Properties

Label 630.2.t.b.551.3
Level 630
Weight 2
Character 630.551
Analytic conductor 5.031
Analytic rank 0
Dimension 28
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 551.3
Character \(\chi\) \(=\) 630.551
Dual form 630.2.t.b.311.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-0.790256 - 1.54126i) q^{3} +(0.500000 - 0.866025i) q^{4} -1.00000 q^{5} +(1.45501 + 0.939646i) q^{6} +(-1.82075 - 1.91960i) q^{7} +1.00000i q^{8} +(-1.75099 + 2.43599i) q^{9} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(-0.790256 - 1.54126i) q^{3} +(0.500000 - 0.866025i) q^{4} -1.00000 q^{5} +(1.45501 + 0.939646i) q^{6} +(-1.82075 - 1.91960i) q^{7} +1.00000i q^{8} +(-1.75099 + 2.43599i) q^{9} +(0.866025 - 0.500000i) q^{10} +3.07697i q^{11} +(-1.72990 - 0.0862508i) q^{12} +(-0.449846 + 0.259719i) q^{13} +(2.53662 + 0.752047i) q^{14} +(0.790256 + 1.54126i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.44423 - 4.23353i) q^{17} +(0.298411 - 2.98512i) q^{18} +(0.713627 + 0.412013i) q^{19} +(-0.500000 + 0.866025i) q^{20} +(-1.51975 + 4.32323i) q^{21} +(-1.53849 - 2.66474i) q^{22} +8.94137i q^{23} +(1.54126 - 0.790256i) q^{24} +1.00000 q^{25} +(0.259719 - 0.449846i) q^{26} +(5.13823 + 0.773690i) q^{27} +(-2.57280 + 0.617016i) q^{28} +(5.55412 + 3.20667i) q^{29} +(-1.45501 - 0.939646i) q^{30} +(-0.784474 - 0.452916i) q^{31} +(0.866025 + 0.500000i) q^{32} +(4.74243 - 2.43160i) q^{33} +(4.23353 + 2.44423i) q^{34} +(1.82075 + 1.91960i) q^{35} +(1.23413 + 2.73440i) q^{36} +(2.53840 - 4.39664i) q^{37} -0.824025 q^{38} +(0.755788 + 0.488087i) q^{39} -1.00000i q^{40} +(2.18596 + 3.78619i) q^{41} +(-0.845472 - 4.50391i) q^{42} +(-1.84515 + 3.19589i) q^{43} +(2.66474 + 1.53849i) q^{44} +(1.75099 - 2.43599i) q^{45} +(-4.47068 - 7.74345i) q^{46} +(1.89222 + 3.27742i) q^{47} +(-0.939646 + 1.45501i) q^{48} +(-0.369732 + 6.99023i) q^{49} +(-0.866025 + 0.500000i) q^{50} +(-4.59342 + 7.11278i) q^{51} +0.519437i q^{52} +(4.69700 - 2.71181i) q^{53} +(-4.83668 + 1.89908i) q^{54} -3.07697i q^{55} +(1.91960 - 1.82075i) q^{56} +(0.0710728 - 1.42548i) q^{57} -6.41334 q^{58} +(-5.29109 + 9.16443i) q^{59} +(1.72990 + 0.0862508i) q^{60} +(-8.24872 + 4.76240i) q^{61} +0.905833 q^{62} +(7.86424 - 1.07412i) q^{63} -1.00000 q^{64} +(0.449846 - 0.259719i) q^{65} +(-2.89127 + 4.47704i) q^{66} +(-3.95287 + 6.84657i) q^{67} -4.88846 q^{68} +(13.7810 - 7.06596i) q^{69} +(-2.53662 - 0.752047i) q^{70} +10.6760i q^{71} +(-2.43599 - 1.75099i) q^{72} +(5.78211 - 3.33830i) q^{73} +5.07681i q^{74} +(-0.790256 - 1.54126i) q^{75} +(0.713627 - 0.412013i) q^{76} +(5.90656 - 5.60240i) q^{77} +(-0.898575 - 0.0448019i) q^{78} +(-1.73049 - 2.99730i) q^{79} +(0.500000 + 0.866025i) q^{80} +(-2.86805 - 8.53078i) q^{81} +(-3.78619 - 2.18596i) q^{82} +(-3.32033 + 5.75098i) q^{83} +(2.98415 + 3.47776i) q^{84} +(2.44423 + 4.23353i) q^{85} -3.69030i q^{86} +(0.553156 - 11.0945i) q^{87} -3.07697 q^{88} +(0.771960 - 1.33707i) q^{89} +(-0.298411 + 2.98512i) q^{90} +(1.31761 + 0.390641i) q^{91} +(7.74345 + 4.47068i) q^{92} +(-0.0781288 + 1.56700i) q^{93} +(-3.27742 - 1.89222i) q^{94} +(-0.713627 - 0.412013i) q^{95} +(0.0862508 - 1.72990i) q^{96} +(1.93786 + 1.11882i) q^{97} +(-3.17492 - 6.23858i) q^{98} +(-7.49547 - 5.38776i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 2q^{3} + 14q^{4} - 28q^{5} - 8q^{6} - 4q^{7} + 6q^{9} + O(q^{10}) \) \( 28q - 2q^{3} + 14q^{4} - 28q^{5} - 8q^{6} - 4q^{7} + 6q^{9} - 4q^{12} + 6q^{14} + 2q^{15} - 14q^{16} - 6q^{17} - 4q^{18} - 6q^{19} - 14q^{20} + 6q^{21} - 6q^{22} - 4q^{24} + 28q^{25} + 12q^{26} + 28q^{27} - 8q^{28} + 8q^{30} - 12q^{31} + 26q^{33} + 4q^{35} - 6q^{36} + 4q^{37} - 12q^{38} + 54q^{39} + 18q^{41} - 32q^{42} + 28q^{43} - 6q^{45} - 18q^{46} + 30q^{47} - 2q^{48} - 14q^{49} + 34q^{51} - 42q^{53} + 14q^{54} + 6q^{56} - 30q^{57} - 12q^{58} - 24q^{59} + 4q^{60} + 24q^{61} - 12q^{62} + 44q^{63} - 28q^{64} - 10q^{66} - 40q^{67} - 12q^{68} + 8q^{69} - 6q^{70} + 4q^{72} + 6q^{73} - 2q^{75} - 6q^{76} - 24q^{77} + 14q^{78} + 2q^{79} + 14q^{80} - 46q^{81} + 24q^{82} - 18q^{83} + 18q^{84} + 6q^{85} + 104q^{87} - 12q^{88} + 6q^{89} + 4q^{90} + 66q^{91} - 30q^{92} + 40q^{93} + 42q^{94} + 6q^{95} + 4q^{96} - 72q^{97} - 24q^{98} - 42q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −0.790256 1.54126i −0.456254 0.889849i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.00000 −0.447214
\(6\) 1.45501 + 0.939646i 0.594007 + 0.383609i
\(7\) −1.82075 1.91960i −0.688179 0.725541i
\(8\) 1.00000i 0.353553i
\(9\) −1.75099 + 2.43599i −0.583664 + 0.811995i
\(10\) 0.866025 0.500000i 0.273861 0.158114i
\(11\) 3.07697i 0.927743i 0.885903 + 0.463871i \(0.153540\pi\)
−0.885903 + 0.463871i \(0.846460\pi\)
\(12\) −1.72990 0.0862508i −0.499380 0.0248984i
\(13\) −0.449846 + 0.259719i −0.124765 + 0.0720330i −0.561084 0.827759i \(-0.689615\pi\)
0.436319 + 0.899792i \(0.356282\pi\)
\(14\) 2.53662 + 0.752047i 0.677939 + 0.200993i
\(15\) 0.790256 + 1.54126i 0.204043 + 0.397953i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.44423 4.23353i −0.592813 1.02678i −0.993852 0.110721i \(-0.964684\pi\)
0.401039 0.916061i \(-0.368649\pi\)
\(18\) 0.298411 2.98512i 0.0703361 0.703600i
\(19\) 0.713627 + 0.412013i 0.163717 + 0.0945222i 0.579620 0.814887i \(-0.303201\pi\)
−0.415903 + 0.909409i \(0.636534\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) −1.51975 + 4.32323i −0.331637 + 0.943407i
\(22\) −1.53849 2.66474i −0.328007 0.568124i
\(23\) 8.94137i 1.86440i 0.361939 + 0.932202i \(0.382115\pi\)
−0.361939 + 0.932202i \(0.617885\pi\)
\(24\) 1.54126 0.790256i 0.314609 0.161310i
\(25\) 1.00000 0.200000
\(26\) 0.259719 0.449846i 0.0509350 0.0882220i
\(27\) 5.13823 + 0.773690i 0.988853 + 0.148897i
\(28\) −2.57280 + 0.617016i −0.486213 + 0.116605i
\(29\) 5.55412 + 3.20667i 1.03137 + 0.595464i 0.917378 0.398017i \(-0.130302\pi\)
0.113996 + 0.993481i \(0.463635\pi\)
\(30\) −1.45501 0.939646i −0.265648 0.171555i
\(31\) −0.784474 0.452916i −0.140896 0.0813462i 0.427895 0.903828i \(-0.359255\pi\)
