Properties

Label 630.2.t.b.311.7
Level 630
Weight 2
Character 630.311
Analytic conductor 5.031
Analytic rank 0
Dimension 28
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 311.7
Character \(\chi\) \(=\) 630.311
Dual form 630.2.t.b.551.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.70388 - 0.311090i) q^{3} +(0.500000 + 0.866025i) q^{4} -1.00000 q^{5} +(-1.63115 - 0.582530i) q^{6} +(2.53870 - 0.744985i) q^{7} -1.00000i q^{8} +(2.80645 - 1.06012i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.70388 - 0.311090i) q^{3} +(0.500000 + 0.866025i) q^{4} -1.00000 q^{5} +(-1.63115 - 0.582530i) q^{6} +(2.53870 - 0.744985i) q^{7} -1.00000i q^{8} +(2.80645 - 1.06012i) q^{9} +(0.866025 + 0.500000i) q^{10} +0.441750i q^{11} +(1.12135 + 1.32006i) q^{12} +(3.17590 + 1.83361i) q^{13} +(-2.57107 - 0.624174i) q^{14} +(-1.70388 + 0.311090i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.136107 - 0.235743i) q^{17} +(-2.96052 - 0.485129i) q^{18} +(-3.25564 + 1.87965i) q^{19} +(-0.500000 - 0.866025i) q^{20} +(4.09389 - 2.05913i) q^{21} +(0.220875 - 0.382566i) q^{22} -2.59564i q^{23} +(-0.311090 - 1.70388i) q^{24} +1.00000 q^{25} +(-1.83361 - 3.17590i) q^{26} +(4.45207 - 2.67939i) q^{27} +(1.91453 + 1.82609i) q^{28} +(-2.38822 + 1.37884i) q^{29} +(1.63115 + 0.582530i) q^{30} +(7.57702 - 4.37459i) q^{31} +(0.866025 - 0.500000i) q^{32} +(0.137424 + 0.752691i) q^{33} +(-0.235743 + 0.136107i) q^{34} +(-2.53870 + 0.744985i) q^{35} +(2.32132 + 1.90039i) q^{36} +(0.0597017 + 0.103406i) q^{37} +3.75929 q^{38} +(5.98178 + 2.13626i) q^{39} +1.00000i q^{40} +(3.93435 - 6.81449i) q^{41} +(-4.57498 - 0.263686i) q^{42} +(0.849825 + 1.47194i) q^{43} +(-0.382566 + 0.220875i) q^{44} +(-2.80645 + 1.06012i) q^{45} +(-1.29782 + 2.24789i) q^{46} +(-3.94756 + 6.83738i) q^{47} +(-0.582530 + 1.63115i) q^{48} +(5.89000 - 3.78259i) q^{49} +(-0.866025 - 0.500000i) q^{50} +(0.158572 - 0.444021i) q^{51} +3.66721i q^{52} +(0.0822585 + 0.0474920i) q^{53} +(-5.19530 + 0.0943837i) q^{54} -0.441750i q^{55} +(-0.744985 - 2.53870i) q^{56} +(-4.96250 + 4.21550i) q^{57} +2.75767 q^{58} +(1.60532 + 2.78050i) q^{59} +(-1.12135 - 1.32006i) q^{60} +(-11.2595 - 6.50065i) q^{61} -8.74919 q^{62} +(6.33495 - 4.78210i) q^{63} -1.00000 q^{64} +(-3.17590 - 1.83361i) q^{65} +(0.257333 - 0.720561i) q^{66} +(0.268733 + 0.465460i) q^{67} +0.272213 q^{68} +(-0.807478 - 4.42267i) q^{69} +(2.57107 + 0.624174i) q^{70} +3.75218i q^{71} +(-1.06012 - 2.80645i) q^{72} +(9.64229 + 5.56698i) q^{73} -0.119403i q^{74} +(1.70388 - 0.311090i) q^{75} +(-3.25564 - 1.87965i) q^{76} +(0.329097 + 1.12147i) q^{77} +(-4.11225 - 4.84095i) q^{78} +(-1.51395 + 2.62224i) q^{79} +(0.500000 - 0.866025i) q^{80} +(6.75228 - 5.95036i) q^{81} +(-6.81449 + 3.93435i) q^{82} +(-4.29210 - 7.43413i) q^{83} +(3.83021 + 2.51585i) q^{84} +(-0.136107 + 0.235743i) q^{85} -1.69965i q^{86} +(-3.64030 + 3.09233i) q^{87} +0.441750 q^{88} +(-6.35119 - 11.0006i) q^{89} +(2.96052 + 0.485129i) q^{90} +(9.42867 + 2.28898i) q^{91} +(2.24789 - 1.29782i) q^{92} +(11.5495 - 9.81094i) q^{93} +(6.83738 - 3.94756i) q^{94} +(3.25564 - 1.87965i) q^{95} +(1.32006 - 1.12135i) q^{96} +(-12.9284 + 7.46424i) q^{97} +(-6.99218 + 0.330818i) q^{98} +(0.468309 + 1.23975i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 2q^{3} + 14q^{4} - 28q^{5} - 8q^{6} - 4q^{7} + 6q^{9} + O(q^{10}) \) \( 28q - 2q^{3} + 14q^{4} - 28q^{5} - 8q^{6} - 4q^{7} + 6q^{9} - 4q^{12} + 6q^{14} + 2q^{15} - 14q^{16} - 6q^{17} - 4q^{18} - 6q^{19} - 14q^{20} + 6q^{21} - 6q^{22} - 4q^{24} + 28q^{25} + 12q^{26} + 28q^{27} - 8q^{28} + 8q^{30} - 12q^{31} + 26q^{33} + 4q^{35} - 6q^{36} + 4q^{37} - 12q^{38} + 54q^{39} + 18q^{41} - 32q^{42} + 28q^{43} - 6q^{45} - 18q^{46} + 30q^{47} - 2q^{48} - 14q^{49} + 34q^{51} - 42q^{53} + 14q^{54} + 6q^{56} - 30q^{57} - 12q^{58} - 24q^{59} + 4q^{60} + 24q^{61} - 12q^{62} + 44q^{63} - 28q^{64} - 10q^{66} - 40q^{67} - 12q^{68} + 8q^{69} - 6q^{70} + 4q^{72} + 6q^{73} - 2q^{75} - 6q^{76} - 24q^{77} + 14q^{78} + 2q^{79} + 14q^{80} - 46q^{81} + 24q^{82} - 18q^{83} + 18q^{84} + 6q^{85} + 104q^{87} - 12q^{88} + 6q^{89} + 4q^{90} + 66q^{91} - 30q^{92} + 40q^{93} + 42q^{94} + 6q^{95} + 4q^{96} - 72q^{97} - 24q^{98} - 42q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 1.70388 0.311090i 0.983738 0.179608i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.00000 −0.447214
\(6\) −1.63115 0.582530i −0.665915 0.237817i
\(7\) 2.53870 0.744985i 0.959538 0.281578i
\(8\) 1.00000i 0.353553i
\(9\) 2.80645 1.06012i 0.935482 0.353375i
\(10\) 0.866025 + 0.500000i 0.273861 + 0.158114i
\(11\) 0.441750i 0.133193i 0.997780 + 0.0665963i \(0.0212140\pi\)
−0.997780 + 0.0665963i \(0.978786\pi\)
\(12\) 1.12135 + 1.32006i 0.323707 + 0.381069i
\(13\) 3.17590 + 1.83361i 0.880836 + 0.508551i 0.870934 0.491400i \(-0.163515\pi\)
0.00990217 + 0.999951i \(0.496848\pi\)
\(14\) −2.57107 0.624174i −0.687148 0.166818i
\(15\) −1.70388 + 0.311090i −0.439941 + 0.0803231i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.136107 0.235743i 0.0330107 0.0571762i −0.849048 0.528316i \(-0.822824\pi\)
0.882059 + 0.471139i \(0.156157\pi\)
\(18\) −2.96052 0.485129i −0.697800 0.114346i
\(19\) −3.25564 + 1.87965i −0.746896 + 0.431221i −0.824571 0.565758i \(-0.808584\pi\)
0.0776753 + 0.996979i \(0.475250\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) 4.09389 2.05913i 0.893361 0.449340i
\(22\) 0.220875 0.382566i 0.0470907 0.0815634i
\(23\) 2.59564i 0.541228i −0.962688 0.270614i \(-0.912773\pi\)
0.962688 0.270614i \(-0.0872267\pi\)
\(24\) −0.311090 1.70388i −0.0635010 0.347804i
\(25\) 1.00000 0.200000
\(26\) −1.83361 3.17590i −0.359600 0.622845i
\(27\) 4.45207 2.67939i 0.856800 0.515648i
\(28\) 1.91453 + 1.82609i 0.361811 + 0.345098i
\(29\) −2.38822 + 1.37884i −0.443481 + 0.256044i −0.705073 0.709135i \(-0.749086\pi\)
0.261592 + 0.965178i \(0.415752\pi\)
\(30\) 1.63115 + 0.582530i 0.297806 + 0.106355i
\(31\) 7.57702 4.37459i 1.36087 0.785700i 0.371133 0.928580i \(-0.378970\pi\)
