6 2.24962
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) −144512. −0.0658427
\(345\) 0 0
\(346\) 1.48381e6 0.666329
\(347\) −1.89141e6 −0.843259 −0.421630 0.906768i \(-0.638542\pi\)
−0.421630 + 0.906768i \(0.638542\pi\)
\(348\) 0 0
\(349\) −1.04232e6 −0.458075 −0.229038 0.973418i \(-0.573558\pi\)
−0.229038 + 0.973418i \(0.573558\pi\)
\(350\) 122500. 0.0534522
\(351\) 0 0
\(352\) −732160. −0.314956
\(353\) 2.30309e6 0.983725 0.491862 0.870673i \(-0.336316\pi\)
0.491862 + 0.870673i \(0.336316\pi\)
\(354\) 0 0
\(355\) −797000. −0.335651
\(356\) 275456. 0.115193
\(357\) 0 0
\(358\) −3.01669e6 −1.24401
\(359\) 1.67594e6 0.686315 0.343157 0.939278i \(-0.388504\pi\)
0.343157 + 0.939278i \(0.388504\pi\)
\(360\) 0 0
\(361\) 475425. 0.192006
\(362\) −1.21536e6 −0.487454
\(363\) 0 0
\(364\) −259504. −0.102657
\(365\) 125450. 0.0492877
\(366\) 0 0
\(367\) 94663.0 0.0366872 0.0183436 0.999832i \(-0.494161\pi\)
0.0183436 + 0.999832i \(0.494161\pi\)
\(368\) 1.01120e6 0.389240
\(369\) 0 0
\(370\) −1.65180e6 −0.627268
\(371\) −538216. −0.203012
\(372\) 0 0
\(373\) −953536. −0.354867 −0.177433 0.984133i \(-0.556779\pi\)
−0.177433 + 0.984133i \(0.556779\pi\)
\(374\) −4.85914e6 −1.79631
\(375\) 0 0
\(376\) −34368.0 −0.0125367
\(377\) −1.51565e6 −0.549219
\(378\) 0 0
\(379\) 3.88824e6 1.39045 0.695225 0.718792i \(-0.255305\pi\)
0.695225 + 0.718792i \(0.255305\pi\)
\(380\) 687200. 0.244132
\(381\) 0 0
\(382\) −745084. −0.261244
\(383\) −2.93636e6 −1.02285 −0.511425 0.859328i \(-0.670882\pi\)
−0.511425 + 0.859328i \(0.670882\pi\)
\(384\) 0 0
\(385\) 875875. 0.301155
\(386\) −370016. −0.126402
\(387\) 0 0
\(388\) −1.01080e6 −0.340868
\(389\) −1.70377e6 −0.570871 −0.285435 0.958398i \(-0.592138\pi\)
−0.285435 + 0.958398i \(0.592138\pi\)
\(390\) 0 0
\(391\) 6.71105e6 2.21998
\(392\) −153664. −0.0505076
\(393\) 0 0
\(394\) −2.94547e6 −0.955904
\(395\) 699425. 0.225553
\(396\) 0 0
\(397\) 1.19110e6 0.379292 0.189646 0.981853i \(-0.439266\pi\)
0.189646 + 0.981853i \(0.439266\pi\)
\(398\) 1.92648e6 0.609617
\(399\) 0 0
\(400\) 160000. 0.0500000
\(401\) 3.38330e6 1.05070 0.525351 0.850885i \(-0.323934\pi\)
0.525351 + 0.850885i \(0.323934\pi\)
\(402\) 0 0
\(403\) 2.23624e6 0.685891
\(404\) 468000. 0.142657
\(405\) 0 0
\(406\) −897484. −0.270216
\(407\) −1.18104e7 −3.53409
\(408\) 0 0
\(409\) −1.33185e6 −0.393682 −0.196841 0.980435i \(-0.563068\pi\)
−0.196841 + 0.980435i \(0.563068\pi\)
\(410\) −1.88760e6 −0.554562
\(411\) 0 0
\(412\) −2.38702e6 −0.692809
\(413\) −1.27184e6 −0.366909
\(414\) 0 0
\(415\) 941100. 0.268235
\(416\) −338944. −0.0960273
\(417\) 0 0
\(418\) 4.91348e6 1.37546
\(419\) −5.82786e6 −1.62171 −0.810856 0.585246i \(-0.800998\pi\)
−0.810856 + 0.585246i \(0.800998\pi\)
\(420\) 0 0
\(421\) 2.47430e6 0.680374 0.340187 0.940358i \(-0.389510\pi\)
0.340187 + 0.940358i \(0.389510\pi\)