−0.568791 + 0.822482i \(0.692589\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 4.74243 2.43160i 0.825551 0.423287i
\(34\) 4.23353 + 2.44423i 0.726045 + 0.419182i
\(35\) 1.82075 + 1.91960i 0.307763 + 0.324472i
\(36\) 1.23413 + 2.73440i 0.205688 + 0.455733i
\(37\) 2.53840 4.39664i 0.417311 0.722804i −0.578357 0.815784i \(-0.696306\pi\)
0.995668 + 0.0929800i \(0.0296392\pi\)
\(38\) −0.824025 −0.133675
\(39\) 0.755788 + 0.488087i 0.121023 + 0.0781565i
\(40\) 1.00000i 0.158114i
\(41\) 2.18596 + 3.78619i 0.341389 + 0.591304i 0.984691 0.174309i \(-0.0557692\pi\)
−0.643302 + 0.765613i \(0.722436\pi\)
\(42\) −0.845472 4.50391i −0.130459 0.694968i
\(43\) −1.84515 + 3.19589i −0.281383 + 0.487369i −0.971726 0.236113i \(-0.924126\pi\)
0.690343 + 0.723482i \(0.257460\pi\)
\(44\) 2.66474 + 1.53849i 0.401724 + 0.231936i
\(45\) 1.75099 2.43599i 0.261022 0.363135i
\(46\) −4.47068 7.74345i −0.659166 1.14171i
\(47\) 1.89222 + 3.27742i 0.276008 + 0.478060i 0.970389 0.241547i \(-0.0776549\pi\)
−0.694381 + 0.719608i \(0.744322\pi\)
\(48\) −0.939646 + 1.45501i −0.135626 + 0.210013i
\(49\) −0.369732 + 6.99023i −0.0528188 + 0.998604i
\(50\) −0.866025 + 0.500000i −0.122474 + 0.0707107i
\(51\) −4.59342 + 7.11278i −0.643208 + 0.995988i
\(52\) 0.519437i 0.0720330i
\(53\) 4.69700 2.71181i 0.645182 0.372496i −0.141426 0.989949i \(-0.545169\pi\)
0.786608 + 0.617453i \(0.211835\pi\)
\(54\) −4.83668 + 1.89908i −0.658189 + 0.258432i
\(55\) 3.07697i 0.414899i
\(56\) 1.91960 1.82075i 0.256517 0.243308i
\(57\) 0.0710728 1.42548i 0.00941382 0.188810i
\(58\) −6.41334 −0.842113
\(59\) −5.29109 + 9.16443i −0.688841 + 1.19311i 0.283372 + 0.959010i \(0.408547\pi\)
−0.972213 + 0.234097i \(0.924787\pi\)
\(60\) 1.72990 + 0.0862508i 0.223329 + 0.0111349i
\(61\) −8.24872 + 4.76240i −1.05614 + 0.609763i −0.924362 0.381516i \(-0.875402\pi\)
−0.131779 + 0.991279i \(0.542069\pi\)
\(62\) 0.905833 0.115041
\(63\) 7.86424 1.07412i 0.990801 0.135326i
\(64\) −1.00000 −0.125000
\(65\) 0.449846 0.259719i 0.0557965 0.0322141i
\(66\) −2.89127 + 4.47704i −0.355891 + 0.551086i
\(67\) −3.95287 + 6.84657i −0.482920 + 0.836442i −0.999808 0.0196114i \(-0.993757\pi\)
0.516888 + 0.856053i \(0.327090\pi\)
\(68\) −4.88846 −0.592813
\(69\) 13.7810 7.06596i 1.65904 0.850642i
\(70\) −2.53662 0.752047i −0.303184 0.0898868i
\(71\) 10.6760i 1.26701i 0.773741 + 0.633503i \(0.218383\pi\)
−0.773741 + 0.633503i \(0.781617\pi\)
\(72\) −2.43599 1.75099i −0.287084 0.206356i
\(73\) 5.78211 3.33830i 0.676744 0.390719i −0.121883 0.992544i \(-0.538893\pi\)
0.798627 + 0.601826i \(0.205560\pi\)
\(74\) 5.07681i 0.590167i
\(75\) −0.790256 1.54126i −0.0912509 0.177970i
\(76\) 0.713627 0.412013i 0.0818586 0.0472611i
\(77\) 5.90656 5.60240i 0.673115 0.638453i
\(78\) −0.898575 0.0448019i −0.101744 0.00507281i
\(79\) −1.73049 2.99730i −0.194696 0.337223i 0.752105 0.659043i \(-0.229039\pi\)
−0.946801 + 0.321820i \(0.895705\pi\)
\(80\) 0.500000 + 0.866025i 0.0559017 + 0.0968246i
\(81\) −2.86805 8.53078i −0.318673 0.947865i
\(82\) −3.78619 2.18596i −0.418115 0.241399i
\(83\) −3.32033 + 5.75098i −0.364454 + 0.631252i −0.988688 0.149985i \(-0.952078\pi\)
0.624235 + 0.781237i \(0.285411\pi\)
\(84\) 2.98415 + 3.47776i 0.325598 + 0.379455i
\(85\) 2.44423 + 4.23353i 0.265114 + 0.459191i
\(86\) 3.69030i 0.397935i
\(87\) 0.553156 11.0945i 0.0593045 1.18945i
\(88\) −3.07697 −0.328007
\(89\) 0.771960 1.33707i 0.0818276 0.141729i −0.822207 0.569188i \(-0.807258\pi\)
0.904035 + 0.427459i \(0.140591\pi\)
\(90\) −0.298411 + 2.98512i −0.0314553 + 0.314659i
\(91\) 1.31761 + 0.390641i 0.138123 + 0.0409503i
\(92\) 7.74345 + 4.47068i 0.807310 + 0.466101i
\(93\) −0.0781288 + 1.56700i −0.00810158 + 0.162491i
\(94\) −3.27742 1.89222i −0.338040 0.195167i
\(95\) −0.713627 0.412013i −0.0732166 0.0422716i
\(96\) 0.0862508 1.72990i 0.00880293 0.176557i
\(97\) 1.93786 + 1.11882i 0.196759 + 0.113599i 0.595143 0.803620i \(-0.297095\pi\)
−0.398384 + 0.917219i \(0.630429\pi\)
\(98\) −3.17492 6.23858i −0.320715 0.630192i
\(99\) −7.49547 5.38776i −0.753323 0.541490i
\(100\) 0.500000 0.866025i 0.0500000 0.0866025i
\(101\) −4.19679 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(102\) 0.421633 8.45656i 0.0417479 0.837324i
\(103\) 0.701137i 0.0690851i 0.999403 + 0.0345426i \(0.0109974\pi\)
−0.999403 + 0.0345426i \(0.989003\pi\)
\(104\) −0.259719 0.449846i −0.0254675 0.0441110i
\(105\) 1.51975 4.32323i 0.148313 0.421904i
\(106\) −2.71181 + 4.69700i −0.263395 + 0.456213i
\(107\) −17.8959 10.3322i −1.73006 0.998851i −0.888990 0.457927i \(-0.848592\pi\)
−0.841072 0.540924i \(-0.818075\pi\)
\(108\) 3.23915 4.06299i 0.311687 0.390962i
\(109\) −0.903287 1.56454i −0.0865192 0.149856i 0.819518 0.573053i \(-0.194241\pi\)
−0.906038 + 0.423197i \(0.860908\pi\)
\(110\) 1.53849 + 2.66474i 0.146689 + 0.254073i
\(111\) −8.78238 0.437878i −0.833587 0.0415616i
\(112\) −0.752047 + 2.53662i −0.0710618 + 0.239688i
\(113\) −16.2514 + 9.38276i −1.52881 + 0.882656i −0.529393 + 0.848377i \(0.677580\pi\)
−0.999412 + 0.0342794i \(0.989086\pi\)
\(114\) 0.651191 + 1.27004i 0.0609896 + 0.118950i
\(115\) 8.94137i 0.833787i
\(116\) 5.55412 3.20667i 0.515687 0.297732i
\(117\) 0.155006 1.55058i 0.0143303 0.143351i
\(118\) 10.5822i 0.974168i
\(119\) −3.67635 + 12.4002i −0.337011 + 1.13672i
\(120\) −1.54126 + 0.790256i −0.140698 + 0.0721401i
\(121\) 1.53223 0.139293
\(122\) 4.76240 8.24872i 0.431168 0.746804i
\(123\) 4.10805 6.36120i 0.370411 0.573570i
\(124\) −0.784474 + 0.452916i −0.0704479 + 0.0406731i
\(125\) −1.00000 −0.0894427
\(126\) −6.27357 + 4.86233i −0.558894 + 0.433171i
\(127\) 1.53891 0.136556 0.0682779 0.997666i \(-0.478250\pi\)
0.0682779 + 0.997666i \(0.478250\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 6.38386 + 0.318291i 0.562067 + 0.0280240i
\(130\) −0.259719 + 0.449846i −0.0227788 + 0.0394541i
\(131\) 10.5223 0.919335 0.459668 0.888091i \(-0.347969\pi\)
0.459668 + 0.888091i \(0.347969\pi\)