0.989740 + 0.142880i \(0.0456362\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0.137424 + 0.752691i 0.0239224 + 0.131027i
\(34\) −0.235743 + 0.136107i −0.0404297 + 0.0233421i
\(35\) −2.53870 + 0.744985i −0.429119 + 0.125925i
\(36\) 2.32132 + 1.90039i 0.386886 + 0.316732i
\(37\) 0.0597017 + 0.103406i 0.00981490 + 0.0169999i 0.870891 0.491476i \(-0.163542\pi\)
−0.861076 + 0.508476i \(0.830209\pi\)
\(38\) 3.75929 0.609838
\(39\) 5.98178 + 2.13626i 0.957852 + 0.342076i
\(40\) 1.00000i 0.158114i
\(41\) 3.93435 6.81449i 0.614442 1.06424i −0.376041 0.926603i \(-0.622715\pi\)
0.990482 0.137641i \(-0.0439520\pi\)
\(42\) −4.57498 0.263686i −0.705935 0.0406876i
\(43\) 0.849825 + 1.47194i 0.129597 + 0.224469i 0.923521 0.383549i \(-0.125298\pi\)
−0.793923 + 0.608018i \(0.791965\pi\)
\(44\) −0.382566 + 0.220875i −0.0576741 + 0.0332981i
\(45\) −2.80645 + 1.06012i −0.418360 + 0.158034i
\(46\) −1.29782 + 2.24789i −0.191353 + 0.331433i
\(47\) −3.94756 + 6.83738i −0.575811 + 0.997334i 0.420142 + 0.907458i \(0.361980\pi\)
−0.995953 + 0.0898756i \(0.971353\pi\)
\(48\) −0.582530 + 1.63115i −0.0840810 + 0.235437i
\(49\) 5.89000 3.78259i 0.841428 0.540369i
\(50\) −0.866025 0.500000i −0.122474 0.0707107i
\(51\) 0.158572 0.444021i 0.0222046 0.0621754i
\(52\) 3.66721i 0.508551i
\(53\) 0.0822585 + 0.0474920i 0.0112991 + 0.00652352i 0.505639 0.862745i \(-0.331257\pi\)
−0.494340 + 0.869269i \(0.664590\pi\)
\(54\) −5.19530 + 0.0943837i −0.706990 + 0.0128440i
\(55\) 0.441750i 0.0595655i
\(56\) −0.744985 2.53870i −0.0995528 0.339248i
\(57\) −4.96250 + 4.21550i −0.657299 + 0.558357i
\(58\) 2.75767 0.362100
\(59\) 1.60532 + 2.78050i 0.208995 + 0.361990i 0.951398 0.307963i \(-0.0996473\pi\)
−0.742403 + 0.669954i \(0.766314\pi\)
\(60\) −1.12135 1.32006i −0.144766 0.170419i
\(61\) −11.2595 6.50065i −1.44163 0.832323i −0.443667 0.896192i \(-0.646323\pi\)
−0.997958 + 0.0638687i \(0.979656\pi\)
\(62\) −8.74919 −1.11115
\(63\) 6.33495 4.78210i 0.798128 0.602487i
\(64\) −1.00000 −0.125000
\(65\) −3.17590 1.83361i −0.393922 0.227431i
\(66\) 0.257333 0.720561i 0.0316755 0.0886949i
\(67\) 0.268733 + 0.465460i 0.0328310 + 0.0568650i 0.881974 0.471298i \(-0.156214\pi\)
−0.849143 + 0.528163i \(0.822881\pi\)
\(68\) 0.272213 0.0330107
\(69\) −0.807478 4.42267i −0.0972089 0.532427i
\(70\) 2.57107 + 0.624174i 0.307302 + 0.0746031i
\(71\) 3.75218i 0.445302i 0.974898 + 0.222651i \(0.0714711\pi\)
−0.974898 + 0.222651i \(0.928529\pi\)
\(72\) −1.06012 2.80645i −0.124937 0.330743i
\(73\) 9.64229 + 5.56698i 1.12854 + 0.651565i 0.943568 0.331178i \(-0.107446\pi\)
0.184976 + 0.982743i \(0.440779\pi\)
\(74\) 0.119403i 0.0138804i
\(75\) 1.70388 0.311090i 0.196748 0.0359216i
\(76\) −3.25564 1.87965i −0.373448 0.215610i
\(77\) 0.329097 + 1.12147i 0.0375041 + 0.127803i
\(78\) −4.11225 4.84095i −0.465620 0.548130i
\(79\) −1.51395 + 2.62224i −0.170333 + 0.295026i −0.938536 0.345181i \(-0.887818\pi\)
0.768203 + 0.640206i \(0.221151\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) 6.75228 5.95036i 0.750253 0.661151i
\(82\) −6.81449 + 3.93435i −0.752534 + 0.434476i
\(83\) −4.29210 7.43413i −0.471119 0.816002i 0.528335 0.849036i \(-0.322816\pi\)
−0.999454 + 0.0330340i \(0.989483\pi\)
\(84\) 3.83021 + 2.51585i 0.417910 + 0.274502i
\(85\) −0.136107 + 0.235743i −0.0147628 + 0.0255700i
\(86\) 1.69965i 0.183278i
\(87\) −3.64030 + 3.09233i −0.390281 + 0.331533i
\(88\) 0.441750 0.0470907
\(89\) −6.35119 11.0006i −0.673225 1.16606i −0.976984 0.213311i \(-0.931575\pi\)
0.303760 0.952749i \(-0.401758\pi\)
\(90\) 2.96052 + 0.485129i 0.312066 + 0.0511371i
\(91\) 9.42867 + 2.28898i 0.988393 + 0.239950i
\(92\) 2.24789 1.29782i 0.234359 0.135307i
\(93\) 11.5495 9.81094i 1.19762 1.01735i
\(94\) 6.83738 3.94756i 0.705222 0.407160i
\(95\) 3.25564 1.87965i 0.334022 0.192848i
\(96\) 1.32006 1.12135i 0.134728 0.114448i
\(97\) −12.9284 + 7.46424i −1.31268 + 0.757879i −0.982540 0.186052i \(-0.940431\pi\)
−0.330144 + 0.943930i \(0.607097\pi\)
\(98\) −6.99218 + 0.330818i −0.706317 + 0.0334176i
\(99\) 0.468309 + 1.23975i 0.0470669 + 0.124599i
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) 4.57755 0.455483 0.227742 0.973722i \(-0.426866\pi\)
0.227742 + 0.973722i \(0.426866\pi\)
\(102\) −0.359338 + 0.305247i −0.0355798 + 0.0302240i
\(103\) 4.60214i 0.453462i 0.973957 + 0.226731i \(0.0728039\pi\)
−0.973957 + 0.226731i \(0.927196\pi\)
\(104\) 1.83361 3.17590i 0.179800 0.311423i
\(105\) −4.09389 + 2.05913i −0.399523 + 0.200951i
\(106\) −0.0474920 0.0822585i −0.00461283 0.00798965i
\(107\) −14.0223 + 8.09579i −1.35559 + 0.782650i −0.989026 0.147743i \(-0.952799\pi\)
−0.366563 + 0.930393i \(0.619466\pi\)
\(108\) 4.54645 + 2.51591i 0.437482 + 0.242093i
\(109\) −1.37107 + 2.37476i −0.131325 + 0.227461i −0.924187 0.381939i \(-0.875256\pi\)
0.792863 + 0.609400i \(0.208590\pi\)
\(110\) −0.220875 + 0.382566i −0.0210596 + 0.0364763i
\(111\) 0.133894 + 0.157620i 0.0127086 + 0.0149606i
\(112\) −0.624174 + 2.57107i −0.0589789 + 0.242943i
\(113\) −2.85536 1.64854i −0.268610 0.155082i 0.359646 0.933089i \(-0.382898\pi\)
−0.628256 + 0.778007i \(0.716231\pi\)
\(114\) 6.40540 1.16948i 0.599921 0.109532i
\(115\) 2.59564i 0.242045i
\(116\) −2.38822 1.37884i −0.221740 0.128022i
\(117\) 10.8568 + 1.77907i 1.00372 + 0.164475i
\(118\) 3.21065i 0.295564i
\(119\) 0.169908 0.699879i 0.0155755 0.0641578i
\(120\) 0.311090 + 1.70388i 0.0283985 + 0.155543i
\(121\) 10.8049 0.982260
\(122\) 6.50065 + 11.2595i 0.588541 + 1.01938i
\(123\) 4.58375 12.8350i 0.413303 1.15730i
\(124\) 7.57702 + 4.37459i 0.680436 + 0.392850i
\(125\) −1.00000 −0.0894427
\(126\) −7.87727 + 0.973942i −0.701763 + 0.0867657i
\(127\) −21.1104 −1.87325 −0.936623 0.350339i \(-0.886066\pi\)
−0.936623 + 0.350339i \(0.886066\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 1.90591 + 2.24364i 0.167806 + 0.197542i
\(130\) 1.83361 + 3.17590i 0.160818 + 0.278545i
\(131\) 5.08532 0.444307 0.222153 0.975012i \(-0.428691\pi\)
0.222153 + 0.975012i \(0.428691\pi\)