\(422\) −758124. −0.207233
\(423\) 0 0
\(424\) −702976. −0.189900
\(425\) 1.06188e6 0.285168
\(426\) 0 0
\(427\) −1.92021e6 −0.509659
\(428\) −1.33987e6 −0.353552
\(429\) 0 0
\(430\) 225800. 0.0588915
\(431\) −4.61851e6 −1.19759 −0.598796 0.800902i \(-0.704354\pi\)
−0.598796 + 0.800902i \(0.704354\pi\)
\(432\) 0 0
\(433\) 58606.0 0.0150218 0.00751091 0.999972i \(-0.497609\pi\)
0.00751091 + 0.999972i \(0.497609\pi\)
\(434\) 1.32418e6 0.337459
\(435\) 0 0
\(436\) 1.68603e6 0.424766
\(437\) −6.78610e6 −1.69987
\(438\) 0 0
\(439\) 7.04298e6 1.74419 0.872097 0.489332i \(-0.162759\pi\)
0.872097 + 0.489332i \(0.162759\pi\)
\(440\) 1.14400e6 0.281705
\(441\) 0 0
\(442\) −2.24948e6 −0.547678
\(443\) −1.46894e6 −0.355627 −0.177813 0.984064i \(-0.556902\pi\)
−0.177813 + 0.984064i \(0.556902\pi\)
\(444\) 0 0
\(445\) −430400. −0.103032
\(446\) 90388.0 0.0215166
\(447\) 0 0
\(448\) −200704. −0.0472456
\(449\) 7.48414e6 1.75197 0.875983 0.482341i \(-0.160213\pi\)
0.875983 + 0.482341i \(0.160213\pi\)
\(450\) 0 0
\(451\) −1.34963e7 −3.12446
\(452\) 1.96406e6 0.452178
\(453\) 0 0
\(454\) −3.99247e6 −0.909079
\(455\) 405475. 0.0918196
\(456\) 0 0
\(457\) 170320. 0.0381483 0.0190741 0.999818i \(-0.493928\pi\)
0.0190741 + 0.999818i \(0.493928\pi\)
\(458\) 3.41858e6 0.761520
\(459\) 0 0
\(460\) −1.58000e6 −0.348147
\(461\) 4.28685e6 0.939476 0.469738 0.882806i \(-0.344348\pi\)
0.469738 + 0.882806i \(0.344348\pi\)
\(462\) 0 0
\(463\) 3.38317e6 0.733452 0.366726 0.930329i \(-0.380479\pi\)
0.366726 + 0.930329i \(0.380479\pi\)
\(464\) −1.17222e6 −0.252764
\(465\) 0 0
\(466\) 5.03274e6 1.07359
\(467\) −5.18029e6 −1.09916 −0.549581 0.835440i \(-0.685213\pi\)
−0.549581 + 0.835440i \(0.685213\pi\)
\(468\) 0 0
\(469\) −216384. −0.0454248
\(470\) 53700.0 0.0112132
\(471\) 0 0
\(472\) −1.66118e6 −0.343212
\(473\) 1.61447e6 0.331801
\(474\) 0 0
\(475\) −1.07375e6 −0.218358
\(476\) −1.33202e6 −0.269459
\(477\) 0 0
\(478\) −2.82632e6 −0.565786
\(479\) 8.76779e6 1.74603 0.873014 0.487695i \(-0.162162\pi\)
0.873014 + 0.487695i \(0.162162\pi\)
\(480\) 0 0
\(481\) −5.46746e6 −1.07751
\(482\) −2.46532e6 −0.483343
\(483\) 0 0
\(484\) 5.60278e6 1.08715
\(485\) 1.57938e6 0.304881
\(486\) 0 0
\(487\) 270154. 0.0516166 0.0258083 0.999667i \(-0.491784\pi\)
0.0258083 + 0.999667i \(0.491784\pi\)
\(488\) −2.50803e6 −0.476742
\(489\) 0 0
\(490\) 240100. 0.0451754
\(491\) −4.85550e6 −0.908930 −0.454465 0.890765i \(-0.650170\pi\)
−0.454465 + 0.890765i \(0.650170\pi\)
\(492\) 0 0
\(493\) −7.77972e6 −1.44161
\(494\) 2.27463e6 0.419367
\(495\) 0 0
\(496\) 1.72954e6 0.315664
\(497\) −1.56212e6 −0.283677
\(498\) 0 0
\(499\) −2.98576e6 −0.536789 −0.268394 0.963309i \(-0.586493\pi\)
−0.268394 + 0.963309i \(0.586493\pi\)
\(500\) −250000. −0.0447214
\(501\) 0 0
\(502\) 763368. 0.135199
\(503\) 8.28783e6 1.46057 0.730283 0.683145i \(-0.239388\pi\)