\(132\) 0.265391 5.32286i 0.0230994 0.463296i
\(133\) −0.508437 2.12005i −0.0440871 0.183832i
\(134\) 7.90574i 0.682952i
\(135\) −5.13823 0.773690i −0.442228 0.0665887i
\(136\) 4.23353 2.44423i 0.363022 0.209591i
\(137\) 0.00335499i 0.000286636i −1.00000 0.000143318i \(-0.999954\pi\)
1.00000 0.000143318i \(-4.56196e-5\pi\)
\(138\) −8.40172 + 13.0098i −0.715202 + 1.10747i
\(139\) 16.6324 9.60272i 1.41074 0.814492i 0.415284 0.909692i \(-0.363682\pi\)
0.995458 + 0.0951995i \(0.0303489\pi\)
\(140\) 2.57280 0.617016i 0.217441 0.0521474i
\(141\) 3.55603 5.50641i 0.299472 0.463723i
\(142\) −5.33799 9.24567i −0.447954 0.775879i
\(143\) −0.799148 1.38416i −0.0668281 0.115750i
\(144\) 2.98512 + 0.298411i 0.248760 + 0.0248676i
\(145\) −5.55412 3.20667i −0.461244 0.266300i
\(146\) −3.33830 + 5.78211i −0.276280 + 0.478530i
\(147\) 11.0660 4.95421i 0.912706 0.408617i
\(148\) −2.53840 4.39664i −0.208655 0.361402i
\(149\) 12.0662i 0.988502i −0.869319 0.494251i \(-0.835442\pi\)
0.869319 0.494251i \(-0.164558\pi\)
\(150\) 1.45501 + 0.939646i 0.118801 + 0.0767218i
\(151\) −14.6605 −1.19305 −0.596527 0.802593i \(-0.703453\pi\)
−0.596527 + 0.802593i \(0.703453\pi\)
\(152\) −0.412013 + 0.713627i −0.0334186 + 0.0578828i
\(153\) 14.5927 + 1.45877i 1.17975 + 0.117934i
\(154\) −2.31403 + 7.80511i −0.186470 + 0.628953i
\(155\) 0.784474 + 0.452916i 0.0630105 + 0.0363791i
\(156\) 0.800590 0.410488i 0.0640985 0.0328654i
\(157\) −0.502653 0.290207i −0.0401161 0.0231610i 0.479808 0.877374i \(-0.340706\pi\)
−0.519924 + 0.854213i \(0.674040\pi\)
\(158\) 2.99730 + 1.73049i 0.238453 + 0.137671i
\(159\) −7.89145 5.09629i −0.625833 0.404162i
\(160\) −0.866025 0.500000i −0.0684653 0.0395285i
\(161\) 17.1638 16.2800i 1.35270 1.28304i
\(162\) 6.74920 + 5.95385i 0.530267 + 0.467779i
\(163\) 0.0642633 0.111307i 0.00503349 0.00871827i −0.863498 0.504353i \(-0.831731\pi\)
0.868531 + 0.495635i \(0.165064\pi\)
\(164\) 4.37192 0.341389
\(165\) −4.74243 + 2.43160i −0.369198 + 0.189300i
\(166\) 6.64066i 0.515415i
\(167\) −12.6749 21.9535i −0.980811 1.69881i −0.659247 0.751927i \(-0.729125\pi\)
−0.321564 0.946888i \(-0.604209\pi\)
\(168\) −4.32323 1.51975i −0.333545 0.117252i
\(169\) −6.36509 + 11.0247i −0.489622 + 0.848051i
\(170\) −4.23353 2.44423i −0.324697 0.187464i
\(171\) −2.25321 + 1.01695i −0.172307 + 0.0777684i
\(172\) 1.84515 + 3.19589i 0.140691 + 0.243685i
\(173\) 2.36631 + 4.09857i 0.179907 + 0.311609i 0.941849 0.336037i \(-0.109087\pi\)
−0.761941 + 0.647646i \(0.775754\pi\)
\(174\) 5.06818 + 9.88466i 0.384218 + 0.749354i
\(175\) −1.82075 1.91960i −0.137636 0.145108i
\(176\) 2.66474 1.53849i 0.200862 0.115968i
\(177\) 18.3061 + 0.912720i 1.37597 + 0.0686043i
\(178\) 1.54392i 0.115722i
\(179\) −6.52127 + 3.76505i −0.487422 + 0.281413i −0.723504 0.690320i \(-0.757470\pi\)
0.236082 + 0.971733i \(0.424137\pi\)
\(180\) −1.23413 2.73440i −0.0919866 0.203810i
\(181\) 12.3791i 0.920133i −0.887884 0.460067i \(-0.847825\pi\)
0.887884 0.460067i \(-0.152175\pi\)
\(182\) −1.33641 + 0.320501i −0.0990611 + 0.0237571i
\(183\) 13.8587 + 8.94995i 1.02447 + 0.661599i
\(184\) −8.94137 −0.659166
\(185\) −2.53840 + 4.39664i −0.186627 + 0.323248i
\(186\) −0.715840 1.39613i −0.0524879 0.102369i
\(187\) 13.0265 7.52084i 0.952590 0.549978i
\(188\) 3.78444 0.276008
\(189\) −7.87026 11.2720i −0.572477 0.819921i
\(190\) 0.824025 0.0597811
\(191\) 16.6514 9.61366i 1.20485 0.695620i 0.243220 0.969971i \(-0.421796\pi\)
0.961630 + 0.274351i \(0.0884630\pi\)
\(192\) 0.790256 + 1.54126i 0.0570318 + 0.111231i
\(193\) −11.8348 + 20.4985i −0.851889 + 1.47551i 0.0276128 + 0.999619i \(0.491209\pi\)
−0.879502 + 0.475896i \(0.842124\pi\)
\(194\) −2.23764 −0.160653
\(195\) −0.755788 0.488087i −0.0541231 0.0349527i
\(196\) 5.86885 + 3.81531i 0.419204 + 0.272522i
\(197\) 5.93788i 0.423057i 0.977372 + 0.211528i \(0.0678441\pi\)
−0.977372 + 0.211528i \(0.932156\pi\)
\(198\) 9.18514 + 0.918202i 0.652760 + 0.0652538i
\(199\) −14.4039 + 8.31608i −1.02106 + 0.589511i −0.914412 0.404785i \(-0.867346\pi\)
−0.106652 + 0.994296i \(0.534013\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 13.6762 + 0.681876i 0.964641 + 0.0480958i
\(202\) 3.63453 2.09840i 0.255725 0.147643i
\(203\) −3.95714 16.5002i −0.277737 1.15809i
\(204\) 3.86313 + 7.53441i 0.270473 + 0.527514i
\(205\) −2.18596 3.78619i −0.152674 0.264439i
\(206\) −0.350569 0.607203i −0.0244253 0.0423058i
\(207\) −21.7810 15.6563i −1.51389 1.08819i
\(208\) 0.449846 + 0.259719i 0.0311912 + 0.0180082i
\(209\) −1.26775 + 2.19581i −0.0876923 + 0.151888i
\(210\) 0.845472 + 4.50391i 0.0583431 + 0.310799i
\(211\) 10.7108 + 18.5516i 0.737360 + 1.27714i 0.953680 + 0.300822i \(0.0972611\pi\)
−0.216320 + 0.976322i \(0.569406\pi\)
\(212\) 5.42363i 0.372496i
\(213\) 16.4545 8.43675i 1.12744 0.578077i
\(214\) 20.6644 1.41259
\(215\) 1.84515 3.19589i 0.125838 0.217958i
\(216\) −0.773690 + 5.13823i −0.0526430 + 0.349612i
\(217\) 0.558914 + 2.33053i 0.0379415 + 0.158206i
\(218\) 1.56454 + 0.903287i 0.105964 + 0.0611783i
\(219\) −9.71455 6.27364i −0.656448 0.423934i
\(220\) −2.66474 1.53849i −0.179657 0.103725i
\(221\) 2.19905 + 1.26962i 0.147924 + 0.0854042i
\(222\) 7.82470 4.01198i 0.525160 0.269266i
\(223\) 23.0028 + 13.2807i 1.54038 + 0.889340i 0.998814 + 0.0486838i \(0.0155027\pi\)
0.541569 + 0.840657i \(0.317831\pi\)
\(224\) −0.617016 2.57280i −0.0412261 0.171902i
\(225\) −1.75099 + 2.43599i −0.116733 + 0.162399i
\(226\) 9.38276 16.2514i 0.624132 1.08103i
\(227\) −26.7377 −1.77464 −0.887321 0.461152i \(-0.847436\pi\)
−0.887321 + 0.461152i \(0.847436\pi\)
\(228\) −1.19897 0.774292i −0.0794036 0.0512788i
\(229\) 7.93372i 0.524275i −0.965031 0.262137i \(-0.915573\pi\)
0.965031 0.262137i \(-0.0844274\pi\)
\(230\) 4.47068 + 7.74345i 0.294788 + 0.510588i
\(231\) −13.3025 4.67624i −0.875239 0.307674i
\(232\) −3.20667 + 5.55412i −0.210528 + 0.364646i
\(233\) 24.2871 + 14.0222i 1.59110 + 0.918623i 0.993118 + 0.117114i \(0.0373644\pi\)
0.597983 + 0.801509i \(0.295969\pi\)