\(132\) −0.583137 + 0.495358i −0.0507556 + 0.0431154i
\(133\) −6.86479 + 7.19726i −0.595253 + 0.624082i
\(134\) 0.537467i 0.0464301i
\(135\) −4.45207 + 2.67939i −0.383173 + 0.230605i
\(136\) −0.235743 0.136107i −0.0202148 0.0116710i
\(137\) 13.6419i 1.16551i 0.812649 + 0.582753i \(0.198024\pi\)
−0.812649 + 0.582753i \(0.801976\pi\)
\(138\) −1.51204 + 4.23388i −0.128713 + 0.360412i
\(139\) −8.22684 4.74977i −0.697791 0.402870i 0.108733 0.994071i \(-0.465321\pi\)
−0.806524 + 0.591201i \(0.798654\pi\)
\(140\) −1.91453 1.82609i −0.161807 0.154332i
\(141\) −4.59915 + 12.8782i −0.387318 + 1.08454i
\(142\) 1.87609 3.24949i 0.157438 0.272691i
\(143\) −0.809995 + 1.40295i −0.0677352 + 0.117321i
\(144\) −0.485129 + 2.96052i −0.0404274 + 0.246710i
\(145\) 2.38822 1.37884i 0.198331 0.114506i
\(146\) −5.56698 9.64229i −0.460726 0.798001i
\(147\) 8.85915 8.27741i 0.730690 0.682709i
\(148\) −0.0597017 + 0.103406i −0.00490745 + 0.00849995i
\(149\) 14.3445i 1.17515i 0.809170 + 0.587574i \(0.199917\pi\)
−0.809170 + 0.587574i \(0.800083\pi\)
\(150\) −1.63115 0.582530i −0.133183 0.0475634i
\(151\) 0.679789 0.0553204 0.0276602 0.999617i \(-0.491194\pi\)
0.0276602 + 0.999617i \(0.491194\pi\)
\(152\) 1.87965 + 3.25564i 0.152459 + 0.264068i
\(153\) 0.132058 0.805891i 0.0106763 0.0651524i
\(154\) 0.275729 1.13577i 0.0222189 0.0915229i
\(155\) −7.57702 + 4.37459i −0.608601 + 0.351376i
\(156\) 1.14083 + 6.24851i 0.0913398 + 0.500281i
\(157\) −20.6832 + 11.9414i −1.65070 + 0.953030i −0.673911 + 0.738812i \(0.735387\pi\)
−0.976786 + 0.214218i \(0.931280\pi\)
\(158\) 2.62224 1.51395i 0.208615 0.120444i
\(159\) 0.154933 + 0.0553310i 0.0122870 + 0.00438804i
\(160\) −0.866025 + 0.500000i −0.0684653 + 0.0395285i
\(161\) −1.93371 6.58955i −0.152398 0.519329i
\(162\) −8.82282 + 1.77702i −0.693186 + 0.139616i
\(163\) −7.98983 13.8388i −0.625812 1.08394i −0.988383 0.151982i \(-0.951434\pi\)
0.362571 0.931956i \(-0.381899\pi\)
\(164\) 7.86869 0.614442
\(165\) −0.137424 0.752691i −0.0106984 0.0585969i
\(166\) 8.58419i 0.666263i
\(167\) 2.36183 4.09080i 0.182764 0.316556i −0.760057 0.649856i \(-0.774829\pi\)
0.942821 + 0.333300i \(0.108162\pi\)
\(168\) −2.05913 4.09389i −0.158866 0.315851i
\(169\) 0.224227 + 0.388373i 0.0172483 + 0.0298749i
\(170\) 0.235743 0.136107i 0.0180807 0.0104389i
\(171\) −7.14413 + 8.72651i −0.546325 + 0.667333i
\(172\) −0.849825 + 1.47194i −0.0647985 + 0.112234i
\(173\) −10.1399 + 17.5629i −0.770925 + 1.33528i 0.166132 + 0.986104i \(0.446872\pi\)
−0.937057 + 0.349177i \(0.886461\pi\)
\(174\) 4.69876 0.857885i 0.356212 0.0650361i
\(175\) 2.53870 0.744985i 0.191908 0.0563156i
\(176\) −0.382566 0.220875i −0.0288370 0.0166491i
\(177\) 3.60027 + 4.23825i 0.270613 + 0.318567i
\(178\) 12.7024i 0.952084i
\(179\) −13.2165 7.63053i −0.987846 0.570333i −0.0832159 0.996532i \(-0.526519\pi\)
−0.904630 + 0.426199i \(0.859852\pi\)
\(180\) −2.32132 1.90039i −0.173021 0.141647i
\(181\) 24.7207i 1.83748i 0.394866 + 0.918739i \(0.370791\pi\)
−0.394866 + 0.918739i \(0.629209\pi\)
\(182\) −7.02097 6.69665i −0.520429 0.496389i
\(183\) −21.2071 7.57365i −1.56767 0.559860i
\(184\) −2.59564 −0.191353
\(185\) −0.0597017 0.103406i −0.00438936 0.00760259i
\(186\) −14.9076 + 2.72179i −1.09308 + 0.199571i
\(187\) 0.104140 + 0.0601250i 0.00761544 + 0.00439678i
\(188\) −7.89512 −0.575811
\(189\) 9.30636 10.1189i 0.676938 0.736040i
\(190\) −3.75929 −0.272728
\(191\) −4.76721 2.75235i −0.344943 0.199153i 0.317513 0.948254i \(-0.397152\pi\)
−0.662456 + 0.749101i \(0.730486\pi\)
\(192\) −1.70388 + 0.311090i −0.122967 + 0.0224510i
\(193\) 7.52344 + 13.0310i 0.541549 + 0.937991i 0.998815 + 0.0486607i \(0.0154953\pi\)
−0.457266 + 0.889330i \(0.651171\pi\)
\(194\) 14.9285 1.07180
\(195\) −5.98178 2.13626i −0.428364 0.152981i
\(196\) 6.22081 + 3.20959i 0.444344 + 0.229257i
\(197\) 19.6584i 1.40061i 0.713846 + 0.700303i \(0.246952\pi\)
−0.713846 + 0.700303i \(0.753048\pi\)
\(198\) 0.214306 1.30781i 0.0152300 0.0929418i
\(199\) −9.23999 5.33471i −0.655005 0.378168i 0.135366 0.990796i \(-0.456779\pi\)
−0.790371 + 0.612628i \(0.790112\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 0.602691 + 0.709490i 0.0425105 + 0.0500435i
\(202\) −3.96428 2.28878i −0.278926 0.161038i
\(203\) −5.03575 + 5.27964i −0.353440 + 0.370558i
\(204\) 0.463820 0.0846828i 0.0324739 0.00592898i
\(205\) −3.93435 + 6.81449i −0.274787 + 0.475944i
\(206\) 2.30107 3.98557i 0.160323 0.277688i
\(207\) −2.75170 7.28452i −0.191256 0.506309i
\(208\) −3.17590 + 1.83361i −0.220209 + 0.127138i
\(209\) −0.830333 1.43818i −0.0574354 0.0994810i
\(210\) 4.57498 + 0.263686i 0.315704 + 0.0181961i
\(211\) −0.581500 + 1.00719i −0.0400321 + 0.0693376i −0.885347 0.464930i \(-0.846079\pi\)
0.845315 + 0.534268i \(0.179413\pi\)
\(212\) 0.0949840i 0.00652352i
\(213\) 1.16727 + 6.39329i 0.0799799 + 0.438061i
\(214\) 16.1916 1.10683
\(215\) −0.849825 1.47194i −0.0579575 0.100385i
\(216\) −2.67939 4.45207i −0.182309 0.302925i
\(217\) 15.9768 16.7505i 1.08457 1.13710i
\(218\) 2.37476 1.37107i 0.160839 0.0928605i
\(219\) 18.1612 + 6.48587i 1.22722 + 0.438274i
\(220\) 0.382566 0.220875i 0.0257926 0.0148914i
\(221\) 0.864522 0.499132i 0.0581540 0.0335752i
\(222\) −0.0371452 0.203450i −0.00249302 0.0136546i
\(223\) −2.45476 + 1.41726i −0.164383 + 0.0949066i −0.579935 0.814663i \(-0.696922\pi\)
0.415552 + 0.909570i \(0.363589\pi\)
\(224\) 1.82609 1.91453i 0.122011 0.127920i
\(225\) 2.80645 1.06012i 0.187096 0.0706749i
\(226\) 1.64854 + 2.85536i 0.109660 + 0.189936i
\(227\) 11.2496 0.746662 0.373331 0.927698i \(-0.378216\pi\)
0.373331 + 0.927698i \(0.378216\pi\)
\(228\) −6.13198 2.18990i −0.406100 0.145030i
\(229\) 16.1969i 1.07032i −0.844751 0.535160i \(-0.820251\pi\)
0.844751 0.535160i \(-0.179749\pi\)
\(230\) 1.29782 2.24789i 0.0855757 0.148221i
\(231\) 0.909621 + 1.80848i 0.0598487 + 0.118989i
\(232\) 1.37884 + 2.38822i 0.0905251 + 0.156794i
\(233\) 3.21321 1.85515i 0.210504 0.121535i −0.391042 0.920373i \(-0.627885\pi\)