0.730283 + 0.683145i \(0.239388\pi\)
\(504\) 0 0
\(505\) −731250. −0.127596
\(506\) −1.12970e7 −1.96149
\(507\) 0 0
\(508\) −3.50714e6 −0.602967
\(509\) −6.24307e6 −1.06808 −0.534040 0.845459i \(-0.679327\pi\)
−0.534040 + 0.845459i \(0.679327\pi\)
\(510\) 0 0
\(511\) 245882. 0.0416557
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) −4.52377e6 −0.755253
\(515\) 3.72972e6 0.619668
\(516\) 0 0
\(517\) 383955. 0.0631763
\(518\) −3.23753e6 −0.530138
\(519\) 0 0
\(520\) 529600. 0.0858894
\(521\) −7.49509e6 −1.20971 −0.604856 0.796335i \(-0.706770\pi\)
−0.604856 + 0.796335i \(0.706770\pi\)
\(522\) 0 0
\(523\) 3.80957e6 0.609007 0.304503 0.952511i \(-0.401510\pi\)
0.304503 + 0.952511i \(0.401510\pi\)
\(524\) 1.54691e6 0.246115
\(525\) 0 0
\(526\) −6.69508e6 −1.05509
\(527\) 1.14784e7 1.80035
\(528\) 0 0
\(529\) 9.16616e6 1.42413
\(530\) 1.09840e6 0.169852
\(531\) 0 0
\(532\) 1.34691e6 0.206329
\(533\) −6.24796e6 −0.952621
\(534\) 0 0
\(535\) 2.09355e6 0.316227
\(536\) −282624. −0.0424910
\(537\) 0 0
\(538\) −2.52377e6 −0.375919
\(539\) 1.71672e6 0.254523
\(540\) 0 0
\(541\) 7.67156e6 1.12691 0.563457 0.826145i \(-0.309471\pi\)
0.563457 + 0.826145i \(0.309471\pi\)
\(542\) 1.48990e6 0.217851
\(543\) 0 0
\(544\) −1.73978e6 −0.252055
\(545\) −2.63442e6 −0.379922
\(546\) 0 0
\(547\) −9.53845e6 −1.36304 −0.681522 0.731798i \(-0.738681\pi\)
−0.681522 + 0.731798i \(0.738681\pi\)
\(548\) −2.99661e6 −0.426264
\(549\) 0 0
\(550\) −1.78750e6 −0.251964
\(551\) 7.86672e6 1.10386
\(552\) 0 0
\(553\) 1.37087e6 0.190627
\(554\) −3.46804e6 −0.480076
\(555\) 0 0
\(556\) 2.83030e6 0.388281
\(557\) 7.45022e6 1.01749 0.508746 0.860916i \(-0.330109\pi\)
0.508746 + 0.860916i \(0.330109\pi\)
\(558\) 0 0
\(559\) 747398. 0.101163
\(560\) 313600. 0.0422577
\(561\) 0 0
\(562\) −7.77992e6 −1.03905
\(563\) −3.36698e6 −0.447682 −0.223841 0.974626i \(-0.571860\pi\)
−0.223841 + 0.974626i \(0.571860\pi\)
\(564\) 0 0
\(565\) −3.06885e6 −0.404440
\(566\) −4.74005e6 −0.621931
\(567\) 0 0
\(568\) −2.04032e6 −0.265355
\(569\) 4.05501e6 0.525063 0.262532 0.964923i \(-0.415443\pi\)
0.262532 + 0.964923i \(0.415443\pi\)
\(570\) 0 0
\(571\) 7.31585e6 0.939020 0.469510 0.882927i \(-0.344431\pi\)
0.469510 + 0.882927i \(0.344431\pi\)
\(572\) 3.78664e6 0.483909
\(573\) 0 0
\(574\) −3.69970e6 −0.468691
\(575\) 2.46875e6 0.311392
\(576\) 0 0
\(577\) −9.76895e6 −1.22154 −0.610771 0.791807i \(-0.709140\pi\)
−0.610771 + 0.791807i \(0.709140\pi\)
\(578\) −5.86698e6 −0.730457
\(579\) 0 0
\(580\) 1.83160e6 0.226079
\(581\) 1.84456e6 0.226700
\(582\) 0 0
\(583\) 7.85356e6 0.956963
\(584\) 321152. 0.0389653
\(585\) 0 0
\(586\) 134676. 0.0162012
\(587\) −3.75689e6 −0.450021 −0.225011 0.974356i \(-0.572242\pi\)
−0.225011 + 0.974356i \(0.572242\pi\)
\(588\) 0 0
\(589\) −1.16068e7 −1.37856
\(590\) 2.59560e6 0.306978
\(591\) 0 0
\(592\) −4.22861e6 −0.495899