\(234\) 0.641053 + 1.42035i 0.0419069 + 0.0928510i
\(235\) −1.89222 3.27742i −0.123435 0.213795i
\(236\) 5.29109 + 9.16443i 0.344420 + 0.596554i
\(237\) −3.25210 + 5.03578i −0.211247 + 0.327109i
\(238\) −3.01626 12.5770i −0.195515 0.815247i
\(239\) −24.5540 + 14.1762i −1.58826 + 0.916985i −0.594671 + 0.803969i \(0.702718\pi\)
−0.993593 + 0.113016i \(0.963949\pi\)
\(240\) 0.939646 1.45501i 0.0606539 0.0939207i
\(241\) 0.954238i 0.0614679i 0.999528 + 0.0307339i \(0.00978446\pi\)
−0.999528 + 0.0307339i \(0.990216\pi\)
\(242\) −1.32695 + 0.766113i −0.0852994 + 0.0492476i
\(243\) −10.8817 + 11.1619i −0.698061 + 0.716038i
\(244\) 9.52480i 0.609763i
\(245\) 0.369732 6.99023i 0.0236213 0.446589i
\(246\) −0.377081 + 7.56299i −0.0240418 + 0.482198i
\(247\) −0.428029 −0.0272349
\(248\) 0.452916 0.784474i 0.0287602 0.0498142i
\(249\) 11.4877 + 0.572762i 0.728003 + 0.0362973i
\(250\) 0.866025 0.500000i 0.0547723 0.0316228i
\(251\) 6.84608 0.432121 0.216060 0.976380i \(-0.430679\pi\)
0.216060 + 0.976380i \(0.430679\pi\)
\(252\) 3.00191 7.34769i 0.189102 0.462861i
\(253\) −27.5124 −1.72969
\(254\) −1.33273 + 0.769453i −0.0836230 + 0.0482798i
\(255\) 4.59342 7.11278i 0.287651 0.445419i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −26.4342 −1.64892 −0.824459 0.565922i \(-0.808521\pi\)
−0.824459 + 0.565922i \(0.808521\pi\)
\(258\) −5.68773 + 2.91628i −0.354102 + 0.181560i
\(259\) −13.0616 + 3.13247i −0.811608 + 0.194642i
\(260\) 0.519437i 0.0322141i
\(261\) −17.5366 + 7.91490i −1.08549 + 0.489920i
\(262\) −9.11256 + 5.26114i −0.562976 + 0.325034i
\(263\) 25.7323i 1.58672i 0.608750 + 0.793362i \(0.291671\pi\)
−0.608750 + 0.793362i \(0.708329\pi\)
\(264\) 2.43160 + 4.74243i 0.149654 + 0.291877i
\(265\) −4.69700 + 2.71181i −0.288534 + 0.166585i
\(266\) 1.50035 + 1.58180i 0.0919921 + 0.0969864i
\(267\) −2.67083 0.133164i −0.163452 0.00814952i
\(268\) 3.95287 + 6.84657i 0.241460 + 0.418221i
\(269\) −4.44806 7.70427i −0.271203 0.469738i 0.697967 0.716130i \(-0.254088\pi\)
−0.969170 + 0.246392i \(0.920755\pi\)
\(270\) 4.83668 1.89908i 0.294351 0.115574i
\(271\) 19.2172 + 11.0951i 1.16736 + 0.673978i 0.953058 0.302789i \(-0.0979176\pi\)
0.214306 + 0.976767i \(0.431251\pi\)
\(272\) −2.44423 + 4.23353i −0.148203 + 0.256696i
\(273\) −0.439170 2.33950i −0.0265798 0.141593i
\(274\) 0.00167750 + 0.00290551i 0.000101341 + 0.000175528i
\(275\) 3.07697i 0.185549i
\(276\) 0.771200 15.4677i 0.0464208 0.931045i
\(277\) 12.6086 0.757576 0.378788 0.925484i \(-0.376341\pi\)
0.378788 + 0.925484i \(0.376341\pi\)
\(278\) −9.60272 + 16.6324i −0.575933 + 0.997545i
\(279\) 2.47691 1.11792i 0.148289 0.0669278i
\(280\) −1.91960 + 1.82075i −0.114718 + 0.108811i
\(281\) −6.81401 3.93407i −0.406490 0.234687i 0.282791 0.959182i \(-0.408740\pi\)
−0.689280 + 0.724495i \(0.742073\pi\)
\(282\) −0.326410 + 6.54670i −0.0194375 + 0.389850i
\(283\) −25.5885 14.7735i −1.52108 0.878193i −0.999691 0.0248719i \(-0.992082\pi\)
−0.521385 0.853322i \(-0.674584\pi\)
\(284\) 9.24567 + 5.33799i 0.548629 + 0.316751i
\(285\) −0.0710728 + 1.42548i −0.00420999 + 0.0844383i
\(286\) 1.38416 + 0.799148i 0.0818474 + 0.0472546i
\(287\) 3.28789 11.0899i 0.194078 0.654615i
\(288\) −2.73440 + 1.23413i −0.161126 + 0.0727218i
\(289\) −3.44853 + 5.97302i −0.202854 + 0.351354i
\(290\) 6.41334 0.376605
\(291\) 0.192998 3.87090i 0.0113138 0.226916i
\(292\) 6.67660i 0.390719i
\(293\) −3.97830 6.89061i −0.232415 0.402554i 0.726104 0.687585i \(-0.241329\pi\)
−0.958518 + 0.285031i \(0.907996\pi\)
\(294\) −7.10631 + 9.82346i −0.414448 + 0.572916i
\(295\) 5.29109 9.16443i 0.308059 0.533574i
\(296\) 4.39664 + 2.53840i 0.255550 + 0.147542i
\(297\) −2.38063 + 15.8102i −0.138138 + 0.917401i
\(298\) 6.03310 + 10.4496i 0.349488 + 0.605332i
\(299\) −2.32224 4.02224i −0.134299 0.232612i
\(300\) −1.72990 0.0862508i −0.0998759 0.00497969i
\(301\) 9.49440 2.27698i 0.547248 0.131243i
\(302\) 12.6964 7.33025i 0.730593 0.421808i
\(303\) 3.31654 + 6.46837i 0.190530 + 0.371598i
\(304\) 0.824025i 0.0472611i
\(305\) 8.24872 4.76240i 0.472320 0.272694i
\(306\) −13.3670 + 6.03299i −0.764140 + 0.344883i
\(307\) 33.8175i 1.93006i 0.262132 + 0.965032i \(0.415574\pi\)
−0.262132 + 0.965032i \(0.584426\pi\)
\(308\) −1.89854 7.91644i −0.108180 0.451081i
\(309\) 1.08064 0.554078i 0.0614754 0.0315204i
\(310\) −0.905833 −0.0514479
\(311\) −11.6897 + 20.2471i −0.662861 + 1.14811i 0.316999 + 0.948426i \(0.397325\pi\)
−0.979860 + 0.199684i \(0.936009\pi\)
\(312\) −0.488087 + 0.755788i −0.0276325 + 0.0427881i
\(313\) 14.9966 8.65830i 0.847659 0.489396i −0.0122014 0.999926i \(-0.503884\pi\)
0.859860 + 0.510529i \(0.170551\pi\)
\(314\) 0.580414 0.0327546
\(315\) −7.86424 + 1.07412i −0.443100 + 0.0605197i
\(316\) −3.46099 −0.194696
\(317\) 13.8006 7.96781i 0.775121 0.447517i −0.0595771 0.998224i \(-0.518975\pi\)
0.834699 + 0.550707i \(0.185642\pi\)
\(318\) 9.38234 + 0.467792i 0.526136 + 0.0262325i
\(319\) −9.86685 + 17.0899i −0.552437 + 0.956850i
\(320\) 1.00000 0.0559017
\(321\) −1.78232 + 35.7474i −0.0994794 + 1.99522i
\(322\) −6.72433 + 22.6808i −0.374732 + 1.26395i
\(323\) 4.02822i 0.224136i
\(324\) −8.82190 1.78158i −0.490106 0.0989769i
\(325\) −0.449846 + 0.259719i −0.0249530 + 0.0144066i
\(326\) 0.128527i 0.00711843i
\(327\) −1.69754 + 2.62859i −0.0938743 + 0.145361i
\(328\) −3.78619 + 2.18596i −0.209057 + 0.120699i
\(329\) 2.84607 9.59966i 0.156909 0.529247i
\(330\) 2.89127 4.47704i 0.159159 0.246453i
\(331\) −4.20318 7.28013i −0.231028 0.400152i 0.727083 0.686550i \(-0.240876\pi\)
−0.958111 + 0.286398i \(0.907542\pi\)
\(332\) 3.32033 + 5.75098i 0.182227 + 0.315626i
\(333\) 6.26544 + 13.8820i 0.343344 + 0.760729i
\(334\) 21.9535 + 12.6749i 1.20124 + 0.693538i
\(335\) 3.95287 6.84657i 0.215968 0.374068i
\(336\) 4.50391 0.845472i 0.245708 0.0461243i
\(337\) 7.68218 + 13.3059i 0.418475 + 0.724820i 0.995786 0.0917044i \(-0.0292315\pi\)
−0.577311 + 0.816524i \(0.695898\pi\)
\(338\) 12.7302i 0.692431i