0.601546 + 0.798838i \(0.294552\pi\)
\(234\) −8.51276 6.96914i −0.556497 0.455587i
\(235\) 3.94756 6.83738i 0.257511 0.446021i
\(236\) −1.60532 + 2.78050i −0.104498 + 0.180995i
\(237\) −1.76385 + 4.93898i −0.114574 + 0.320821i
\(238\) −0.497085 + 0.521159i −0.0322212 + 0.0337817i
\(239\) 7.04916 + 4.06984i 0.455972 + 0.263256i 0.710349 0.703849i \(-0.248537\pi\)
−0.254377 + 0.967105i \(0.581870\pi\)
\(240\) 0.582530 1.63115i 0.0376022 0.105290i
\(241\) 28.4731i 1.83412i −0.398754 0.917058i \(-0.630557\pi\)
0.398754 0.917058i \(-0.369443\pi\)
\(242\) −9.35728 5.40243i −0.601509 0.347281i
\(243\) 9.65400 12.2393i 0.619304 0.785151i
\(244\) 13.0013i 0.832323i
\(245\) −5.89000 + 3.78259i −0.376298 + 0.241661i
\(246\) −10.3872 + 8.82359i −0.662261 + 0.562572i
\(247\) −13.7861 −0.877191
\(248\) −4.37459 7.57702i −0.277787 0.481141i
\(249\) −9.62592 11.3317i −0.610018 0.718115i
\(250\) 0.866025 + 0.500000i 0.0547723 + 0.0316228i
\(251\) 4.61055 0.291015 0.145508 0.989357i \(-0.453518\pi\)
0.145508 + 0.989357i \(0.453518\pi\)
\(252\) 7.30889 + 3.09518i 0.460417 + 0.194978i
\(253\) 1.14662 0.0720876
\(254\) 18.2821 + 10.5552i 1.14712 + 0.662292i
\(255\) −0.158572 + 0.444021i −0.00993019 + 0.0278057i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 27.2946 1.70259 0.851297 0.524685i \(-0.175817\pi\)
0.851297 + 0.524685i \(0.175817\pi\)
\(258\) −0.528744 2.89601i −0.0329182 0.180297i
\(259\) 0.228601 + 0.218041i 0.0142046 + 0.0135484i
\(260\) 3.66721i 0.227431i
\(261\) −5.24066 + 6.40144i −0.324389 + 0.396239i
\(262\) −4.40402 2.54266i −0.272081 0.157086i
\(263\) 29.9074i 1.84417i 0.386985 + 0.922086i \(0.373516\pi\)
−0.386985 + 0.922086i \(0.626484\pi\)
\(264\) 0.752691 0.137424i 0.0463249 0.00845786i
\(265\) −0.0822585 0.0474920i −0.00505310 0.00291741i
\(266\) 9.54372 2.80062i 0.585163 0.171717i
\(267\) −14.2439 16.7679i −0.871711 1.02618i
\(268\) −0.268733 + 0.465460i −0.0164155 + 0.0284325i
\(269\) 6.84004 11.8473i 0.417044 0.722342i −0.578596 0.815614i \(-0.696399\pi\)
0.995641 + 0.0932721i \(0.0297326\pi\)
\(270\) 5.19530 0.0943837i 0.316176 0.00574401i
\(271\) −2.74454 + 1.58456i −0.166719 + 0.0962551i −0.581038 0.813877i \(-0.697353\pi\)
0.414319 + 0.910132i \(0.364020\pi\)
\(272\) 0.136107 + 0.235743i 0.00825267 + 0.0142940i
\(273\) 16.7774 + 0.966992i 1.01542 + 0.0585250i
\(274\) 6.82095 11.8142i 0.412068 0.713724i
\(275\) 0.441750i 0.0266385i
\(276\) 3.42641 2.91063i 0.206245 0.175199i
\(277\) 1.51760 0.0911837 0.0455919 0.998960i \(-0.485483\pi\)
0.0455919 + 0.998960i \(0.485483\pi\)
\(278\) 4.74977 + 8.22684i 0.284872 + 0.493413i
\(279\) 16.6269 20.3096i 0.995425 1.21591i
\(280\) 0.744985 + 2.53870i 0.0445214 + 0.151716i
\(281\) 3.08954 1.78375i 0.184307 0.106409i −0.405008 0.914313i \(-0.632731\pi\)
0.589315 + 0.807904i \(0.299398\pi\)
\(282\) 10.4221 8.85323i 0.620624 0.527202i
\(283\) 11.4290 6.59851i 0.679381 0.392241i −0.120241 0.992745i \(-0.538367\pi\)
0.799622 + 0.600504i \(0.205033\pi\)
\(284\) −3.24949 + 1.87609i −0.192822 + 0.111326i
\(285\) 4.96250 4.21550i 0.293953 0.249705i
\(286\) 1.40295 0.809995i 0.0829583 0.0478960i
\(287\) 4.91143 20.2310i 0.289913 1.19420i
\(288\) 1.90039 2.32132i 0.111982 0.136785i
\(289\) 8.46295 + 14.6583i 0.497821 + 0.862251i
\(290\) −2.75767 −0.161936
\(291\) −19.7065 + 16.7401i −1.15522 + 0.981323i
\(292\) 11.1340i 0.651565i
\(293\) 11.0248 19.0955i 0.644074 1.11557i −0.340440 0.940266i \(-0.610576\pi\)
0.984515 0.175303i \(-0.0560905\pi\)
\(294\) −11.8110 + 2.73887i −0.688829 + 0.159734i
\(295\) −1.60532 2.78050i −0.0934655 0.161887i
\(296\) 0.103406 0.0597017i 0.00601037 0.00347009i
\(297\) 1.18362 + 1.96670i 0.0686805 + 0.114119i
\(298\) 7.17226 12.4227i 0.415478 0.719629i
\(299\) 4.75938 8.24349i 0.275242 0.476733i
\(300\) 1.12135 + 1.32006i 0.0647414 + 0.0762138i
\(301\) 3.25402 + 3.10371i 0.187559 + 0.178895i
\(302\) −0.588715 0.339894i −0.0338767 0.0195587i
\(303\) 7.79962 1.42403i 0.448077 0.0818085i
\(304\) 3.75929i 0.215610i
\(305\) 11.2595 + 6.50065i 0.644715 + 0.372226i
\(306\) −0.517311 + 0.631893i −0.0295727 + 0.0361229i
\(307\) 29.2097i 1.66709i −0.552453 0.833544i \(-0.686308\pi\)
0.552453 0.833544i \(-0.313692\pi\)
\(308\) −0.806673 + 0.845741i −0.0459645 + 0.0481906i
\(309\) 1.43168 + 7.84152i 0.0814455 + 0.446088i
\(310\) 8.74919 0.496920
\(311\) −12.3964 21.4711i −0.702933 1.21752i −0.967432 0.253130i \(-0.918540\pi\)
0.264499 0.964386i \(-0.414793\pi\)
\(312\) 2.13626 5.98178i 0.120942 0.338652i
\(313\) −29.3510 16.9458i −1.65902 0.957835i −0.973169 0.230092i \(-0.926097\pi\)
−0.685850 0.727743i \(-0.740569\pi\)
\(314\) 23.8829 1.34779
\(315\) −6.33495 + 4.78210i −0.356934 + 0.269441i
\(316\) −3.02791 −0.170333
\(317\) 29.5986 + 17.0887i 1.66242 + 0.959799i 0.971554 + 0.236818i \(0.0761045\pi\)
0.690867 + 0.722981i \(0.257229\pi\)
\(318\) −0.106511 0.125385i −0.00597282 0.00703123i
\(319\) −0.609101 1.05499i −0.0341031 0.0590683i
\(320\) 1.00000 0.0559017
\(321\) −21.3739 + 18.1565i −1.19297 + 1.01340i
\(322\) −1.62013 + 6.67357i −0.0902864 + 0.371904i
\(323\) 1.02333i 0.0569395i
\(324\) 8.52930 + 2.87246i 0.473850 + 0.159581i
\(325\) 3.17590 + 1.83361i 0.176167 + 0.101710i
\(326\) 15.9797i 0.885032i
\(327\) −1.59738 + 4.47285i −0.0883353 + 0.247349i
\(328\) −6.81449 3.93435i −0.376267 0.217238i
\(329\) −4.92793 + 20.2989i −0.271686 + 1.11912i
\(330\) −0.257333 + 0.720561i −0.0141657 + 0.0396656i
\(331\) 9.09408 15.7514i 0.499856 0.865776i −0.500144 0.865942i \(-0.666720\pi\)
1.00000 0.000166208i \(5.29056e-5\pi\)
\(332\) 4.29210 7.43413i 0.235559 0.408001i
\(333\) 0.277173 + 0.226913i 0.0151890 + 0.0124348i
\(334\) −4.09080 + 2.36183i −0.223839 + 0.129233i
\(335\) −0.268733 0.465460i −0.0146825 0.0254308i
\(336\) −0.263686 + 4.57498i −0.0143852 + 0.249586i
\(337\) 1.19477 2.06941i 0.0650834 0.112728i −0.831648 0.555304i \(-0.812602\pi\)
0.896731 + 0.442576i \(0.145935\pi\)
\(338\) 0.448455i 0.0243927i
\(339\) −5.37806 1.92065i −0.292096 0.104316i
