Properties

Label 630.2.t.b.311.12
Level 630
Weight 2
Character 630.311
Analytic conductor 5.031
Analytic rank 0
Dimension 28
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 311.12
Character \(\chi\) \(=\) 630.311
Dual form 630.2.t.b.551.12

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.0350998 + 1.73170i) q^{3} +(0.500000 + 0.866025i) q^{4} -1.00000 q^{5} +(-0.835450 + 1.51724i) q^{6} +(-1.17997 + 2.36805i) q^{7} +1.00000i q^{8} +(-2.99754 + 0.121564i) q^{9} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(0.0350998 + 1.73170i) q^{3} +(0.500000 + 0.866025i) q^{4} -1.00000 q^{5} +(-0.835450 + 1.51724i) q^{6} +(-1.17997 + 2.36805i) q^{7} +1.00000i q^{8} +(-2.99754 + 0.121564i) q^{9} +(-0.866025 - 0.500000i) q^{10} +0.751037i q^{11} +(-1.48214 + 0.896245i) q^{12} +(-2.72204 - 1.57157i) q^{13} +(-2.20591 + 1.46081i) q^{14} +(-0.0350998 - 1.73170i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.433117 - 0.750180i) q^{17} +(-2.65672 - 1.39349i) q^{18} +(1.23551 - 0.713322i) q^{19} +(-0.500000 - 0.866025i) q^{20} +(-4.14216 - 1.96023i) q^{21} +(-0.375518 + 0.650417i) q^{22} +5.06153i q^{23} +(-1.73170 + 0.0350998i) q^{24} +1.00000 q^{25} +(-1.57157 - 2.72204i) q^{26} +(-0.315725 - 5.18655i) q^{27} +(-2.64078 + 0.162142i) q^{28} +(-5.23368 + 3.02167i) q^{29} +(0.835450 - 1.51724i) q^{30} +(5.38301 - 3.10788i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(-1.30057 + 0.0263612i) q^{33} +(0.750180 - 0.433117i) q^{34} +(1.17997 - 2.36805i) q^{35} +(-1.60405 - 2.53516i) q^{36} +(3.60391 + 6.24216i) q^{37} +1.42664 q^{38} +(2.62594 - 4.76891i) q^{39} -1.00000i q^{40} +(-2.08432 + 3.61015i) q^{41} +(-2.60710 - 3.76869i) q^{42} +(3.69510 + 6.40010i) q^{43} +(-0.650417 + 0.375518i) q^{44} +(2.99754 - 0.121564i) q^{45} +(-2.53076 + 4.38341i) q^{46} +(-1.72922 + 2.99510i) q^{47} +(-1.51724 - 0.835450i) q^{48} +(-4.21534 - 5.58846i) q^{49} +(0.866025 + 0.500000i) q^{50} +(1.31429 + 0.723695i) q^{51} -3.14314i q^{52} +(-0.790248 - 0.456250i) q^{53} +(2.31985 - 4.64955i) q^{54} -0.751037i q^{55} +(-2.36805 - 1.17997i) q^{56} +(1.27862 + 2.11449i) q^{57} -6.04334 q^{58} +(-4.21910 - 7.30769i) q^{59} +(1.48214 - 0.896245i) q^{60} +(9.30244 + 5.37077i) q^{61} +6.21576 q^{62} +(3.24913 - 7.24176i) q^{63} -1.00000 q^{64} +(2.72204 + 1.57157i) q^{65} +(-1.13950 - 0.627454i) q^{66} +(5.44637 + 9.43339i) q^{67} +0.866234 q^{68} +(-8.76502 + 0.177659i) q^{69} +(2.20591 - 1.46081i) q^{70} -5.43339i q^{71} +(-0.121564 - 2.99754i) q^{72} +(0.539702 + 0.311597i) q^{73} +7.20782i q^{74} +(0.0350998 + 1.73170i) q^{75} +(1.23551 + 0.713322i) q^{76} +(-1.77849 - 0.886201i) q^{77} +(4.65858 - 2.81702i) q^{78} +(-0.00292607 + 0.00506811i) q^{79} +(0.500000 - 0.866025i) q^{80} +(8.97044 - 0.728787i) q^{81} +(-3.61015 + 2.08432i) q^{82} +(1.01834 + 1.76381i) q^{83} +(-0.373471 - 4.56733i) q^{84} +(-0.433117 + 0.750180i) q^{85} +7.39020i q^{86} +(-5.41631 - 8.95708i) q^{87} -0.751037 q^{88} +(-1.22452 - 2.12093i) q^{89} +(2.65672 + 1.39349i) q^{90} +(6.93349 - 4.59153i) q^{91} +(-4.38341 + 2.53076i) q^{92} +(5.57084 + 9.21264i) q^{93} +(-2.99510 + 1.72922i) q^{94} +(-1.23551 + 0.713322i) q^{95} +(-0.896245 - 1.48214i) q^{96} +(9.23519 - 5.33194i) q^{97} +(-0.856363 - 6.94742i) q^{98} +(-0.0912993 - 2.25126i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 2q^{3} + 14q^{4} - 28q^{5} - 8q^{6} - 4q^{7} + 6q^{9} + O(q^{10}) \) \( 28q - 2q^{3} + 14q^{4} - 28q^{5} - 8q^{6} - 4q^{7} + 6q^{9} - 4q^{12} + 6q^{14} + 2q^{15} - 14q^{16} - 6q^{17} - 4q^{18} - 6q^{19} - 14q^{20} + 6q^{21} - 6q^{22} - 4q^{24} + 28q^{25} + 12q^{26} + 28q^{27} - 8q^{28} + 8q^{30} - 12q^{31} + 26q^{33} + 4q^{35} - 6q^{36} + 4q^{37} - 12q^{38} + 54q^{39} + 18q^{41} - 32q^{42} + 28q^{43} - 6q^{45} - 18q^{46} + 30q^{47} - 2q^{48} - 14q^{49} + 34q^{51} - 42q^{53} + 14q^{54} + 6q^{56} - 30q^{57} - 12q^{58} - 24q^{59} + 4q^{60} + 24q^{61} - 12q^{62} + 44q^{63} - 28q^{64} - 10q^{66} - 40q^{67} - 12q^{68} + 8q^{69} - 6q^{70} + 4q^{72} + 6q^{73} - 2q^{75} - 6q^{76} - 24q^{77} + 14q^{78} + 2q^{79} + 14q^{80} - 46q^{81} + 24q^{82} - 18q^{83} + 18q^{84} + 6q^{85} + 104q^{87} - 12q^{88} + 6q^{89} + 4q^{90} + 66q^{91} - 30q^{92} + 40q^{93} + 42q^{94} + 6q^{95} + 4q^{96} - 72q^{97} - 24q^{98} - 42q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0.0350998 + 1.73170i 0.0202649 + 0.999795i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.00000 −0.447214
\(6\) −0.835450 + 1.51724i −0.341071 + 0.619411i
\(7\) −1.17997 + 2.36805i −0.445987 + 0.895040i
\(8\) 1.00000i 0.353553i
\(9\) −2.99754 + 0.121564i −0.999179 + 0.0405214i
\(10\) −0.866025 0.500000i −0.273861 0.158114i
\(11\) 0.751037i 0.226446i 0.993570 + 0.113223i \(0.0361175\pi\)
−0.993570 + 0.113223i \(0.963883\pi\)
\(12\) −1.48214 + 0.896245i −0.427858 + 0.258724i
\(13\) −2.72204 1.57157i −0.754958 0.435875i 0.0725244 0.997367i \(-0.476894\pi\)
−0.827483 + 0.561491i \(0.810228\pi\)
\(14\) −2.20591 + 1.46081i −0.589554 + 0.390417i
\(15\) −0.0350998 1.73170i −0.00906273 0.447122i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.433117 0.750180i 0.105046 0.181945i −0.808711 0.588206i \(-0.799834\pi\)
0.913757 + 0.406261i \(0.133168\pi\)
\(18\) −2.65672 1.39349i −0.626196 0.328449i
\(19\) 1.23551 0.713322i 0.283446 0.163647i −0.351537 0.936174i \(-0.614341\pi\)