\(593\) −2.89048e6 −0.337546 −0.168773 0.985655i \(-0.553980\pi\)
−0.168773 + 0.985655i \(0.553980\pi\)
\(594\) 0 0
\(595\) 2.08128e6 0.241011
\(596\) 3.18525e6 0.367306
\(597\) 0 0
\(598\) −5.22980e6 −0.598043
\(599\) −1.32233e7 −1.50582 −0.752910 0.658124i \(-0.771350\pi\)
−0.752910 + 0.658124i \(0.771350\pi\)
\(600\) 0 0
\(601\) 3.47399e6 0.392321 0.196161 0.980572i \(-0.437153\pi\)
0.196161 + 0.980572i \(0.437153\pi\)
\(602\) 442568. 0.0497724
\(603\) 0 0
\(604\) 7.54533e6 0.841561
\(605\) −8.75435e6 −0.972379
\(606\) 0 0
\(607\) 6.45088e6 0.710636 0.355318 0.934746i \(-0.384373\pi\)
0.355318 + 0.934746i \(0.384373\pi\)
\(608\) 1.75923e6 0.193003
\(609\) 0 0
\(610\) 3.91880e6 0.426411
\(611\) 177747. 0.0192619
\(612\) 0 0
\(613\) 8.43820e6 0.906982 0.453491 0.891261i \(-0.350178\pi\)
0.453491 + 0.891261i \(0.350178\pi\)
\(614\) 108172. 0.0115796
\(615\) 0 0
\(616\) 2.24224e6 0.238084
\(617\) −9.45501e6 −0.999882 −0.499941 0.866059i \(-0.666645\pi\)
−0.499941 + 0.866059i \(0.666645\pi\)
\(618\) 0 0
\(619\) 1.43145e6 0.150158 0.0750790 0.997178i \(-0.476079\pi\)
0.0750790 + 0.997178i \(0.476079\pi\)
\(620\) −2.70240e6 −0.282339
\(621\) 0 0
\(622\) 8.59674e6 0.890960
\(623\) −843584. −0.0870780
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 1.06821e7 1.08948
\(627\) 0 0
\(628\) −1.15286e6 −0.116648
\(629\) −2.80641e7 −2.82829
\(630\) 0 0
\(631\) −1.01813e7 −1.01795 −0.508977 0.860780i \(-0.669976\pi\)
−0.508977 + 0.860780i \(0.669976\pi\)
\(632\) 1.79053e6 0.178315
\(633\) 0 0
\(634\) −1.00206e6 −0.0990077
\(635\) 5.47990e6 0.539310
\(636\) 0 0
\(637\) 794731. 0.0776018
\(638\) 1.30959e7 1.27375
\(639\) 0 0
\(640\) 409600. 0.0395285
\(641\) 1.76908e7 1.70060 0.850300 0.526298i \(-0.176420\pi\)
0.850300 + 0.526298i \(0.176420\pi\)
\(642\) 0 0
\(643\) 1.82748e7 1.74311 0.871556 0.490296i \(-0.163111\pi\)
0.871556 + 0.490296i \(0.163111\pi\)
\(644\) −3.09680e6 −0.294238
\(645\) 0 0
\(646\) 1.16755e7 1.10077
\(647\) −1.52897e6 −0.143594 −0.0717972 0.997419i \(-0.522873\pi\)
−0.0717972 + 0.997419i \(0.522873\pi\)
\(648\) 0 0
\(649\) 1.85585e7 1.72955
\(650\) −827500. −0.0768218
\(651\) 0 0
\(652\) 6.16534e6 0.567987
\(653\) 9.10088e6 0.835219 0.417610 0.908627i \(-0.362868\pi\)
0.417610 + 0.908627i \(0.362868\pi\)
\(654\) 0 0
\(655\) −2.41705e6 −0.220132
\(656\) −4.83226e6 −0.438420
\(657\) 0 0
\(658\) 105252. 0.00947689
\(659\) 430119. 0.0385811 0.0192906 0.999814i \(-0.493859\pi\)
0.0192906 + 0.999814i \(0.493859\pi\)
\(660\) 0 0
\(661\) 7.65248e6 0.681238 0.340619 0.940202i \(-0.389363\pi\)
0.340619 + 0.940202i \(0.389363\pi\)
\(662\) −4.23595e6 −0.375670
\(663\) 0 0
\(664\) 2.40922e6 0.212058
\(665\) −2.10455e6 −0.184546
\(666\) 0 0
\(667\) −1.80870e7 −1.57418
\(668\) 8.68731e6 0.753259
\(669\) 0 0
\(670\) 441600. 0.0380051
\(671\) 2.80194e7 2.40244
\(672\) 0 0