\(340\) −0.272213 −0.0147628
\(341\) 1.93248 + 3.34715i 0.104649 + 0.181258i
\(342\) 10.5503 3.98532i 0.570492 0.215501i
\(343\) 12.1350 13.9908i 0.655226 0.755433i
\(344\) 1.47194 0.849825i 0.0793616 0.0458195i
\(345\) 0.807478 + 4.42267i 0.0434731 + 0.238109i
\(346\) 17.5629 10.1399i 0.944186 0.545126i
\(347\) −21.2317 + 12.2581i −1.13978 + 0.658052i −0.946376 0.323068i \(-0.895286\pi\)
−0.193403 + 0.981119i \(0.561953\pi\)
\(348\) −4.49819 1.60643i −0.241128 0.0861136i
\(349\) −17.2041 + 9.93277i −0.920912 + 0.531689i −0.883926 0.467627i \(-0.845109\pi\)
−0.0369861 + 0.999316i \(0.511776\pi\)
\(350\) −2.57107 0.624174i −0.137430 0.0333635i
\(351\) 19.0523 0.346125i 1.01693 0.0184748i
\(352\) 0.220875 + 0.382566i 0.0117727 + 0.0203909i
\(353\) 32.1481 1.71107 0.855535 0.517744i \(-0.173228\pi\)
0.855535 + 0.517744i \(0.173228\pi\)
\(354\) −0.998801 5.47057i −0.0530857 0.290758i
\(355\) 3.75218i 0.199145i
\(356\) 6.35119 11.0006i 0.336612 0.583030i
\(357\) 0.0717787 1.24537i 0.00379893 0.0659120i
\(358\) 7.63053 + 13.2165i 0.403286 + 0.698512i
\(359\) −24.4812 + 14.1342i −1.29207 + 0.745976i −0.979021 0.203761i \(-0.934683\pi\)
−0.313048 + 0.949737i \(0.601350\pi\)
\(360\) 1.06012 + 2.80645i 0.0558734 + 0.147913i
\(361\) −2.43386 + 4.21556i −0.128098 + 0.221872i
\(362\) 12.3604 21.4088i 0.649646 1.12522i
\(363\) 18.4102 3.36129i 0.966286 0.176422i
\(364\) 2.73202 + 9.30995i 0.143197 + 0.487974i
\(365\) −9.64229 5.56698i −0.504700 0.291389i
\(366\) 14.5791 + 17.1625i 0.762060 + 0.897100i
\(367\) 33.6602i 1.75705i −0.477699 0.878524i \(-0.658529\pi\)
0.477699 0.878524i \(-0.341471\pi\)
\(368\) 2.24789 + 1.29782i 0.117179 + 0.0676535i
\(369\) 3.81733 23.2954i 0.198722 1.21271i
\(370\) 0.119403i 0.00620749i
\(371\) 0.244210 + 0.0592865i 0.0126788 + 0.00307800i
\(372\) 14.2713 + 5.09667i 0.739930 + 0.264250i
\(373\) −11.9740 −0.619991 −0.309996 0.950738i \(-0.600328\pi\)
−0.309996 + 0.950738i \(0.600328\pi\)
\(374\) −0.0601250 0.104140i −0.00310899 0.00538493i
\(375\) −1.70388 + 0.311090i −0.0879882 + 0.0160646i
\(376\) 6.83738 + 3.94756i 0.352611 + 0.203580i
\(377\) −10.1130 −0.520845
\(378\) −13.1190 + 4.11003i −0.674768 + 0.211397i
\(379\) −10.9629 −0.563126 −0.281563 0.959543i \(-0.590853\pi\)
−0.281563 + 0.959543i \(0.590853\pi\)
\(380\) 3.25564 + 1.87965i 0.167011 + 0.0964238i
\(381\) −35.9697 + 6.56724i −1.84278 + 0.336450i
\(382\) 2.75235 + 4.76721i 0.140822 + 0.243912i
\(383\) −20.1252 −1.02835 −0.514174 0.857686i \(-0.671901\pi\)
−0.514174 + 0.857686i \(0.671901\pi\)
\(384\) 1.63115 + 0.582530i 0.0832394 + 0.0297271i
\(385\) −0.329097 1.12147i −0.0167723 0.0571554i
\(386\) 15.0469i 0.765866i
\(387\) 3.94542 + 3.23000i 0.200557 + 0.164190i
\(388\) −12.9284 7.46424i −0.656342 0.378939i
\(389\) 27.3409i 1.38624i 0.720823 + 0.693119i \(0.243764\pi\)
−0.720823 + 0.693119i \(0.756236\pi\)
\(390\) 4.11225 + 4.84095i 0.208232 + 0.245131i
\(391\) −0.611905 0.353283i −0.0309454 0.0178663i
\(392\) −3.78259 5.89000i −0.191049 0.297490i
\(393\) 8.66480 1.58199i 0.437082 0.0798011i
\(394\) 9.82922 17.0247i 0.495189 0.857692i
\(395\) 1.51395 2.62224i 0.0761753 0.131939i
\(396\) −0.839497 + 1.02544i −0.0421863 + 0.0515304i
\(397\) 13.5525 7.82456i 0.680182 0.392703i −0.119742 0.992805i \(-0.538207\pi\)
0.799924 + 0.600102i \(0.204873\pi\)
\(398\) 5.33471 + 9.23999i 0.267405 + 0.463159i
\(399\) −9.45782 + 14.3989i −0.473483 + 0.720846i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 39.1525i 1.95518i −0.210509 0.977592i \(-0.567512\pi\)
0.210509 0.977592i \(-0.432488\pi\)
\(402\) −0.167201 0.915781i −0.00833921 0.0456750i
\(403\) 32.0851 1.59827
\(404\) 2.28878 + 3.96428i 0.113871 + 0.197230i
\(405\) −6.75228 + 5.95036i −0.335523 + 0.295676i
\(406\) 7.00091 2.05443i 0.347449 0.101959i
\(407\) −0.0456797 + 0.0263732i −0.00226426 + 0.00130727i
\(408\) −0.444021 0.158572i −0.0219823 0.00785050i
\(409\) −22.7149 + 13.1145i −1.12318 + 0.648468i −0.942211 0.335021i \(-0.891257\pi\)
−0.180969 + 0.983489i \(0.557923\pi\)
\(410\) 6.81449 3.93435i 0.336544 0.194303i
\(411\) 4.24386 + 23.2442i 0.209334 + 1.14655i
\(412\) −3.98557 + 2.30107i −0.196355 + 0.113366i
\(413\) 6.14687 + 5.86292i 0.302467 + 0.288495i
\(414\) −1.25922 + 7.68443i −0.0618873 + 0.377669i
\(415\) 4.29210 + 7.43413i 0.210691 + 0.364927i
\(416\) 3.66721 0.179800
\(417\) −15.4952 5.53377i −0.758803 0.270990i
\(418\) 1.66067i 0.0812259i
\(419\) 18.3795 31.8342i 0.897897 1.55520i 0.0677203 0.997704i \(-0.478427\pi\)
0.830177 0.557500i \(-0.188239\pi\)
\(420\) −3.83021 2.51585i −0.186895 0.122761i
\(421\) 6.54747 + 11.3406i 0.319104 + 0.552705i 0.980301 0.197507i \(-0.0632847\pi\)
−0.661197 + 0.750212i \(0.729951\pi\)
\(422\) 1.00719 0.581500i 0.0490291 0.0283070i
\(423\) −3.83015 + 23.3736i −0.186228 + 1.13646i
\(424\) 0.0474920 0.0822585i 0.00230641 0.00399483i
\(425\) 0.136107 0.235743i 0.00660214 0.0114352i
\(426\) 2.18576 6.12039i 0.105900 0.296534i
\(427\) −33.4273 8.11508i −1.61766 0.392716i
\(428\) −14.0223 8.09579i −0.677795 0.391325i
\(429\) −0.943694 + 2.64245i −0.0455620 + 0.127579i
\(430\) 1.69965i 0.0819644i
\(431\) 17.9103 + 10.3405i 0.862710 + 0.498086i 0.864919 0.501911i \(-0.167370\pi\)
−0.00220853 + 0.999998i \(0.500703\pi\)
\(432\) 0.0943837 + 5.19530i 0.00454104 + 0.249959i
\(433\) 5.36529i 0.257839i 0.991655 + 0.128920i \(0.0411509\pi\)
−0.991655 + 0.128920i \(0.958849\pi\)
\(434\) −22.2116 + 6.51801i −1.06619 + 0.312875i
\(435\) 3.64030 3.09233i 0.174539 0.148266i
\(436\) −2.74214 −0.131325
\(437\) 4.87888 + 8.45048i 0.233389 + 0.404241i
\(438\) −12.4851 14.6975i −0.596562 0.702274i
\(439\) −9.07559 5.23979i −0.433154 0.250082i 0.267535 0.963548i \(-0.413791\pi\)
−0.700689 + 0.713466i \(0.747124\pi\)
\(440\) −0.441750 −0.0210596
\(441\) 12.5199 16.8597i 0.596188 0.802845i
\(442\) −0.998264 −0.0474826
\(443\) −6.73544 3.88871i −0.320010 0.184758i 0.331387 0.943495i \(-0.392484\pi\)
−0.651397 + 0.758737i \(0.725817\pi\)