0.634982 + 0.772527i \(0.281007\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) −4.14216 1.96023i −0.903894 0.427757i
\(22\) −0.375518 + 0.650417i −0.0800608 + 0.138669i
\(23\) 5.06153i 1.05540i 0.849430 + 0.527701i \(0.176946\pi\)
−0.849430 + 0.527701i \(0.823054\pi\)
\(24\) −1.73170 + 0.0350998i −0.353481 + 0.00716472i
\(25\) 1.00000 0.200000
\(26\) −1.57157 2.72204i −0.308210 0.533836i
\(27\) −0.315725 5.18655i −0.0607613 0.998152i
\(28\) −2.64078 + 0.162142i −0.499060 + 0.0306420i
\(29\) −5.23368 + 3.02167i −0.971870 + 0.561110i −0.899806 0.436290i \(-0.856292\pi\)
−0.0720645 + 0.997400i \(0.522959\pi\)
\(30\) 0.835450 1.51724i 0.152532 0.277009i
\(31\) 5.38301 3.10788i 0.966817 0.558192i 0.0685524 0.997648i \(-0.478162\pi\)
0.898264 + 0.439456i \(0.144829\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) −1.30057 + 0.0263612i −0.226400 + 0.00458890i
\(34\) 0.750180 0.433117i 0.128655 0.0742789i
\(35\) 1.17997 2.36805i 0.199451 0.400274i
\(36\) −1.60405 2.53516i −0.267341 0.422527i
\(37\) 3.60391 + 6.24216i 0.592479 + 1.02620i 0.993897 + 0.110309i \(0.0351842\pi\)
−0.401418 + 0.915895i \(0.631482\pi\)
\(38\) 1.42664 0.231432
\(39\) 2.62594 4.76891i 0.420487 0.763636i
\(40\) 1.00000i 0.158114i
\(41\) −2.08432 + 3.61015i −0.325516 + 0.563811i −0.981617 0.190863i \(-0.938871\pi\)
0.656101 + 0.754673i \(0.272205\pi\)
\(42\) −2.60710 3.76869i −0.402285 0.581521i
\(43\) 3.69510 + 6.40010i 0.563497 + 0.976006i 0.997188 + 0.0749440i \(0.0238778\pi\)
−0.433690 + 0.901062i \(0.642789\pi\)
\(44\) −0.650417 + 0.375518i −0.0980540 + 0.0566115i
\(45\) 2.99754 0.121564i 0.446846 0.0181217i
\(46\) −2.53076 + 4.38341i −0.373141 + 0.646299i
\(47\) −1.72922 + 2.99510i −0.252233 + 0.436880i −0.964140 0.265393i \(-0.914498\pi\)
0.711907 + 0.702273i \(0.247832\pi\)
\(48\) −1.51724 0.835450i −0.218995 0.120587i
\(49\) −4.21534 5.58846i −0.602192 0.798352i
\(50\) 0.866025 + 0.500000i 0.122474 + 0.0707107i
\(51\) 1.31429 + 0.723695i 0.184037 + 0.101338i
\(52\) 3.14314i 0.435875i
\(53\) −0.790248 0.456250i −0.108549 0.0626707i 0.444743 0.895658i \(-0.353295\pi\)
−0.553292 + 0.832988i \(0.686628\pi\)
\(54\) 2.31985 4.64955i 0.315692 0.632723i
\(55\) 0.751037i 0.101270i
\(56\) −2.36805 1.17997i −0.316444 0.157680i
\(57\) 1.27862 + 2.11449i 0.169358 + 0.280071i
\(58\) −6.04334 −0.793529
\(59\) −4.21910 7.30769i −0.549280 0.951381i −0.998324 0.0578710i \(-0.981569\pi\)
0.449044 0.893510i \(-0.351765\pi\)
\(60\) 1.48214 0.896245i 0.191344 0.115705i
\(61\) 9.30244 + 5.37077i 1.19106 + 0.687656i 0.958546 0.284938i \(-0.0919729\pi\)
0.232510 + 0.972594i \(0.425306\pi\)