\(339\) 27.3041 + 17.6330i 1.48296 + 0.957691i
\(340\) 4.88846 0.265114
\(341\) 1.39361 2.41381i 0.0754684 0.130715i
\(342\) 1.44286 2.00731i 0.0780210 0.108543i
\(343\) 14.0916 12.0177i 0.760877 0.648896i
\(344\) −3.19589 1.84515i −0.172311 0.0994838i
\(345\) −13.7810 + 7.06596i −0.741945 + 0.380419i
\(346\) −4.09857 2.36631i −0.220341 0.127214i
\(347\) −9.56913 5.52474i −0.513698 0.296584i 0.220654 0.975352i \(-0.429181\pi\)
−0.734352 + 0.678768i \(0.762514\pi\)
\(348\) −9.33150 6.02628i −0.500221 0.323042i
\(349\) 13.7644 + 7.94687i 0.736791 + 0.425386i 0.820901 0.571070i \(-0.193472\pi\)
−0.0841107 + 0.996456i \(0.526805\pi\)
\(350\) 2.53662 + 0.752047i 0.135588 + 0.0401986i
\(351\) −2.51235 + 0.986452i −0.134099 + 0.0526529i
\(352\) −1.53849 + 2.66474i −0.0820017 + 0.142031i
\(353\) −11.9879 −0.638053 −0.319026 0.947746i \(-0.603356\pi\)
−0.319026 + 0.947746i \(0.603356\pi\)
\(354\) −16.3099 + 8.36262i −0.866863 + 0.444468i
\(355\) 10.6760i 0.566622i
\(356\) −0.771960 1.33707i −0.0409138 0.0708647i
\(357\) 22.0172 4.13306i 1.16527 0.218745i
\(358\) 3.76505 6.52127i 0.198989 0.344660i
\(359\) −11.7767 6.79925i −0.621548 0.358851i 0.155923 0.987769i \(-0.450165\pi\)
−0.777471 + 0.628918i \(0.783498\pi\)
\(360\) 2.43599 + 1.75099i 0.128388 + 0.0922854i
\(361\) −9.16049 15.8664i −0.482131 0.835076i
\(362\) 6.18956 + 10.7206i 0.325316 + 0.563464i
\(363\) −1.21085 2.36157i −0.0635532 0.123950i
\(364\) 0.997112 0.945766i 0.0522629 0.0495716i
\(365\) −5.78211 + 3.33830i −0.302649 + 0.174735i
\(366\) −16.4770 0.821522i −0.861265 0.0429416i
\(367\) 5.63278i 0.294029i 0.989134 + 0.147014i \(0.0469664\pi\)
−0.989134 + 0.147014i \(0.953034\pi\)
\(368\) 7.74345 4.47068i 0.403655 0.233050i
\(369\) −13.0507 1.30463i −0.679392 0.0679161i
\(370\) 5.07681i 0.263931i
\(371\) −13.7577 4.07882i −0.714262 0.211762i
\(372\) 1.31800 + 0.851163i 0.0683351 + 0.0441307i
\(373\) 5.72999 0.296687 0.148344 0.988936i \(-0.452606\pi\)
0.148344 + 0.988936i \(0.452606\pi\)
\(374\) −7.52084 + 13.0265i −0.388893 + 0.673583i
\(375\) 0.790256 + 1.54126i 0.0408086 + 0.0795906i
\(376\) −3.27742 + 1.89222i −0.169020 + 0.0975837i
\(377\) −3.33133 −0.171572
\(378\) 12.4519 + 5.82675i 0.640455 + 0.299696i
\(379\) −12.0397 −0.618437 −0.309219 0.950991i \(-0.600067\pi\)
−0.309219 + 0.950991i \(0.600067\pi\)
\(380\) −0.713627 + 0.412013i −0.0366083 + 0.0211358i
\(381\) −1.21613 2.37186i −0.0623042 0.121514i
\(382\) −9.61366 + 16.6514i −0.491878 + 0.851957i
\(383\) 20.5060 1.04781 0.523903 0.851778i \(-0.324475\pi\)
0.523903 + 0.851778i \(0.324475\pi\)
\(384\) −1.45501 0.939646i −0.0742509 0.0479511i
\(385\) −5.90656 + 5.60240i −0.301026 + 0.285525i
\(386\) 23.6696i 1.20475i
\(387\) −4.55431 10.0907i −0.231508 0.512941i
\(388\) 1.93786 1.11882i 0.0983797 0.0567995i
\(389\) 25.8396i 1.31012i −0.755577 0.655060i \(-0.772643\pi\)
0.755577 0.655060i \(-0.227357\pi\)
\(390\) 0.898575 + 0.0448019i 0.0455011 + 0.00226863i
\(391\) 37.8536 21.8548i 1.91434 1.10524i
\(392\) −6.99023 0.369732i −0.353060 0.0186743i
\(393\) −8.31529 16.2176i −0.419451 0.818070i
\(394\) −2.96894 5.14236i −0.149573 0.259068i
\(395\) 1.73049 + 2.99730i 0.0870706 + 0.150811i
\(396\) −8.41367 + 3.79739i −0.422803 + 0.190826i
\(397\) 5.58453 + 3.22423i 0.280279 + 0.161819i 0.633550 0.773702i \(-0.281597\pi\)
−0.353271 + 0.935521i \(0.614930\pi\)
\(398\) 8.31608 14.4039i 0.416848 0.722001i
\(399\) −2.86576 + 2.45902i −0.143468 + 0.123105i
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) 12.1434i 0.606413i 0.952925 + 0.303206i \(0.0980571\pi\)
−0.952925 + 0.303206i \(0.901943\pi\)
\(402\) −12.1848 + 6.24755i −0.607724 + 0.311600i
\(403\) 0.470523 0.0234384
\(404\) −2.09840 + 3.63453i −0.104399 + 0.180825i
\(405\) 2.86805 + 8.53078i 0.142515 + 0.423898i
\(406\) 11.6771 + 12.3111i 0.579525 + 0.610988i
\(407\) 13.5284 + 7.81060i 0.670576 + 0.387157i
\(408\) −7.11278 4.59342i −0.352135 0.227408i
\(409\) 19.2077 + 11.0896i 0.949761 + 0.548345i 0.893007 0.450043i \(-0.148591\pi\)
0.0567546 + 0.998388i \(0.481925\pi\)
\(410\) 3.78619 + 2.18596i 0.186987 + 0.107957i
\(411\) −0.00517093 + 0.00265130i −0.000255063 + 0.000130779i
\(412\) 0.607203 + 0.350569i 0.0299147 + 0.0172713i
\(413\) 27.2258 6.52937i 1.33969 0.321289i
\(414\) 26.6911 + 2.66820i 1.31179 + 0.131135i
\(415\) 3.32033 5.75098i 0.162989 0.282305i
\(416\) −0.519437 −0.0254675
\(417\) −27.9442 18.0463i −1.36843 0.883732i
\(418\) 2.53551i 0.124016i
\(419\) −7.31349 12.6673i −0.357287 0.618840i 0.630219 0.776417i \(-0.282965\pi\)
−0.987507 + 0.157577i \(0.949632\pi\)
\(420\) −2.98415 3.47776i −0.145612 0.169697i
\(421\) 17.6810 30.6243i 0.861717 1.49254i −0.00855262 0.999963i \(-0.502722\pi\)
0.870270 0.492575i \(-0.163944\pi\)
\(422\) −18.5516 10.7108i −0.903078 0.521392i
\(423\) −11.2970 1.12932i −0.549279 0.0549092i
\(424\) 2.71181 + 4.69700i 0.131697 + 0.228106i
\(425\) −2.44423 4.23353i −0.118563 0.205356i
\(426\) −10.0316 + 15.5337i −0.486035 + 0.752610i
\(427\) 24.1608 + 7.16310i 1.16922 + 0.346647i
\(428\) −17.8959 + 10.3322i −0.865031 + 0.499426i
\(429\) −1.50183 + 2.32554i −0.0725091 + 0.112278i
\(430\) 3.69030i 0.177962i
\(431\) 14.2396 8.22125i 0.685898 0.396003i −0.116175 0.993229i \(-0.537063\pi\)
0.802074 + 0.597225i \(0.203730\pi\)
\(432\) −1.89908 4.83668i −0.0913695 0.232705i
\(433\) 22.0355i 1.05896i 0.848323 + 0.529479i \(0.177612\pi\)
−0.848323 + 0.529479i \(0.822388\pi\)
\(434\) −1.64930 1.73884i −0.0791687 0.0834669i
\(435\) −0.553156 + 11.0945i −0.0265218 + 0.531938i
\(436\) −1.80657 −0.0865192
\(437\) −3.68396 + 6.38080i −0.176228 + 0.305235i
\(438\) 11.5499 + 0.575862i 0.551874 + 0.0275157i
\(439\) 21.4924 12.4087i 1.02578 0.592233i 0.110006 0.993931i \(-0.464913\pi\)
0.915772 + 0.401697i \(0.131580\pi\)
\(440\) 3.07697 0.146689
\(441\) −16.3807 13.1405i −0.780033 0.625738i
\(442\) −2.53925 −0.120780
\(443\) −14.3967 + 8.31193i −0.684007 + 0.394912i −0.801363 0.598178i \(-0.795891\pi\)
0.117356 + 0.993090i \(0.462558\pi\)