\(673\) −2.18404e7 −1.85876 −0.929378 0.369128i \(-0.879656\pi\)
−0.929378 + 0.369128i \(0.879656\pi\)
\(674\) 1.14010e7 0.966702
\(675\) 0 0
\(676\) −4.18771e6 −0.352460
\(677\) −1.39504e7 −1.16981 −0.584905 0.811102i \(-0.698868\pi\)
−0.584905 + 0.811102i \(0.698868\pi\)
\(678\) 0 0
\(679\) 3.09558e6 0.257672
\(680\) 2.71840e6 0.225445
\(681\) 0 0
\(682\) −1.93222e7 −1.59072
\(683\) −2.29121e7 −1.87937 −0.939686 0.342040i \(-0.888882\pi\)
−0.939686 + 0.342040i \(0.888882\pi\)
\(684\) 0 0
\(685\) 4.68220e6 0.381262
\(686\) 470596. 0.0381802
\(687\) 0 0
\(688\) 578048. 0.0465578
\(689\) 3.63570e6 0.291770
\(690\) 0 0
\(691\) −1.69127e7 −1.34747 −0.673734 0.738974i \(-0.735310\pi\)
−0.673734 + 0.738974i \(0.735310\pi\)
\(692\) −5.93525e6 −0.471166
\(693\) 0 0
\(694\) 7.56562e6 0.596274
\(695\) −4.42235e6 −0.347289
\(696\) 0 0
\(697\) −3.20703e7 −2.50047
\(698\) 4.16927e6 0.323908
\(699\) 0 0
\(700\) −490000. −0.0377964
\(701\) 1.90087e7 1.46102 0.730510 0.682902i \(-0.239282\pi\)
0.730510 + 0.682902i \(0.239282\pi\)
\(702\) 0 0
\(703\) 2.83779e7 2.16567
\(704\) 2.92864e6 0.222707
\(705\) 0 0
\(706\) −9.21235e6 −0.695598
\(707\) −1.43325e6 −0.107838
\(708\) 0 0
\(709\) 1.66079e7 1.24079 0.620396 0.784289i \(-0.286972\pi\)
0.620396 + 0.784289i \(0.286972\pi\)
\(710\) 3.18800e6 0.237341
\(711\) 0 0
\(712\) −1.10182e6 −0.0814540
\(713\) 2.66862e7 1.96591
\(714\) 0 0
\(715\) −5.91662e6 −0.432822
\(716\) 1.20668e7 0.879646
\(717\) 0 0
\(718\) −6.70378e6 −0.485298
\(719\) −5.93610e6 −0.428232 −0.214116 0.976808i \(-0.568687\pi\)
−0.214116 + 0.976808i \(0.568687\pi\)
\(720\) 0 0
\(721\) 7.31026e6 0.523715
\(722\) −1.90170e6 −0.135768
\(723\) 0 0
\(724\) 4.86144e6 0.344682
\(725\) −2.86188e6 −0.202211
\(726\) 0 0
\(727\) 1.73276e7 1.21591 0.607957 0.793970i \(-0.291989\pi\)
0.607957 + 0.793970i \(0.291989\pi\)
\(728\) 1.03802e6 0.0725898
\(729\) 0 0
\(730\) −501800. −0.0348517
\(731\) 3.83634e6 0.265536
\(732\) 0 0
\(733\) 1.39829e7 0.961255 0.480627 0.876925i \(-0.340409\pi\)
0.480627 + 0.876925i \(0.340409\pi\)
\(734\) −378652. −0.0259418
\(735\) 0 0
\(736\) −4.04480e6 −0.275234
\(737\) 3.15744e6 0.214125
\(738\) 0 0
\(739\) −1.14263e7 −0.769649 −0.384824 0.922990i \(-0.625738\pi\)
−0.384824 + 0.922990i \(0.625738\pi\)
\(740\) 6.60720e6 0.443545
\(741\) 0 0
\(742\) 2.15286e6 0.143551
\(743\) −1.23126e7 −0.818236 −0.409118 0.912481i \(-0.634164\pi\)
−0.409118 + 0.912481i \(0.634164\pi\)
\(744\) 0 0
\(745\) −4.97695e6 −0.328528
\(746\) 3.81414e6 0.250929
\(747\) 0 0
\(748\) 1.94366e7 1.27018
\(749\) 4.10336e6 0.267261
\(750\) 0 0
\(751\) −1.43093e7 −0.925806 −0.462903 0.886409i \(-0.653192\pi\)
−0.462903 + 0.886409i \(0.653192\pi\)
\(752\) 137472. 0.00886481
\(753\) 0 0
\(754\) 6.06260e6 0.388356
\(755\) −1.17896e7 −0.752715
\(756\) 0 0
\(757\) −5.34505e6 −0.339010 −0.169505 0.985529i \(-0.554217\pi\)