\(62\) 6.21576 0.789403
\(63\) 3.24913 7.24176i 0.409352 0.912376i
\(64\) −1.00000 −0.125000
\(65\) 2.72204 + 1.57157i 0.337628 + 0.194929i
\(66\) −1.13950 0.627454i −0.140263 0.0772342i
\(67\) 5.44637 + 9.43339i 0.665380 + 1.15247i 0.979182 + 0.202984i \(0.0650639\pi\)
−0.313802 + 0.949489i \(0.601603\pi\)
\(68\) 0.866234 0.105046
\(69\) −8.76502 + 0.177659i −1.05518 + 0.0213876i
\(70\) 2.20591 1.46081i 0.263657 0.174600i
\(71\) 5.43339i 0.644825i −0.946599 0.322413i \(-0.895506\pi\)
0.946599 0.322413i \(-0.104494\pi\)
\(72\) −0.121564 2.99754i −0.0143265 0.353263i
\(73\) 0.539702 + 0.311597i 0.0631673 + 0.0364697i 0.531251 0.847214i \(-0.321722\pi\)
−0.468084 + 0.883684i \(0.655055\pi\)
\(74\) 7.20782i 0.837892i
\(75\) 0.0350998 + 1.73170i 0.00405298 + 0.199959i
\(76\) 1.23551 + 0.713322i 0.141723 + 0.0818237i
\(77\) −1.77849 0.886201i −0.202678 0.100992i
\(78\) 4.65858 2.81702i 0.527481 0.318965i
\(79\) −0.00292607 + 0.00506811i −0.000329209 + 0.000570206i −0.866190 0.499715i \(-0.833438\pi\)
0.865861 + 0.500285i \(0.166771\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) 8.97044 0.728787i 0.996716 0.0809763i
\(82\) −3.61015 + 2.08432i −0.398674 + 0.230175i
\(83\) 1.01834 + 1.76381i 0.111777 + 0.193603i 0.916487 0.400065i \(-0.131012\pi\)
−0.804710 + 0.593668i \(0.797679\pi\)
\(84\) −0.373471 4.56733i −0.0407491 0.498337i
\(85\) −0.433117 + 0.750180i −0.0469781 + 0.0813685i
\(86\) 7.39020i 0.796905i
\(87\) −5.41631 8.95708i −0.580689 0.960300i
\(88\) −0.751037 −0.0800608
\(89\) −1.22452 2.12093i −0.129799 0.224819i 0.793800 0.608179i \(-0.208100\pi\)
−0.923599 + 0.383361i \(0.874767\pi\)
\(90\) 2.65672 + 1.39349i 0.280043 + 0.146887i
\(91\) 6.93349 4.59153i 0.726827 0.481323i
\(92\) −4.38341 + 2.53076i −0.457002 + 0.263850i
\(93\) 5.57084 + 9.21264i 0.577670 + 0.955307i
\(94\) −2.99510 + 1.72922i −0.308921 + 0.178355i
\(95\) −1.23551 + 0.713322i −0.126761 + 0.0731853i
\(96\) −0.896245 1.48214i −0.0914726 0.151270i
\(97\) 9.23519 5.33194i 0.937692 0.541377i 0.0484558 0.998825i \(-0.484570\pi\)
0.889236 + 0.457449i \(0.151237\pi\)
\(98\) −0.856363 6.94742i −0.0865057 0.701795i
\(99\) −0.0912993 2.25126i −0.00917592 0.226260i
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) −5.74239 −0.571389 −0.285695 0.958321i \(-0.592224\pi\)
−0.285695 + 0.958321i \(0.592224\pi\)
\(102\) 0.776357 + 1.28388i 0.0768708 + 0.127123i
\(103\) 15.6548i 1.54251i 0.636526 + 0.771255i \(0.280371\pi\)
−0.636526 + 0.771255i \(0.719629\pi\)
\(104\) 1.57157 2.72204i 0.154105 0.266918i
\(105\) 4.14216 + 1.96023i 0.404234 + 0.191299i
\(106\) −0.456250 0.790248i −0.0443149 0.0767557i