\(444\) −4.77040 + 7.38682i −0.226393 + 0.350563i
\(445\) −0.771960 + 1.33707i −0.0365944 + 0.0633834i
\(446\) −26.5614 −1.25772
\(447\) −18.5972 + 9.53539i −0.879618 + 0.451008i
\(448\) 1.82075 + 1.91960i 0.0860224 + 0.0906926i
\(449\) 12.5154i 0.590638i −0.955399 0.295319i \(-0.904574\pi\)
0.955399 0.295319i \(-0.0954260\pi\)
\(450\) 0.298411 2.98512i 0.0140672 0.140720i
\(451\) −11.6500 + 6.72614i −0.548578 + 0.316721i
\(452\) 18.7655i 0.882656i
\(453\) 11.5855 + 22.5957i 0.544336 + 1.06164i
\(454\) 23.1555 13.3688i 1.08674 0.627431i
\(455\) −1.31761 0.390641i −0.0617707 0.0183135i
\(456\) 1.42548 + 0.0710728i 0.0667544 + 0.00332829i
\(457\) 16.3501 + 28.3193i 0.764827 + 1.32472i 0.940338 + 0.340242i \(0.110509\pi\)
−0.175511 + 0.984478i \(0.556158\pi\)
\(458\) 3.96686 + 6.87080i 0.185359 + 0.321051i
\(459\) −9.28358 23.6439i −0.433320 1.10360i
\(460\) −7.74345 4.47068i −0.361040 0.208447i
\(461\) 2.69005 4.65931i 0.125288 0.217006i −0.796557 0.604563i \(-0.793348\pi\)
0.921846 + 0.387557i \(0.126681\pi\)
\(462\) 13.8584 2.60150i 0.644751 0.121033i
\(463\) 5.41835 + 9.38485i 0.251812 + 0.436151i 0.964025 0.265813i \(-0.0856402\pi\)
−0.712213 + 0.701964i \(0.752307\pi\)
\(464\) 6.41334i 0.297732i
\(465\) 0.0781288 1.56700i 0.00362314 0.0726680i
\(466\) −28.0443 −1.29913
\(467\) −2.76713 + 4.79281i −0.128048 + 0.221785i −0.922920 0.384992i \(-0.874204\pi\)
0.794872 + 0.606777i \(0.207538\pi\)
\(468\) −1.26534 0.909530i −0.0584904 0.0420431i
\(469\) 20.3399 4.87797i 0.939208 0.225244i
\(470\) 3.27742 + 1.89222i 0.151176 + 0.0872815i
\(471\) −0.0500611 + 1.00406i −0.00230670 + 0.0462646i
\(472\) −9.16443 5.29109i −0.421827 0.243542i
\(473\) −9.83368 5.67748i −0.452153 0.261051i
\(474\) 0.298513 5.98717i 0.0137111 0.275000i
\(475\) 0.713627 + 0.412013i 0.0327434 + 0.0189044i
\(476\) 8.90067 + 9.38389i 0.407962 + 0.430110i
\(477\) −1.61847 + 16.1902i −0.0741046 + 0.741298i
\(478\) 14.1762 24.5540i 0.648406 1.12307i
\(479\) 39.8255 1.81968 0.909838 0.414964i \(-0.136206\pi\)
0.909838 + 0.414964i \(0.136206\pi\)
\(480\) −0.0862508 + 1.72990i −0.00393679 + 0.0789589i
\(481\) 2.63708i 0.120241i
\(482\) −0.477119 0.826394i −0.0217322 0.0376412i
\(483\) −38.6556 13.5887i −1.75889 0.618306i
\(484\) 0.766113 1.32695i 0.0348233 0.0603158i
\(485\) −1.93786 1.11882i −0.0879935 0.0508031i
\(486\) 3.84286 15.1074i 0.174316 0.685284i
\(487\) 19.7936 + 34.2835i 0.896934 + 1.55354i 0.831393 + 0.555685i \(0.187544\pi\)
0.0655411 + 0.997850i \(0.479123\pi\)
\(488\) −4.76240 8.24872i −0.215584 0.373402i
\(489\) −0.222339 0.0110855i −0.0100545 0.000501305i
\(490\) 3.17492 + 6.23858i 0.143428 + 0.281830i
\(491\) 27.1823 15.6937i 1.22672 0.708247i 0.260377 0.965507i \(-0.416153\pi\)
0.966342 + 0.257260i \(0.0828197\pi\)
\(492\) −3.45493 6.73828i −0.155760 0.303785i
\(493\) 31.3514i 1.41200i
\(494\) 0.370684 0.214015i 0.0166779 0.00962898i
\(495\) 7.49547 + 5.38776i 0.336896 + 0.242162i
\(496\) 0.905833i 0.0406731i
\(497\) 20.4936 19.4383i 0.919264 0.871927i
\(498\) −10.2350 + 5.24782i −0.458642 + 0.235160i
\(499\) −29.6748 −1.32843 −0.664214 0.747542i \(-0.731234\pi\)
−0.664214 + 0.747542i \(0.731234\pi\)
\(500\) −0.500000 + 0.866025i −0.0223607 + 0.0387298i
\(501\) −23.8198 + 36.8842i −1.06419 + 1.64787i
\(502\) −5.92888 + 3.42304i −0.264619 + 0.152778i
\(503\) −31.4939 −1.40424 −0.702121 0.712058i \(-0.747764\pi\)
−0.702121 + 0.712058i \(0.747764\pi\)
\(504\) 1.07412 + 7.86424i 0.0478450 + 0.350301i
\(505\) 4.19679 0.186755
\(506\) 23.8264 13.7562i 1.05921 0.611537i
\(507\) 22.0220 + 1.09799i 0.978030 + 0.0487634i
\(508\) 0.769453 1.33273i 0.0341390 0.0591304i
\(509\) 12.4151 0.550290 0.275145 0.961403i \(-0.411274\pi\)
0.275145 + 0.961403i \(0.411274\pi\)
\(510\) −0.421633 + 8.45656i −0.0186702 + 0.374463i
\(511\) −16.9360 5.02112i −0.749204 0.222121i
\(512\) 1.00000i 0.0441942i
\(513\) 3.34801 + 2.66914i 0.147818 + 0.117846i
\(514\) 22.8927 13.2171i 1.00975 0.582981i
\(515\) 0.701137i 0.0308958i
\(516\) 3.46758 5.36944i 0.152652 0.236376i
\(517\) −10.0845 + 5.82231i −0.443517 + 0.256065i
\(518\) 9.74544 9.24360i 0.428190 0.406141i
\(519\) 4.44699 6.88603i 0.195201 0.302263i
\(520\) 0.259719 + 0.449846i 0.0113894 + 0.0197270i
\(521\) 20.9931 + 36.3610i 0.919722 + 1.59301i 0.799836 + 0.600218i \(0.204920\pi\)
0.119886 + 0.992788i \(0.461747\pi\)
\(522\) 11.2297 15.6228i 0.491511 0.683792i
\(523\) −20.1026 11.6062i −0.879024 0.507505i −0.00868774 0.999962i \(-0.502765\pi\)
−0.870337 + 0.492457i \(0.836099\pi\)
\(524\) 5.26114 9.11256i 0.229834 0.398084i
\(525\) −1.51975 + 4.32323i −0.0663275 + 0.188681i
\(526\) −12.8662 22.2849i −0.560992 0.971666i
\(527\) 4.42813i 0.192892i
\(528\) −4.47704 2.89127i −0.194838 0.125826i
\(529\) −56.9480 −2.47600
\(530\) 2.71181 4.69700i 0.117794 0.204025i
\(531\) −13.0598 28.9359i −0.566746 1.25571i
\(532\) −2.09024 0.619706i −0.0906233 0.0268677i
\(533\) −1.96669 1.13547i −0.0851867 0.0491826i
\(534\) 2.37959 1.22009i 0.102975 0.0527985i
\(535\) 17.8959 + 10.3322i 0.773707 + 0.446700i
\(536\) −6.84657 3.95287i −0.295727 0.170738i
\(537\) 10.9564 + 7.07564i 0.472804 + 0.305336i
\(538\) 7.70427 + 4.44806i 0.332155 + 0.191770i
\(539\) −21.5088 1.13766i −0.926448 0.0490023i
\(540\) −3.23915 + 4.06299i −0.139391 + 0.174843i
\(541\) 3.91386 6.77900i 0.168270 0.291452i −0.769542 0.638596i \(-0.779515\pi\)
0.937812 + 0.347145i \(0.112849\pi\)
\(542\) −22.1902 −0.953149
\(543\) −19.0795 + 9.78268i −0.818780 + 0.419815i
\(544\) 4.88846i 0.209591i
\(545\) 0.903287 + 1.56454i 0.0386926 + 0.0670175i
\(546\) 1.55008 + 1.80648i 0.0663373 + 0.0773102i
\(547\) 20.3459 35.2402i 0.869930 1.50676i 0.00786205 0.999969i \(-0.497497\pi\)
0.862068 0.506793i \(-0.169169\pi\)
\(548\) −0.00290551 0.00167750i −0.000124117 7.16591e-5i
\(549\) 2.84230 28.4327i 0.121307 1.21348i
\(550\) −1.53849 2.66474i −0.0656013 0.113625i
\(551\) 2.64238 + 4.57674i 0.112569 + 0.194975i
\(552\) 7.06596 + 13.7810i 0.300747 + 0.586559i