−0.169505 + 0.985529i \(0.554217\pi\)
\(758\) −1.55530e7 −0.983197
\(759\) 0 0
\(760\) −2.74880e6 −0.172627
\(761\) −6.22568e6 −0.389695 −0.194848 0.980834i \(-0.562421\pi\)
−0.194848 + 0.980834i \(0.562421\pi\)
\(762\) 0 0
\(763\) −5.16347e6 −0.321093
\(764\) 2.98034e6 0.184728
\(765\) 0 0
\(766\) 1.17454e7 0.723264
\(767\) 8.59144e6 0.527324
\(768\) 0 0
\(769\) 1.57888e7 0.962793 0.481397 0.876503i \(-0.340130\pi\)
0.481397 + 0.876503i \(0.340130\pi\)
\(770\) −3.50350e6 −0.212949
\(771\) 0 0
\(772\) 1.48006e6 0.0893794
\(773\) 2.50453e7 1.50757 0.753785 0.657121i \(-0.228226\pi\)
0.753785 + 0.657121i \(0.228226\pi\)
\(774\) 0 0
\(775\) 4.22250e6 0.252531
\(776\) 4.04320e6 0.241030
\(777\) 0 0
\(778\) 6.81509e6 0.403667
\(779\) 3.24290e7 1.91465
\(780\) 0 0
\(781\) 2.27942e7 1.33720
\(782\) −2.68442e7 −1.56976
\(783\) 0 0
\(784\) 614656. 0.0357143
\(785\) 1.80135e6 0.104334
\(786\) 0 0
\(787\) −1.28020e6 −0.0736784 −0.0368392 0.999321i \(-0.511729\pi\)
−0.0368392 + 0.999321i \(0.511729\pi\)
\(788\) 1.17819e7 0.675926
\(789\) 0 0
\(790\) −2.79770e6 −0.159490
\(791\) −6.01495e6 −0.341815
\(792\) 0 0
\(793\) 1.29712e7 0.732484
\(794\) −4.76442e6 −0.268200
\(795\) 0 0
\(796\) −7.70592e6 −0.431064
\(797\) 1.13798e7 0.634584 0.317292 0.948328i \(-0.397226\pi\)
0.317292 + 0.948328i \(0.397226\pi\)
\(798\) 0 0
\(799\) 912363. 0.0505593
\(800\) −640000. −0.0353553
\(801\) 0 0
\(802\) −1.35332e7 −0.742959
\(803\) −3.58787e6 −0.196358
\(804\) 0 0
\(805\) 4.83875e6 0.263174
\(806\) −8.94494e6 −0.484998
\(807\) 0 0
\(808\) −1.87200e6 −0.100874
\(809\) 1.70542e7 0.916138 0.458069 0.888917i \(-0.348541\pi\)
0.458069 + 0.888917i \(0.348541\pi\)
\(810\) 0 0
\(811\) −2.21494e7 −1.18252 −0.591262 0.806480i \(-0.701370\pi\)
−0.591262 + 0.806480i \(0.701370\pi\)
\(812\) 3.58994e6 0.191072
\(813\) 0 0
\(814\) 4.72415e7 2.49898
\(815\) −9.63335e6 −0.508023
\(816\) 0 0
\(817\) −3.87924e6 −0.203326
\(818\) 5.32738e6 0.278375
\(819\) 0 0
\(820\) 7.55040e6 0.392135
\(821\) 1.01068e7 0.523307 0.261654 0.965162i \(-0.415732\pi\)
0.261654 + 0.965162i \(0.415732\pi\)
\(822\) 0 0
\(823\) −1.83993e7 −0.946895 −0.473447 0.880822i \(-0.656991\pi\)
−0.473447 + 0.880822i \(0.656991\pi\)
\(824\) 9.54810e6 0.489890
\(825\) 0 0
\(826\) 5.08738e6 0.259444
\(827\) 2.48056e7 1.26121 0.630604 0.776105i \(-0.282807\pi\)
0.630604 + 0.776105i \(0.282807\pi\)
\(828\) 0 0
\(829\) −1.19708e6 −0.0604976 −0.0302488 0.999542i \(-0.509630\pi\)
−0.0302488 + 0.999542i \(0.509630\pi\)
\(830\) −3.76440e6 −0.189671
\(831\) 0 0
\(832\) 1.35578e6 0.0679015
\(833\) 4.07930e6 0.203692
\(834\) 0 0
\(835\) −1.35739e7 −0.673735
\(836\) −1.96539e7 −0.972598
\(837\) 0 0
\(838\) 2.33114e7 1.14672
\(839\) 3.17171e7 1.55557 0.777783 0.628533i \(-0.216344\pi\)
0.777783 + 0.628533i \(0.216344\pi\)
\(840\) 0 0
\(841\) 456092. 0.0222363