\(107\) 11.6558 6.72947i 1.12681 0.650562i 0.183677 0.982987i \(-0.441200\pi\)
0.943130 + 0.332425i \(0.107867\pi\)
\(108\) 4.33382 2.86670i 0.417022 0.275849i
\(109\) −6.28955 + 10.8938i −0.602430 + 1.04344i 0.390022 + 0.920806i \(0.372467\pi\)
−0.992452 + 0.122634i \(0.960866\pi\)
\(110\) 0.375518 0.650417i 0.0358043 0.0620148i
\(111\) −10.6830 + 6.45997i −1.01399 + 0.613154i
\(112\) −1.46081 2.20591i −0.138033 0.208439i
\(113\) −2.91695 1.68410i −0.274404 0.158427i 0.356484 0.934302i \(-0.383976\pi\)
−0.630887 + 0.775875i \(0.717309\pi\)
\(114\) 0.0500750 + 2.47051i 0.00468995 + 0.231385i
\(115\) 5.06153i 0.471990i
\(116\) −5.23368 3.02167i −0.485935 0.280555i
\(117\) 8.35046 + 4.37994i 0.772000 + 0.404925i
\(118\) 8.43820i 0.776799i
\(119\) 1.26540 + 1.91083i 0.115999 + 0.175166i
\(120\) 1.73170 0.0350998i 0.158081 0.00320416i
\(121\) 10.4359 0.948722
\(122\) 5.37077 + 9.30244i 0.486246 + 0.842204i
\(123\) −6.32484 3.48269i −0.570291 0.314024i
\(124\) 5.38301 + 3.10788i 0.483408 + 0.279096i
\(125\) −1.00000 −0.0894427
\(126\) 6.43471 4.64699i 0.573250 0.413986i
\(127\) 6.31880 0.560703 0.280352 0.959897i \(-0.409549\pi\)
0.280352 + 0.959897i \(0.409549\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) −10.9533 + 6.62343i −0.964386 + 0.583160i
\(130\) 1.57157 + 2.72204i 0.137836 + 0.238739i
\(131\) 10.9728 0.958699 0.479350 0.877624i \(-0.340873\pi\)
0.479350 + 0.877624i \(0.340873\pi\)
\(132\) −0.673113 1.11314i −0.0585870 0.0968867i
\(133\) 0.231319 + 3.76745i 0.0200579 + 0.326680i
\(134\) 10.8927i 0.940990i
\(135\) 0.315725 + 5.18655i 0.0271733 + 0.446387i
\(136\) 0.750180 + 0.433117i 0.0643274 + 0.0371395i
\(137\) 21.2377i 1.81446i 0.420637 + 0.907229i \(0.361807\pi\)
−0.420637 + 0.907229i \(0.638193\pi\)
\(138\) −7.67956 4.22866i −0.653728 0.359967i
\(139\) −8.99525 5.19341i −0.762967 0.440499i 0.0673930 0.997727i \(-0.478532\pi\)
−0.830360 + 0.557227i \(0.811865\pi\)
\(140\) 2.64078 0.162142i 0.223187 0.0137035i
\(141\) −5.24729 2.88936i −0.441902 0.243328i
\(142\) 2.71670 4.70546i 0.227980 0.394873i
\(143\) 1.18031 2.04435i 0.0987023 0.170957i
\(144\) 1.39349 2.65672i 0.116124 0.221394i
\(145\) 5.23368 3.02167i 0.434634 0.250936i
\(146\) 0.311597 + 0.539702i 0.0257880 + 0.0446660i
\(147\) 9.52955 7.49584i 0.785984 0.618247i
\(148\) −3.60391 + 6.24216i −0.296240 + 0.513102i
\(149\) 12.9684i 1.06241i 0.847242 + 0.531207i \(0.178261\pi\)
−0.847242 + 0.531207i \(0.821739\pi\)
\(150\) −0.835450 + 1.51724i −0.0682142 + 0.123882i
\(151\) 22.9105 1.86443 0.932217 0.361900i \(-0.117872\pi\)
0.932217 + 0.361900i \(0.117872\pi\)
\(152\) 0.713322 + 1.23551i 0.0578581 + 0.100213i