\(444\) −0.0695561 + 0.194765i −0.00330099 + 0.00924315i
\(445\) 6.35119 + 11.0006i 0.301075 + 0.521478i
\(446\) 2.83452 0.134218
\(447\) 4.46244 + 24.4414i 0.211066 + 1.15604i
\(448\) −2.53870 + 0.744985i −0.119942 + 0.0351972i
\(449\) 3.73404i 0.176220i −0.996111 0.0881102i \(-0.971917\pi\)
0.996111 0.0881102i \(-0.0280828\pi\)
\(450\) −2.96052 0.485129i −0.139560 0.0228692i
\(451\) 3.01030 + 1.73800i 0.141749 + 0.0818390i
\(452\) 3.29709i 0.155082i
\(453\) 1.15828 0.211476i 0.0544208 0.00993600i
\(454\) −9.74244 5.62480i −0.457235 0.263985i
\(455\) −9.42867 2.28898i −0.442023 0.107309i
\(456\) 4.21550 + 4.96250i 0.197409 + 0.232390i
\(457\) −1.45393 + 2.51828i −0.0680121 + 0.117800i −0.898026 0.439942i \(-0.854999\pi\)
0.830014 + 0.557742i \(0.188332\pi\)
\(458\) −8.09843 + 14.0269i −0.378415 + 0.655434i
\(459\) −0.0256925 1.41423i −0.00119922 0.0660105i
\(460\) −2.24789 + 1.29782i −0.104808 + 0.0605111i
\(461\) −4.88443 8.46009i −0.227491 0.394026i 0.729573 0.683903i \(-0.239719\pi\)
−0.957064 + 0.289877i \(0.906385\pi\)
\(462\) 0.116483 2.02100i 0.00541929 0.0940253i
\(463\) 1.43617 2.48752i 0.0667446 0.115605i −0.830722 0.556688i \(-0.812072\pi\)
0.897467 + 0.441083i \(0.145405\pi\)
\(464\) 2.75767i 0.128022i
\(465\) −11.5495 + 9.81094i −0.535594 + 0.454971i
\(466\) −3.71029 −0.171876
\(467\) 1.92955 + 3.34208i 0.0892890 + 0.154653i 0.907211 0.420676i \(-0.138207\pi\)
−0.817922 + 0.575329i \(0.804874\pi\)
\(468\) 3.88770 + 10.2918i 0.179709 + 0.475740i
\(469\) 1.02899 + 0.981461i 0.0475145 + 0.0453196i
\(470\) −6.83738 + 3.94756i −0.315385 + 0.182087i
\(471\) −31.5269 + 26.7812i −1.45268 + 1.23401i
\(472\) 2.78050 1.60532i 0.127983 0.0738910i
\(473\) −0.650229 + 0.375410i −0.0298975 + 0.0172614i
\(474\) 3.99703 3.39536i 0.183589 0.155954i
\(475\) −3.25564 + 1.87965i −0.149379 + 0.0862441i
\(476\) 0.691067 0.202795i 0.0316750 0.00929508i
\(477\) 0.281201 + 0.0460795i 0.0128753 + 0.00210983i
\(478\) −4.06984 7.04916i −0.186150 0.322421i
\(479\) −16.3287 −0.746079 −0.373039 0.927815i \(-0.621684\pi\)
−0.373039 + 0.927815i \(0.621684\pi\)
\(480\) −1.32006 + 1.12135i −0.0602523 + 0.0511826i
\(481\) 0.437878i 0.0199655i
\(482\) −14.2366 + 24.6585i −0.648458 + 1.12316i
\(483\) −5.34477 10.6263i −0.243195 0.483512i
\(484\) 5.40243 + 9.35728i 0.245565 + 0.425331i
\(485\) 12.9284 7.46424i 0.587050 0.338934i
\(486\) −14.4803 + 5.77254i −0.656838 + 0.261848i
\(487\) 7.05835 12.2254i 0.319844 0.553987i −0.660611 0.750728i \(-0.729703\pi\)
0.980455 + 0.196742i \(0.0630360\pi\)
\(488\) −6.50065 + 11.2595i −0.294271 + 0.509692i
\(489\) −17.9189 21.0942i −0.810319 0.953911i
\(490\) 6.99218 0.330818i 0.315874 0.0149448i
\(491\) −9.00388 5.19839i −0.406339 0.234600i 0.282876 0.959156i \(-0.408711\pi\)
−0.689216 + 0.724556i \(0.742045\pi\)
\(492\) 13.4073 2.44787i 0.604450 0.110359i
\(493\) 0.750675i 0.0338087i
\(494\) 11.9391 + 6.89307i 0.537167 + 0.310134i
\(495\) −0.468309 1.23975i −0.0210489 0.0557225i
\(496\) 8.74919i 0.392850i
\(497\) 2.79532 + 9.52567i 0.125387 + 0.427285i
\(498\) 2.67046 + 14.6265i 0.119666 + 0.655428i
\(499\) −15.8790 −0.710840 −0.355420 0.934707i \(-0.615662\pi\)
−0.355420 + 0.934707i \(0.615662\pi\)
\(500\) −0.500000 0.866025i −0.0223607 0.0387298i
\(501\) 2.75167 7.70500i 0.122936 0.344234i
\(502\) −3.99285 2.30527i −0.178210 0.102889i
\(503\) −0.0186342 −0.000830858 −0.000415429 1.00000i \(-0.500132\pi\)
−0.000415429 1.00000i \(0.500132\pi\)
\(504\) −4.78210 6.33495i −0.213011 0.282181i
\(505\) −4.57755 −0.203698
\(506\) −0.993004 0.573311i −0.0441444 0.0254868i
\(507\) 0.502877 + 0.591989i 0.0223335 + 0.0262911i
\(508\) −10.5552 18.2821i −0.468311 0.811139i
\(509\) 32.9617 1.46100 0.730502 0.682911i \(-0.239286\pi\)
0.730502 + 0.682911i \(0.239286\pi\)
\(510\) 0.359338 0.305247i 0.0159118 0.0135166i
\(511\) 28.6262 + 6.94953i 1.26635 + 0.307429i
\(512\) 1.00000i 0.0441942i
\(513\) −9.45804 + 17.0914i −0.417583 + 0.754605i
\(514\) −23.6379 13.6473i −1.04262 0.601958i
\(515\) 4.60214i 0.202795i
\(516\) −0.990097 + 2.77239i −0.0435866 + 0.122048i
\(517\) −3.02041 1.74383i −0.132837 0.0766937i
\(518\) −0.0889537 0.303129i −0.00390840 0.0133187i
\(519\) −11.8136 + 33.0795i −0.518561 + 1.45203i
\(520\) −1.83361 + 3.17590i −0.0804090 + 0.139272i
\(521\) 3.94706 6.83651i 0.172924 0.299513i −0.766517 0.642224i \(-0.778012\pi\)
0.939441 + 0.342711i \(0.111345\pi\)
\(522\) 7.73926 2.92348i 0.338738 0.127957i
\(523\) 2.84277 1.64127i 0.124306 0.0717679i −0.436558 0.899676i \(-0.643803\pi\)
0.560864 + 0.827908i \(0.310469\pi\)
\(524\) 2.54266 + 4.40402i 0.111077 + 0.192390i
\(525\) 4.09389 2.05913i 0.178672 0.0898679i
\(526\) 14.9537 25.9006i 0.652013 1.12932i
\(527\) 2.38164i 0.103746i
\(528\) −0.720561 0.257333i −0.0313584 0.0111990i
\(529\) 16.2627 0.707072
\(530\) 0.0474920 + 0.0822585i 0.00206292 + 0.00357308i
\(531\) 7.45293 + 6.10149i 0.323430 + 0.264782i
\(532\) −9.66541 2.34645i −0.419049 0.101732i
\(533\) 24.9902 14.4281i 1.08244 0.624950i
\(534\) 3.95159 + 21.6434i 0.171002 + 0.936601i
\(535\) 14.0223 8.09579i 0.606238 0.350012i
\(536\) 0.465460 0.268733i 0.0201048 0.0116075i
\(537\) −24.8931 8.89003i −1.07422 0.383633i
\(538\) −11.8473 + 6.84004i −0.510773 + 0.294895i
\(539\) 1.67096 + 2.60190i 0.0719732 + 0.112072i
\(540\) −4.54645 2.51591i −0.195648 0.108267i
\(541\) 7.89978 + 13.6828i 0.339638 + 0.588270i 0.984365 0.176143i \(-0.0563621\pi\)
−0.644727 + 0.764413i \(0.723029\pi\)
\(542\) 3.16912 0.136125
\(543\) 7.69038 + 42.1213i 0.330026 + 1.80760i
\(544\) 0.272213i 0.0116710i
\(545\) 1.37107 2.37476i 0.0587302 0.101724i
\(546\) −14.0462 9.22616i −0.601122 0.394843i
\(547\) −8.85022 15.3290i −0.378408 0.655422i 0.612423 0.790531i \(-0.290195\pi\)
−0.990831 + 0.135108i \(0.956862\pi\)
\(548\) −11.8142 + 6.82095i −0.504679 + 0.291376i
\(549\) −38.4905 6.30731i −1.64274 0.269189i
\(550\) 0.220875 0.382566i 0.00941814 0.0163127i
\(551\) 5.18345 8.97800i 0.220823 0.382476i
\(552\) −4.42267 + 0.807478i −0.188241 + 0.0343685i