\(842\) −9.89722e6 −0.481097
\(843\) 0 0
\(844\) 3.03250e6 0.146536
\(845\) 6.54330e6 0.315250
\(846\) 0 0
\(847\) −1.71585e7 −0.821810
\(848\) 2.81190e6 0.134280
\(849\) 0 0
\(850\) −4.24750e6 −0.201644
\(851\) −6.52461e7 −3.08838
\(852\) 0 0
\(853\) 3.18237e7 1.49754 0.748769 0.662831i \(-0.230645\pi\)
0.748769 + 0.662831i \(0.230645\pi\)
\(854\) 7.68085e6 0.360383
\(855\) 0 0
\(856\) 5.35949e6 0.249999
\(857\) −2.27853e7 −1.05975 −0.529874 0.848076i \(-0.677761\pi\)
−0.529874 + 0.848076i \(0.677761\pi\)
\(858\) 0 0
\(859\) −1.85966e7 −0.859907 −0.429953 0.902851i \(-0.641470\pi\)
−0.429953 + 0.902851i \(0.641470\pi\)
\(860\) −903200. −0.0416426
\(861\) 0 0
\(862\) 1.84740e7 0.846825
\(863\) 2.77046e7 1.26627 0.633133 0.774043i \(-0.281769\pi\)
0.633133 + 0.774043i \(0.281769\pi\)
\(864\) 0 0
\(865\) 9.27382e6 0.421423
\(866\) −234424. −0.0106220
\(867\) 0 0
\(868\) −5.29670e6 −0.238620
\(869\) −2.00036e7 −0.898582
\(870\) 0 0
\(871\) 1.46170e6 0.0652847
\(872\) −6.74413e6 −0.300355
\(873\) 0 0
\(874\) 2.71444e7 1.20199
\(875\) 765625. 0.0338062
\(876\) 0 0
\(877\) −2.41150e7 −1.05874 −0.529370 0.848391i \(-0.677572\pi\)
−0.529370 + 0.848391i \(0.677572\pi\)
\(878\) −2.81719e7 −1.23333
\(879\) 0 0
\(880\) −4.57600e6 −0.199195
\(881\) 1.26207e7 0.547827 0.273914 0.961754i \(-0.411682\pi\)
0.273914 + 0.961754i \(0.411682\pi\)
\(882\) 0 0
\(883\) −6.01876e6 −0.259780 −0.129890 0.991528i \(-0.541462\pi\)
−0.129890 + 0.991528i \(0.541462\pi\)
\(884\) 8.99790e6 0.387267
\(885\) 0 0
\(886\) 5.87575e6 0.251466
\(887\) −2.36901e7 −1.01102 −0.505509 0.862821i \(-0.668695\pi\)
−0.505509 + 0.862821i \(0.668695\pi\)
\(888\) 0 0
\(889\) 1.07406e7 0.455800
\(890\) 1.72160e6 0.0728546
\(891\) 0 0
\(892\) −361552. −0.0152145
\(893\) −922566. −0.0387141
\(894\) 0 0
\(895\) −1.88543e7 −0.786779
\(896\) 802816. 0.0334077
\(897\) 0 0
\(898\) −2.99365e7 −1.23883
\(899\) −3.09357e7 −1.27662
\(900\) 0 0
\(901\) 1.86618e7 0.765847
\(902\) 5.39854e7 2.20933
\(903\) 0 0
\(904\) −7.85626e6 −0.319738
\(905\) −7.59600e6 −0.308293
\(906\) 0 0
\(907\) −1.10583e7 −0.446346 −0.223173 0.974779i \(-0.571641\pi\)
−0.223173 + 0.974779i \(0.571641\pi\)
\(908\) 1.59699e7 0.642816
\(909\) 0 0
\(910\) −1.62190e6 −0.0649263
\(911\) −3.07573e6 −0.122787 −0.0613934 0.998114i \(-0.519554\pi\)
−0.0613934 + 0.998114i \(0.519554\pi\)
\(912\) 0 0
\(913\) −2.69155e7 −1.06862
\(914\) −681280. −0.0269749
\(915\) 0 0
\(916\) −1.36743e7 −0.538476
\(917\) −4.73742e6 −0.186045
\(918\) 0 0
\(919\) −1.89018e7 −0.738270 −0.369135 0.929376i \(-0.620346\pi\)
−0.369135 + 0.929376i \(0.620346\pi\)
\(920\) 6.32000e6 0.246177
\(921\) 0 0
\(922\) −1.71474e7 −0.664310
\(923\) 1.05523e7 0.407701
\(924\) 0 0
\(925\) −1.03238e7 −0.396719
\(926\) −1.35327e7 −0.518629
\(927\) 0 0
\(928\) 4.68890e6 0.178731
\(929\) 1.81458e7 0.689821 0.344911 0.938636i \(-0.387909\pi\)