\(553\) −2.60283 + 8.77920i −0.110683 + 0.373330i
\(554\) −10.9193 + 6.30428i −0.463918 + 0.267843i
\(555\) 8.78238 + 0.437878i 0.372791 + 0.0185869i
\(556\) 19.2054i 0.814492i
\(557\) 26.3951 15.2392i 1.11840 0.645707i 0.177406 0.984138i \(-0.443229\pi\)
0.940991 + 0.338430i \(0.109896\pi\)
\(558\) −1.58611 + 2.20660i −0.0671452 + 0.0934127i
\(559\) 1.91688i 0.0810754i
\(560\) 0.752047 2.53662i 0.0317798 0.107192i
\(561\) −21.8858 14.1339i −0.924021 0.596732i
\(562\) 7.86814 0.331898
\(563\) 4.87559 8.44476i 0.205481 0.355904i −0.744805 0.667283i \(-0.767457\pi\)
0.950286 + 0.311378i \(0.100791\pi\)
\(564\) −2.99067 5.83282i −0.125930 0.245606i
\(565\) 16.2514 9.38276i 0.683703 0.394736i
\(566\) 29.5470 1.24195
\(567\) −11.1537 + 21.0379i −0.468411 + 0.883511i
\(568\) −10.6760 −0.447954
\(569\) 28.8139 16.6357i 1.20794 0.697405i 0.245632 0.969363i \(-0.421004\pi\)
0.962309 + 0.271958i \(0.0876711\pi\)
\(570\) −0.651191 1.27004i −0.0272754 0.0531962i
\(571\) 18.9605 32.8406i 0.793473 1.37434i −0.130332 0.991470i \(-0.541604\pi\)
0.923804 0.382865i \(-0.125062\pi\)
\(572\) −1.59830 −0.0668281
\(573\) −27.9760 18.0669i −1.16872 0.754755i
\(574\) 2.69754 + 11.2481i 0.112593 + 0.469485i
\(575\) 8.94137i 0.372881i
\(576\) 1.75099 2.43599i 0.0729580 0.101499i
\(577\) −11.5550 + 6.67129i −0.481042 + 0.277730i −0.720850 0.693091i \(-0.756249\pi\)
0.239809 + 0.970820i \(0.422915\pi\)
\(578\) 6.89705i 0.286880i
\(579\) 40.9461 + 2.04152i 1.70166 + 0.0848428i
\(580\) −5.55412 + 3.20667i −0.230622 + 0.133150i
\(581\) 17.0851 4.09740i 0.708809 0.169989i
\(582\) 1.76831 + 3.44880i 0.0732988 + 0.142957i
\(583\) 8.34418 + 14.4525i 0.345581 + 0.598563i
\(584\) 3.33830 + 5.78211i 0.138140 + 0.239265i
\(585\) −0.155006 + 1.55058i −0.00640869 + 0.0641087i
\(586\) 6.89061 + 3.97830i 0.284649 + 0.164342i
\(587\) −8.76612 + 15.1834i −0.361817 + 0.626685i −0.988260 0.152782i \(-0.951177\pi\)
0.626443 + 0.779467i \(0.284510\pi\)
\(588\) 1.24251 12.0605i 0.0512403 0.497367i
\(589\) −0.373215 0.646427i −0.0153780 0.0266356i
\(590\) 10.5822i 0.435661i
\(591\) 9.15185 4.69245i 0.376457 0.193021i
\(592\) −5.07681 −0.208655
\(593\) −13.1868 + 22.8403i −0.541519 + 0.937938i 0.457298 + 0.889313i \(0.348817\pi\)
−0.998817 + 0.0486245i \(0.984516\pi\)
\(594\) −5.84342 14.8824i −0.239758 0.610630i
\(595\) 3.67635 12.4002i 0.150716 0.508357i
\(596\) −10.4496 6.03310i −0.428034 0.247126i
\(597\) 24.2000 + 15.6284i 0.990441 + 0.639626i
\(598\) 4.02224 + 2.32224i 0.164481 + 0.0949634i
\(599\) 24.1184 + 13.9248i 0.985452 + 0.568951i 0.903912 0.427719i \(-0.140683\pi\)
0.0815405 + 0.996670i \(0.474016\pi\)
\(600\) 1.54126 0.790256i 0.0629219 0.0322621i
\(601\) −23.8076 13.7453i −0.971131 0.560683i −0.0715503 0.997437i \(-0.522795\pi\)
−0.899581 + 0.436754i \(0.856128\pi\)
\(602\) −7.08390 + 6.71912i −0.288718 + 0.273851i
\(603\) −9.75671 21.6174i −0.397324 0.880330i
\(604\) −7.33025 + 12.6964i −0.298263 + 0.516607i
\(605\) −1.53223 −0.0622938
\(606\) −6.10639 3.94350i −0.248055 0.160194i
\(607\) 39.3814i 1.59844i −0.601037 0.799221i \(-0.705246\pi\)
0.601037 0.799221i \(-0.294754\pi\)
\(608\) 0.412013 + 0.713627i 0.0167093 + 0.0289414i
\(609\) −22.3041 + 19.1384i −0.903807 + 0.775527i
\(610\) −4.76240 + 8.24872i −0.192824 + 0.333981i
\(611\) −1.70241 0.982888i −0.0688722 0.0397634i
\(612\) 8.55966 11.9082i 0.346004 0.481361i
\(613\) −0.989576 1.71400i −0.0399686 0.0692277i 0.845349 0.534214i \(-0.179392\pi\)
−0.885318 + 0.464987i \(0.846059\pi\)
\(614\) −16.9087 29.2868i −0.682381 1.18192i
\(615\) −4.10805 + 6.36120i −0.165653 + 0.256508i
\(616\) 5.60240 + 5.90656i 0.225727 + 0.237982i
\(617\) −33.1061 + 19.1138i −1.33280 + 0.769493i −0.985728 0.168346i \(-0.946158\pi\)
−0.347072 + 0.937838i \(0.612824\pi\)
\(618\) −0.658821 + 1.02016i −0.0265017 + 0.0410370i
\(619\) 26.6725i 1.07206i 0.844200 + 0.536028i \(0.180076\pi\)
−0.844200 + 0.536028i \(0.819924\pi\)
\(620\) 0.784474 0.452916i 0.0315052 0.0181896i
\(621\) −6.91785 + 45.9428i −0.277604 + 1.84362i
\(622\) 23.3794i 0.937427i
\(623\) −3.97219 + 0.952623i −0.159143 + 0.0381661i
\(624\) 0.0448019 0.898575i 0.00179351 0.0359718i
\(625\) 1.00000 0.0400000
\(626\) −8.65830 + 14.9966i −0.346055 + 0.599385i
\(627\) 4.38618 + 0.218689i 0.175167 + 0.00873361i
\(628\) −0.502653 + 0.290207i −0.0200580 + 0.0115805i
\(629\) −24.8178 −0.989549
\(630\) 6.27357 4.86233i 0.249945 0.193720i
\(631\) 8.55537 0.340584 0.170292 0.985394i \(-0.445529\pi\)
0.170292 + 0.985394i \(0.445529\pi\)
\(632\) 2.99730 1.73049i 0.119226 0.0688353i
\(633\) 20.1287 31.1686i 0.800043 1.23884i
\(634\) −7.96781 + 13.8006i −0.316442 + 0.548094i
\(635\) −1.53891 −0.0610696
\(636\) −8.35924 + 4.28605i −0.331466 + 0.169953i
\(637\) −1.64917 3.24055i −0.0653425 0.128395i
\(638\) 19.7337i 0.781265i
\(639\) −26.0065 18.6936i −1.02880 0.739505i
\(640\) −0.866025 + 0.500000i −0.0342327 + 0.0197642i
\(641\) 24.1197i 0.952672i 0.879263 + 0.476336i \(0.158035\pi\)
−0.879263 + 0.476336i \(0.841965\pi\)
\(642\) −16.3302 31.8493i −0.644500 1.25699i
\(643\) 13.4384 7.75864i 0.529957 0.305971i −0.211042 0.977477i \(-0.567686\pi\)
0.740999 + 0.671506i \(0.234352\pi\)
\(644\) −5.51697 23.0043i −0.217399 0.906498i
\(645\) −6.38386 0.318291i −0.251364 0.0125327i
\(646\) 2.01411 + 3.48854i 0.0792440 + 0.137255i
\(647\) −3.88442 6.72802i −0.152712 0.264506i 0.779511 0.626388i \(-0.215467\pi\)
−0.932224 + 0.361883i \(0.882134\pi\)
\(648\) 8.53078 2.86805i 0.335121 0.112668i
\(649\) −28.1987 16.2805i −1.10690 0.639067i
\(650\) 0.259719 0.449846i 0.0101870 0.0176444i
\(651\) 3.15027 2.70314i 0.123469 0.105945i
\(652\) −0.0642633 0.111307i −0.00251675 0.00435913i
\(653\) 17.3302i 0.678184i −0.940753 0.339092i \(-0.889880\pi\)
0.940753 0.339092i \(-0.110120\pi\)
\(654\) 0.155818 3.12520i 0.00609298 0.122205i
\(655\) −10.5223 −0.411139
\(656\) 2.18596 3.78619i 0.0853473 0.147826i
\(657\) −1.99237 + 19.9305i −0.0777297 + 0.777562i