\(553\) −1.88994 + 7.78496i −0.0803685 + 0.331050i
\(554\) −1.31428 0.758800i −0.0558384 0.0322383i
\(555\) −0.133894 0.157620i −0.00568346 0.00669059i
\(556\) 9.49953i 0.402870i
\(557\) 27.5064 + 15.8808i 1.16548 + 0.672892i 0.952612 0.304188i \(-0.0983852\pi\)
0.212871 + 0.977080i \(0.431719\pi\)
\(558\) −24.5541 + 9.27522i −1.03946 + 0.392651i
\(559\) 6.23298i 0.263627i
\(560\) 0.624174 2.57107i 0.0263762 0.108648i
\(561\) 0.196146 + 0.0700493i 0.00828130 + 0.00295748i
\(562\) −3.56750 −0.150486
\(563\) 21.3085 + 36.9074i 0.898046 + 1.55546i 0.829989 + 0.557780i \(0.188347\pi\)
0.0680571 + 0.997681i \(0.478320\pi\)
\(564\) −13.4524 + 2.45610i −0.566447 + 0.103420i
\(565\) 2.85536 + 1.64854i 0.120126 + 0.0693548i
\(566\) −13.1970 −0.554712
\(567\) 12.7091 20.1365i 0.533731 0.845654i
\(568\) 3.75218 0.157438
\(569\) −14.8343 8.56459i −0.621886 0.359046i 0.155717 0.987802i \(-0.450231\pi\)
−0.777603 + 0.628756i \(0.783565\pi\)
\(570\) −6.40540 + 1.16948i −0.268293 + 0.0489841i
\(571\) −7.40719 12.8296i −0.309981 0.536904i 0.668377 0.743823i \(-0.266989\pi\)
−0.978358 + 0.206920i \(0.933656\pi\)
\(572\) −1.61999 −0.0677352
\(573\) −8.97900 3.20665i −0.375103 0.133960i
\(574\) −14.3689 + 15.0648i −0.599747 + 0.628793i
\(575\) 2.59564i 0.108246i
\(576\) −2.80645 + 1.06012i −0.116935 + 0.0441718i
\(577\) 29.2079 + 16.8632i 1.21594 + 0.702025i 0.964048 0.265730i \(-0.0856129\pi\)
0.251895 + 0.967755i \(0.418946\pi\)
\(578\) 16.9259i 0.704025i
\(579\) 16.8729 + 19.8628i 0.701213 + 0.825471i
\(580\) 2.38822 + 1.37884i 0.0991653 + 0.0572531i
\(581\) −16.4347 15.6755i −0.681825 0.650328i
\(582\) 25.4364 4.64410i 1.05437 0.192504i
\(583\) −0.0209796 + 0.0363377i −0.000868885 + 0.00150495i
\(584\) 5.56698 9.64229i 0.230363 0.399001i
\(585\) −10.8568 1.77907i −0.448875 0.0735555i
\(586\) −19.0955 + 11.0248i −0.788826 + 0.455429i
\(587\) 5.76762 + 9.98982i 0.238055 + 0.412324i 0.960156 0.279464i \(-0.0901567\pi\)
−0.722101 + 0.691788i \(0.756823\pi\)
\(588\) 11.5980 + 3.53354i 0.478294 + 0.145721i
\(589\) −16.4454 + 28.4842i −0.677620 + 1.17367i
\(590\) 3.21065i 0.132180i
\(591\) 6.11555 + 33.4957i 0.251560 + 1.37783i
\(592\) −0.119403 −0.00490745
\(593\) −11.7771 20.3985i −0.483627 0.837666i 0.516197 0.856470i \(-0.327347\pi\)
−0.999823 + 0.0188043i \(0.994014\pi\)
\(594\) −0.0416940 2.29502i −0.00171072 0.0941658i
\(595\) −0.169908 + 0.699879i −0.00696557 + 0.0286922i
\(596\) −12.4227 + 7.17226i −0.508854 + 0.293787i
\(597\) −17.4035 6.21526i −0.712276 0.254374i
\(598\) −8.24349 + 4.75938i −0.337101 + 0.194626i
\(599\) −31.9172 + 18.4274i −1.30410 + 0.752923i −0.981105 0.193477i \(-0.938023\pi\)
−0.322996 + 0.946400i \(0.604690\pi\)
\(600\) −0.311090 1.70388i −0.0127002 0.0695608i
\(601\) −3.58818 + 2.07164i −0.146365 + 0.0845039i −0.571394 0.820676i \(-0.693597\pi\)
0.425029 + 0.905180i \(0.360264\pi\)
\(602\) −1.26621 4.31490i −0.0516070 0.175862i
\(603\) 1.24763 + 1.02140i 0.0508075 + 0.0415945i
\(604\) 0.339894 + 0.588715i 0.0138301 + 0.0239545i
\(605\) −10.8049 −0.439280
\(606\) −7.46669 2.66656i −0.303313 0.108322i
\(607\) 19.7232i 0.800540i −0.916397 0.400270i \(-0.868916\pi\)
0.916397 0.400270i \(-0.131084\pi\)
\(608\) −1.87965 + 3.25564i −0.0762297 + 0.132034i
\(609\) −6.93789 + 10.5625i −0.281138 + 0.428013i
\(610\) −6.50065 11.2595i −0.263204 0.455882i
\(611\) −25.0741 + 14.4766i −1.01439 + 0.585659i
\(612\) 0.763951 0.288580i 0.0308809 0.0116651i
\(613\) 3.80772 6.59516i 0.153792 0.266376i −0.778826 0.627240i \(-0.784185\pi\)
0.932619 + 0.360864i \(0.117518\pi\)
\(614\) −14.6049 + 25.2964i −0.589405 + 1.02088i
\(615\) −4.58375 + 12.8350i −0.184835 + 0.517559i
\(616\) 1.12147 0.329097i 0.0451853 0.0132597i
\(617\) 32.0531 + 18.5058i 1.29041 + 0.745017i 0.978726 0.205170i \(-0.0657747\pi\)
0.311681 + 0.950187i \(0.399108\pi\)
\(618\) 2.68089 7.50679i 0.107841 0.301967i
\(619\) 21.0131i 0.844587i −0.906459 0.422294i \(-0.861225\pi\)
0.906459 0.422294i \(-0.138775\pi\)
\(620\) −7.57702 4.37459i −0.304300 0.175688i
\(621\) −6.95472 11.5560i −0.279083 0.463725i
\(622\) 24.7927i 0.994097i
\(623\) −24.3190 23.1956i −0.974322 0.929314i
\(624\) −4.84095 + 4.11225i −0.193793 + 0.164622i
\(625\) 1.00000 0.0400000
\(626\) 16.9458 + 29.3510i 0.677292 + 1.17310i
\(627\) −1.86220 2.19218i −0.0743689 0.0875474i
\(628\) −20.6832 11.9414i −0.825349 0.476515i
\(629\) 0.0325032 0.00129599
\(630\) 7.87727 0.973942i 0.313838 0.0388028i
\(631\) 24.9229 0.992166 0.496083 0.868275i \(-0.334771\pi\)
0.496083 + 0.868275i \(0.334771\pi\)
\(632\) 2.62224 + 1.51395i 0.104307 + 0.0602218i
\(633\) −0.677482 + 1.89703i −0.0269275 + 0.0754001i
\(634\) −17.0887 29.5986i −0.678681 1.17551i
\(635\) 21.1104 0.837741
\(636\) 0.0295486 + 0.161842i 0.00117168 + 0.00641744i
\(637\) 25.6418 1.21318i 1.01597 0.0480679i
\(638\) 1.21820i 0.0482291i
\(639\) 3.97778 + 10.5303i 0.157359 + 0.416572i
\(640\) −0.866025 0.500000i −0.0342327 0.0197642i
\(641\) 6.42378i 0.253724i 0.991920 + 0.126862i \(0.0404905\pi\)
−0.991920 + 0.126862i \(0.959509\pi\)
\(642\) 27.5886 5.03704i 1.08883 0.198796i
\(643\) 34.0574 + 19.6630i 1.34309 + 0.775434i 0.987260 0.159116i \(-0.0508642\pi\)
0.355832 + 0.934550i \(0.384198\pi\)
\(644\) 4.73986 4.96942i 0.186777 0.195822i
\(645\) −1.90591 2.24364i −0.0750451 0.0883433i
\(646\) 0.511664 0.886229i 0.0201312 0.0348682i
\(647\) 13.4151 23.2356i 0.527401 0.913486i −0.472089 0.881551i \(-0.656500\pi\)
0.999490 0.0319349i \(-0.0101669\pi\)
\(648\) −5.95036 6.75228i −0.233752 0.265254i
\(649\) −1.22829 + 0.709151i −0.0482144 + 0.0278366i
\(650\) −1.83361 3.17590i −0.0719200 0.124569i
\(651\) 22.0116 33.5112i 0.862704 1.31341i
\(652\) 7.98983 13.8388i 0.312906 0.541969i
\(653\) 40.2139i 1.57369i −0.617149 0.786846i \(-0.711712\pi\)
0.617149 0.786846i \(-0.288288\pi\)
\(654\) 3.61979 3.07491i 0.141545 0.120238i
\(655\) −5.08532 −0.198700
\(656\) 3.93435 + 6.81449i 0.153610 + 0.266061i
\(657\) 32.9622 + 5.40140i 1.28598 + 0.210729i