0.344911 + 0.938636i \(0.387909\pi\)
\(930\) 0 0
\(931\) −4.12492e6 −0.155970
\(932\) −2.01309e7 −0.759144
\(933\) 0 0
\(934\) 2.07212e7 0.777225
\(935\) −3.03696e7 −1.13608
\(936\) 0 0
\(937\) −2.17350e7 −0.808744 −0.404372 0.914595i \(-0.632510\pi\)
−0.404372 + 0.914595i \(0.632510\pi\)
\(938\) 865536. 0.0321202
\(939\) 0 0
\(940\) −214800. −0.00792893
\(941\) −1.86808e7 −0.687735 −0.343868 0.939018i \(-0.611737\pi\)
−0.343868 + 0.939018i \(0.611737\pi\)
\(942\) 0 0
\(943\) −7.45602e7 −2.73041
\(944\) 6.64474e6 0.242688
\(945\) 0 0
\(946\) −6.45788e6 −0.234618
\(947\) 2.24778e6 0.0814476 0.0407238 0.999170i \(-0.487034\pi\)
0.0407238 + 0.999170i \(0.487034\pi\)
\(948\) 0 0
\(949\) −1.66096e6 −0.0598678
\(950\) 4.29500e6 0.154402
\(951\) 0 0
\(952\) 5.32806e6 0.190536
\(953\) 3.73293e7 1.33143 0.665714 0.746207i \(-0.268127\pi\)
0.665714 + 0.746207i \(0.268127\pi\)
\(954\) 0 0
\(955\) −4.65678e6 −0.165225
\(956\) 1.13053e7 0.400071
\(957\) 0 0
\(958\) −3.50711e7 −1.23463
\(959\) 9.17711e6 0.322225
\(960\) 0 0
\(961\) 1.70144e7 0.594303
\(962\) 2.18698e7 0.761917
\(963\) 0 0
\(964\) 9.86128e6 0.341775
\(965\) −2.31260e6 −0.0799433
\(966\) 0 0
\(967\) 2.61870e7 0.900573 0.450287 0.892884i \(-0.351322\pi\)
0.450287 + 0.892884i \(0.351322\pi\)
\(968\) −2.24111e7 −0.768733
\(969\) 0 0
\(970\) −6.31750e6 −0.215584
\(971\) 3.91957e7 1.33410 0.667052 0.745011i \(-0.267556\pi\)
0.667052 + 0.745011i \(0.267556\pi\)
\(972\) 0 0
\(973\) −8.66781e6 −0.293513
\(974\) −1.08062e6 −0.0364984
\(975\) 0 0
\(976\) 1.00321e7 0.337108
\(977\) −3.03935e6 −0.101870 −0.0509348 0.998702i \(-0.516220\pi\)
−0.0509348 + 0.998702i \(0.516220\pi\)
\(978\) 0 0
\(979\) 1.23094e7 0.410470
\(980\) −960400. −0.0319438
\(981\) 0 0
\(982\) 1.94220e7 0.642711
\(983\) 1.59937e7 0.527915 0.263957 0.964534i \(-0.414972\pi\)
0.263957 + 0.964534i \(0.414972\pi\)
\(984\) 0 0
\(985\) −1.84092e7 −0.604567
\(986\) 3.11189e7 1.01937
\(987\) 0 0
\(988\) −9.09853e6 −0.296537
\(989\) 8.91910e6 0.289955
\(990\) 0 0
\(991\) 3.63186e6 0.117475 0.0587375 0.998273i \(-0.481293\pi\)
0.0587375 + 0.998273i \(0.481293\pi\)
\(992\) −6.91814e6 −0.223208
\(993\) 0 0
\(994\) 6.24848e6 0.200590
\(995\) 1.20405e7 0.385555
\(996\) 0 0
\(997\) −4.33287e7 −1.38051 −0.690253 0.723568i \(-0.742501\pi\)
−0.690253 + 0.723568i \(0.742501\pi\)
\(998\) 1.19430e7 0.379567
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.6.a.b.1.1 1
3.2 odd 2 70.6.a.e.1.1 1
12.11 even 2 560.6.a.h.1.1 1
15.2 even 4 350.6.c.a.99.2 2
15.8 even 4 350.6.c.a.99.1 2
15.14 odd 2 350.6.a.e.1.1 1
21.20 even 2 490.6.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.e.1.1 1 3.2 odd 2
350.6.a.e.1.1 1 15.14 odd 2
350.6.c.a.99.1 2 15.8 even 4
350.6.c.a.99.2 2 15.2 even 4
490.6.a.m.1.1 1 21.20 even 2
560.6.a.h.1.1 1 12.11 even 2
630.6.a.b.1.1 1 1.1 even 1 trivial