\(658\) 2.33506 + 9.73659i 0.0910301 + 0.379572i
\(659\) 3.46721 + 2.00179i 0.135063 + 0.0779787i 0.566009 0.824399i \(-0.308487\pi\)
−0.430946 + 0.902378i \(0.641820\pi\)
\(660\) −0.265391 + 5.32286i −0.0103303 + 0.207192i
\(661\) −33.8131 19.5220i −1.31518 0.759317i −0.332228 0.943199i \(-0.607800\pi\)
−0.982948 + 0.183882i \(0.941134\pi\)
\(662\) 7.28013 + 4.20318i 0.282950 + 0.163361i
\(663\) 0.219012 4.39265i 0.00850573 0.170596i
\(664\) −5.75098 3.32033i −0.223181 0.128854i
\(665\) 0.508437 + 2.12005i 0.0197163 + 0.0822121i
\(666\) −12.3670 8.88945i −0.479213 0.344459i
\(667\) −28.6720 + 49.6614i −1.11019 + 1.92290i
\(668\) −25.3497 −0.980811
\(669\) 2.29094 45.9486i 0.0885728 1.77647i
\(670\) 7.90574i 0.305425i
\(671\) −14.6538 25.3811i −0.565703 0.979827i
\(672\) −3.47776 + 2.98415i −0.134158 + 0.115116i
\(673\) 5.02582 8.70498i 0.193731 0.335552i −0.752753 0.658303i \(-0.771274\pi\)
0.946484 + 0.322751i \(0.104608\pi\)
\(674\) −13.3059 7.68218i −0.512525 0.295906i
\(675\) 5.13823 + 0.773690i 0.197771 + 0.0297794i
\(676\) 6.36509 + 11.0247i 0.244811 + 0.424026i
\(677\) −11.3646 19.6840i −0.436776 0.756519i 0.560663 0.828044i \(-0.310547\pi\)
−0.997439 + 0.0715258i \(0.977213\pi\)
\(678\) −32.4625 1.61854i −1.24672 0.0621597i
\(679\) −1.38066 5.75700i −0.0529849 0.220933i
\(680\) −4.23353 + 2.44423i −0.162349 + 0.0937320i
\(681\) 21.1296 + 41.2098i 0.809688 + 1.57916i
\(682\) 2.78723i 0.106728i
\(683\) −6.28399 + 3.62806i −0.240450 + 0.138824i −0.615384 0.788228i \(-0.710999\pi\)
0.374933 + 0.927052i \(0.377666\pi\)
\(684\) −0.245898 + 2.45982i −0.00940215 + 0.0940534i
\(685\) 0.00335499i 0.000128188i
\(686\) −6.19485 + 17.4535i −0.236520 + 0.666377i
\(687\) −12.2280 + 6.26966i −0.466526 + 0.239203i
\(688\) 3.69030 0.140691
\(689\) −1.40862 + 2.43980i −0.0536640 + 0.0929488i
\(690\) 8.40172 13.0098i 0.319848 0.495275i
\(691\) −8.38246 + 4.83962i −0.318884 + 0.184108i −0.650895 0.759168i \(-0.725606\pi\)
0.332011 + 0.943275i \(0.392273\pi\)
\(692\) 4.73262 0.179907
\(693\) 3.30503 + 24.1981i 0.125548 + 0.919209i
\(694\) 11.0495 0.419433
\(695\) −16.6324 + 9.60272i −0.630903 + 0.364252i
\(696\) 11.0945 + 0.553156i 0.420534 + 0.0209673i
\(697\) 10.6860 18.5086i 0.404760 0.701065i
\(698\) −15.8937 −0.601587
\(699\) 2.41885 48.5140i 0.0914891 1.83497i
\(700\) −2.57280 + 0.617016i −0.0972426 + 0.0233210i
\(701\) 5.56860i 0.210323i −0.994455 0.105162i \(-0.966464\pi\)
0.994455 0.105162i \(-0.0335360\pi\)
\(702\) 1.68254 2.11047i 0.0635032 0.0796545i
\(703\) 3.62295 2.09171i 0.136642 0.0788903i
\(704\) 3.07697i 0.115968i
\(705\) −3.55603 + 5.50641i −0.133928 + 0.207383i
\(706\) 10.3818 5.99396i 0.390726 0.225586i
\(707\) 7.64132 + 8.05617i 0.287381 + 0.302983i
\(708\) 9.94350 15.3972i 0.373700 0.578662i
\(709\) −12.6267 21.8702i −0.474207 0.821351i 0.525357 0.850882i \(-0.323932\pi\)
−0.999564 + 0.0295310i \(0.990599\pi\)
\(710\) 5.33799 + 9.24567i 0.200331 + 0.346984i
\(711\) 10.3315 + 1.03280i 0.387460 + 0.0387329i
\(712\) 1.33707 + 0.771960i 0.0501089 + 0.0289304i
\(713\) 4.04969 7.01427i 0.151662 0.262687i
\(714\) −17.0009 + 14.5879i −0.636243 + 0.545939i
\(715\) 0.799148 + 1.38416i 0.0298864 + 0.0517648i
\(716\) 7.53011i 0.281413i
\(717\) 41.2533 + 26.6413i 1.54063 + 0.994938i
\(718\) 13.5985 0.507492
\(719\) −3.56765 + 6.17935i −0.133051 + 0.230451i −0.924851 0.380329i \(-0.875811\pi\)
0.791800 + 0.610780i \(0.209144\pi\)
\(720\) −2.98512 0.298411i −0.111249 0.0111211i
\(721\) 1.34590 1.27660i 0.0501241 0.0475429i
\(722\) 15.8664 + 9.16049i 0.590488 + 0.340918i
\(723\) 1.47073 0.754092i 0.0546971 0.0280450i
\(724\) −10.7206 6.18956i −0.398429 0.230033i
\(725\) 5.55412 + 3.20667i 0.206275 + 0.119093i
\(726\) 2.22941 + 1.43975i 0.0827412 + 0.0534342i
\(727\) −7.48124 4.31930i −0.277464 0.160194i 0.354811 0.934938i \(-0.384545\pi\)
−0.632275 + 0.774744i \(0.717879\pi\)
\(728\) −0.390641 + 1.31761i −0.0144781 + 0.0488340i
\(729\) 25.8028 + 7.95080i 0.955660 + 0.294474i
\(730\) 3.33830 5.78211i 0.123556 0.214005i
\(731\) 18.0399 0.667229
\(732\) 14.6802 7.52703i 0.542597 0.278207i
\(733\) 36.2890i 1.34037i 0.742196 + 0.670183i \(0.233784\pi\)
−0.742196 + 0.670183i \(0.766216\pi\)
\(734\) −2.81639 4.87813i −0.103955 0.180055i
\(735\) −11.0660 + 4.95421i −0.408175 + 0.182739i
\(736\) −4.47068 + 7.74345i −0.164792 + 0.285427i
\(737\) −21.0667 12.1629i −0.776003 0.448025i
\(738\) 11.9546 5.39551i 0.440053 0.198611i
\(739\) 5.37054 + 9.30205i 0.197558 + 0.342181i 0.947736 0.319055i \(-0.103365\pi\)
−0.750178 + 0.661236i \(0.770032\pi\)
\(740\) 2.53840 + 4.39664i 0.0933136 + 0.161624i
\(741\) 0.338253 + 0.659707i 0.0124260 + 0.0242349i
\(742\) 13.9539 3.34647i 0.512264 0.122853i
\(743\) 9.06518 5.23379i 0.332569 0.192009i −0.324412 0.945916i \(-0.605166\pi\)
0.656981 + 0.753907i \(0.271833\pi\)
\(744\) −1.56700 0.0781288i −0.0574491 0.00286434i
\(745\) 12.0662i 0.442072i
\(746\) −4.96231 + 2.86499i −0.181683 + 0.104895i
\(747\) −8.19544 18.1582i −0.299855 0.664374i
\(748\) 15.0417i 0.549978i
\(749\) 12.7503 + 53.1653i 0.465885 + 1.94262i
\(750\) −1.45501 0.939646i −0.0531296 0.0343110i
\(751\) 18.5461 0.676758 0.338379 0.941010i \(-0.390121\pi\)
0.338379 + 0.941010i \(0.390121\pi\)
\(752\) 1.89222 3.27742i 0.0690021 0.119515i
\(753\) −5.41016 10.5516i −0.197157 0.384523i
\(754\) 2.88502 1.66566i 0.105066 0.0606599i
\(755\) 14.6605 0.533550
\(756\) −13.6970 + 1.17982i −0.498155 + 0.0429097i
\(757\) −8.57410 −0.311631 −0.155816 0.987786i \(-0.549801\pi\)
−0.155816 + 0.987786i \(0.549801\pi\)
\(758\) 10.4267 6.01984i 0.378714 0.218651i
\(759\) 21.7418 + 42.4038i 0.789177 + 1.53916i
\(760\) 0.412013 0.713627i 0.0149453 0.0258860i
\(761\) −3.68978 −0.133755 −0.0668773 0.997761i \(-0.521304\pi\)
−0.0668773 + 0.997761i \(0.521304\pi\)
\(762\) 2.23913 + 1.44603i 0.0811151 + 0.0523841i
\(763\) −1.35863 + 4.58259i −0.0491857 + 0.165901i
\(764\) 19.2273i 0.695620i
\(765\) −14.5927 1.45877i −0.527598 0.0527419i
\(766\) −17.7587 <