\(153\) −1.20709 + 2.30134i −0.0975873 + 0.186053i
\(154\) −1.09712 1.65672i −0.0884085 0.133502i
\(155\) −5.38301 + 3.10788i −0.432374 + 0.249631i
\(156\) 5.44296 0.110324i 0.435786 0.00883296i
\(157\) 7.74720 4.47285i 0.618294 0.356972i −0.157911 0.987453i \(-0.550476\pi\)
0.776204 + 0.630481i \(0.217143\pi\)
\(158\) −0.00506811 + 0.00292607i −0.000403197 + 0.000232786i
\(159\) 0.762348 1.38448i 0.0604581 0.109797i
\(160\) 0.866025 0.500000i 0.0684653 0.0395285i
\(161\) −11.9860 5.97245i −0.944626 0.470695i
\(162\) 8.13303 + 3.85407i 0.638991 + 0.302805i
\(163\) −8.68748 15.0472i −0.680456 1.17858i −0.974842 0.222898i \(-0.928448\pi\)
0.294386 0.955687i \(-0.404885\pi\)
\(164\) −4.16864 −0.325516
\(165\) 1.30057 0.0263612i 0.101249 0.00205222i
\(166\) 2.03667i 0.158076i
\(167\) 8.49076 14.7064i 0.657035 1.13802i −0.324345 0.945939i \(-0.605144\pi\)
0.981380 0.192079i \(-0.0615229\pi\)
\(168\) 1.96023 4.14216i 0.151235 0.319575i
\(169\) −1.56033 2.70257i −0.120025 0.207890i
\(170\) −0.750180 + 0.433117i −0.0575362 + 0.0332185i
\(171\) −3.61677 + 2.28840i −0.276582 + 0.174999i
\(172\) −3.69510 + 6.40010i −0.281749 + 0.488003i
\(173\) −4.57540 + 7.92483i −0.347861 + 0.602514i −0.985869 0.167516i \(-0.946425\pi\)
0.638008 + 0.770030i \(0.279759\pi\)
\(174\) −0.212120 10.4652i −0.0160808 0.793366i
\(175\) −1.17997 + 2.36805i −0.0891973 + 0.179008i
\(176\) −0.650417 0.375518i −0.0490270 0.0283058i
\(177\) 12.5066 7.56269i 0.940054 0.568447i
\(178\) 2.44904i 0.183564i
\(179\) −17.2805 9.97688i −1.29160 0.745707i −0.312664 0.949864i \(-0.601221\pi\)
−0.978938 + 0.204157i \(0.934555\pi\)
\(180\) 1.60405 + 2.53516i 0.119559 + 0.188960i
\(181\) 21.6898i 1.61219i −0.591784 0.806097i \(-0.701576\pi\)
0.591784 0.806097i \(-0.298424\pi\)
\(182\) 8.30034 0.509636i 0.615262 0.0377767i
\(183\) −8.97402 + 16.2975i −0.663378 + 1.20475i
\(184\) −5.06153 −0.373141
\(185\) −3.60391 6.24216i −0.264965 0.458933i
\(186\) 0.218172 + 10.7638i 0.0159971 + 0.789240i
\(187\) 0.563413 + 0.325287i 0.0412008 + 0.0237873i
\(188\) −3.45844 −0.252233
\(189\) 12.6546 + 5.37232i 0.920485 + 0.390779i
\(190\) −1.42664 −0.103500
\(191\) −6.10266 3.52337i −0.441573 0.254942i 0.262692 0.964880i \(-0.415390\pi\)
−0.704265 + 0.709938i \(0.748723\pi\)
\(192\) −0.0350998 1.73170i −0.00253311 0.124974i
\(193\) 1.20239 + 2.08260i 0.0865498 + 0.149909i 0.906051 0.423169i \(-0.139083\pi\)
−0.819501 + 0.573078i \(0.805749\pi\)
\(194\) 10.6639 0.765622
\(195\) −2.62594 + 4.76891i −0.188047 + 0.341508i
\(196\) 2.73208 6.44482i 0.195148 0.460345i
\(197\) 1.58424i 0.112873i −0.998406 0.0564364i \(-0.982026\pi\)