\(658\) 14.4172 15.1154i 0.562040 0.589260i
\(659\) 18.2869 10.5580i 0.712357 0.411280i −0.0995760 0.995030i \(-0.531749\pi\)
0.811933 + 0.583750i \(0.198415\pi\)
\(660\) 0.583137 0.495358i 0.0226986 0.0192818i
\(661\) 22.9592 13.2555i 0.893010 0.515580i 0.0180841 0.999836i \(-0.494243\pi\)
0.874926 + 0.484257i \(0.160910\pi\)
\(662\) −15.7514 + 9.09408i −0.612196 + 0.353452i
\(663\) 1.31777 1.11941i 0.0511779 0.0434742i
\(664\) −7.43413 + 4.29210i −0.288500 + 0.166566i
\(665\) 6.86479 7.19726i 0.266205 0.279098i
\(666\) −0.126582 0.335099i −0.00490497 0.0129848i
\(667\) 3.57896 + 6.19895i 0.138578 + 0.240024i
\(668\) 4.72365 0.182764
\(669\) −3.74174 + 3.17850i −0.144664 + 0.122888i
\(670\) 0.537467i 0.0207642i
\(671\) 2.87166 4.97386i 0.110859 0.192014i
\(672\) 2.51585 3.83021i 0.0970510 0.147754i
\(673\) 17.0764 + 29.5771i 0.658245 + 1.14011i 0.981070 + 0.193655i \(0.0620344\pi\)
−0.322824 + 0.946459i \(0.604632\pi\)
\(674\) −2.06941 + 1.19477i −0.0797105 + 0.0460209i
\(675\) 4.45207 2.67939i 0.171360 0.103130i
\(676\) −0.224227 + 0.388373i −0.00862413 + 0.0149374i
\(677\) −3.73419 + 6.46780i −0.143516 + 0.248578i −0.928818 0.370535i \(-0.879174\pi\)
0.785302 + 0.619113i \(0.212508\pi\)
\(678\) 3.69721 + 4.35236i 0.141990 + 0.167152i
\(679\) −27.2607 + 28.5810i −1.04617 + 1.09684i
\(680\) 0.235743 + 0.136107i 0.00904035 + 0.00521945i
\(681\) 19.1680 3.49964i 0.734520 0.134107i
\(682\) 3.86495i 0.147997i
\(683\) −20.4287 11.7945i −0.781681 0.451304i 0.0553445 0.998467i \(-0.482374\pi\)
−0.837026 + 0.547163i \(0.815708\pi\)
\(684\) −11.1294 1.82374i −0.425545 0.0697325i
\(685\) 13.6419i 0.521230i
\(686\) −17.5046 + 6.04891i −0.668328 + 0.230949i
\(687\) −5.03869 27.5976i −0.192238 1.05291i
\(688\) −1.69965 −0.0647985
\(689\) 0.174163 + 0.301660i 0.00663509 + 0.0114923i
\(690\) 1.51204 4.23388i 0.0575623 0.161181i
\(691\) 14.1003 + 8.14082i 0.536401 + 0.309692i 0.743619 0.668603i \(-0.233108\pi\)
−0.207218 + 0.978295i \(0.566441\pi\)
\(692\) −20.2799 −0.770925
\(693\) 2.11249 + 2.79846i 0.0802468 + 0.106305i
\(694\) 24.5163 0.930626
\(695\) 8.22684 + 4.74977i 0.312062 + 0.180169i
\(696\) 3.09233 + 3.64030i 0.117214 + 0.137985i
\(697\) −1.07098 1.85499i −0.0405663 0.0702629i
\(698\) 19.8655 0.751921
\(699\) 4.89781 4.16055i 0.185252 0.157366i
\(700\) 1.91453 + 1.82609i 0.0723623 + 0.0690196i
\(701\) 4.22872i 0.159717i −0.996806 0.0798583i \(-0.974553\pi\)
0.996806 0.0798583i \(-0.0254468\pi\)
\(702\) −16.6728 9.22638i −0.629274 0.348227i
\(703\) −0.388735 0.224436i −0.0146614 0.00846477i
\(704\) 0.441750i 0.0166491i
\(705\) 4.59915 12.8782i 0.173214 0.485019i
\(706\) −27.8411 16.0741i −1.04781 0.604955i
\(707\) 11.6210 3.41021i 0.437054 0.128254i
\(708\) −1.87030 + 5.23705i −0.0702901 + 0.196821i
\(709\) 2.89202 5.00912i 0.108612 0.188121i −0.806596 0.591103i \(-0.798693\pi\)
0.915208 + 0.402981i \(0.132026\pi\)
\(710\) −1.87609 + 3.24949i −0.0704085 + 0.121951i
\(711\) −1.46892 + 8.96416i −0.0550890 + 0.336182i
\(712\) −11.0006 + 6.35119i −0.412264 + 0.238021i
\(713\) −11.3549 19.6672i −0.425243 0.736543i
\(714\) −0.684847 + 1.04263i −0.0256298 + 0.0390196i
\(715\) 0.809995 1.40295i 0.0302921 0.0524675i
\(716\) 15.2611i 0.570333i
\(717\) 13.2770 + 4.74160i 0.495840 + 0.177078i
\(718\) 28.2685 1.05497
\(719\) −7.58926 13.1450i −0.283032 0.490225i 0.689098 0.724668i \(-0.258007\pi\)
−0.972130 + 0.234443i \(0.924673\pi\)
\(720\) 0.485129 2.96052i 0.0180797 0.110332i
\(721\) 3.42852 + 11.6835i 0.127685 + 0.435115i
\(722\) 4.21556 2.43386i 0.156887 0.0905787i
\(723\) −8.85771 48.5149i −0.329422 1.80429i
\(724\) −21.4088 + 12.3604i −0.795651 + 0.459369i
\(725\) −2.38822 + 1.37884i −0.0886961 + 0.0512087i
\(726\) −17.6244 6.29416i −0.654102 0.233598i
\(727\) 23.3867 13.5023i 0.867364 0.500773i 0.000892806 1.00000i \(-0.499716\pi\)
0.866471 + 0.499227i \(0.166382\pi\)
\(728\) 2.28898 9.42867i 0.0848353 0.349450i
\(729\) 12.6418 23.8576i 0.468214 0.883615i
\(730\) 5.56698 + 9.64229i 0.206043 + 0.356877i
\(731\) 0.462667 0.0171123
\(732\) −4.04458 22.1527i −0.149492 0.818788i
\(733\) 18.1508i 0.670416i 0.942144 + 0.335208i \(0.108807\pi\)
−0.942144 + 0.335208i \(0.891193\pi\)
\(734\) −16.8301 + 29.1506i −0.621210 + 1.07597i
\(735\) −8.85915 + 8.27741i −0.326775 + 0.305317i
\(736\) −1.29782 2.24789i −0.0478383 0.0828583i
\(737\) −0.205617 + 0.118713i −0.00757399 + 0.00437285i
\(738\) −14.9536 + 18.2657i −0.550449 + 0.672371i
\(739\) 2.83491 4.91021i 0.104284 0.180625i −0.809162 0.587586i \(-0.800078\pi\)
0.913445 + 0.406961i \(0.133412\pi\)
\(740\) 0.0597017 0.103406i 0.00219468 0.00380129i
\(741\) −23.4900 + 4.28873i −0.862926 + 0.157550i
\(742\) −0.181849 0.173449i −0.00667590 0.00636751i
\(743\) 14.9685 + 8.64209i 0.549142 + 0.317047i 0.748776 0.662823i \(-0.230642\pi\)
−0.199634 + 0.979871i \(0.563975\pi\)
\(744\) −9.81094 11.5495i −0.359686 0.423424i
\(745\) 14.3445i 0.525543i
\(746\) 10.3698 + 5.98701i 0.379665 + 0.219200i
\(747\) −19.9266 16.3133i −0.729077 0.596874i
\(748\) 0.120250i 0.00439678i
\(749\) −29.5672 + 30.9992i −1.08036 + 1.13269i
\(750\) 1.63115 + 0.582530i 0.0595613 + 0.0212710i
\(751\) −38.8281 −1.41686 −0.708429 0.705782i \(-0.750596\pi\)
−0.708429 + 0.705782i \(0.750596\pi\)
\(752\) −3.94756 6.83738i −0.143953 0.249334i
\(753\) 7.85584 1.43430i 0.286283 0.0522687i
\(754\) 8.75810 + 5.05649i 0.318951 + 0.184146i
\(755\) −0.679789 −0.0247401
\(756\) 13.4164 + 3.00010i 0.487949 + 0.109113i
\(757\) −33.5417 −1.21910 −0.609548 0.792749i \(-0.708649\pi\)
−0.609548 + 0.792749i \(0.708649\pi\)
\(758\) 9.49414 + 5.48144i 0.344843 + 0.199095i
\(759\) 1.95371 0.356703i 0.0709153 0.0129475i
\(760\) −1.87965 3.25564i −0.0681820 0.118095i
\(761\) −26.6928 −0.967612 −0.483806 0.875175i \(-0.660746\pi\)
−0.483806 + 0.875175i \(0.660746\pi\)
\(762\) 34.4343 + 12.2975i 1.24742 + 0.445490i
\(763\) −1.71157 + 7.05023i −0.0619631 + 0.255236i
\(764\) 5.50470i 0.199153i
\(765\) −0.132058 + 0.805891i −0.00477458 + 0.0291370i
\(766\) 17.4289