0.998406 0.0564364i \(-0.0179738\pi\)
\(198\) 1.04656 1.99530i 0.0743759 0.141800i
\(199\) 6.71297 + 3.87574i 0.475870 + 0.274744i 0.718694 0.695327i \(-0.244740\pi\)
−0.242824 + 0.970070i \(0.578074\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) −16.1446 + 9.76257i −1.13875 + 0.688598i
\(202\) −4.97305 2.87119i −0.349903 0.202017i
\(203\) −0.979879 15.9591i −0.0687740 1.12011i
\(204\) 0.0304046 + 1.50005i 0.00212875 + 0.105025i
\(205\) 2.08432 3.61015i 0.145575 0.252144i
\(206\) −7.82738 + 13.5574i −0.545360 + 0.944591i
\(207\) −0.615301 15.1721i −0.0427664 1.05453i
\(208\) 2.72204 1.57157i 0.188740 0.108969i
\(209\) 0.535731 + 0.927914i 0.0370573 + 0.0641851i
\(210\) 2.60710 + 3.76869i 0.179907 + 0.260064i
\(211\) 6.64182 11.5040i 0.457242 0.791966i −0.541572 0.840654i \(-0.682171\pi\)
0.998814 + 0.0486881i \(0.0155040\pi\)
\(212\) 0.912500i 0.0626707i
\(213\) 9.40898 0.190711i 0.644693 0.0130673i
\(214\) 13.4589 0.920034
\(215\) −3.69510 6.40010i −0.252004 0.436483i
\(216\) 5.18655 0.315725i 0.352900 0.0214824i
\(217\) 1.00784 + 16.4144i 0.0684164 + 1.11429i
\(218\) −10.8938 + 6.28955i −0.737823 + 0.425982i
\(219\) −0.520648 + 0.945536i −0.0351821 + 0.0638934i
\(220\) 0.650417 0.375518i 0.0438511 0.0253174i
\(221\) −2.35792 + 1.36135i −0.158611 + 0.0915742i
\(222\) −12.4818 + 0.252993i −0.837720 + 0.0169798i
\(223\) −13.8018 + 7.96848i −0.924237 + 0.533609i −0.884984 0.465621i \(-0.845831\pi\)
−0.0392529 + 0.999229i \(0.512498\pi\)
\(224\) −0.162142 2.64078i −0.0108336 0.176444i
\(225\) −2.99754 + 0.121564i −0.199836 + 0.00810429i
\(226\) −1.68410 2.91695i −0.112025 0.194033i
\(227\) −13.1879 −0.875314 −0.437657 0.899142i \(-0.644192\pi\)
−0.437657 + 0.899142i \(0.644192\pi\)
\(228\) −1.19189 + 2.16457i −0.0789349 + 0.143352i
\(229\) 19.7537i 1.30536i −0.757633 0.652681i \(-0.773644\pi\)
0.757633 0.652681i \(-0.226356\pi\)
\(230\) 2.53076 4.38341i 0.166874 0.289034i
\(231\) 1.47220 3.11092i 0.0968640 0.204683i
\(232\) −3.02167 5.23368i −0.198382 0.343608i
\(233\) 23.8501 13.7699i 1.56247 0.902094i 0.565467 0.824771i \(-0.308696\pi\)
0.997006 0.0773231i \(-0.0246373\pi\)
\(234\) 5.04174 + 7.96837i 0.329589 + 0.520909i
\(235\) 1.72922 2.99510i 0.112802 0.195379i
\(236\) 4.21910 7.30769i 0.274640 0.475690i
\(237\) −0.00887912 0.00488918i −0.000576761 0.000317586i
\(238\) 0.140453 + 2.28753i 0.00910421 + 0.148279i
\(239\) 6.52234 + 3.76567i 0.421895 + 0.243581i 0.695888 0.718151i \(-0.255011\pi\)
−0.273993 + 0.961732i \(0.588344\pi\)
\(240\) 1.51724 + 0.835450i 0.0979375 + 0.0539281i
\(241\) 11.9813i 0.771785i −0.922544 0.385892i \(-0.873894\pi\)
0.922544 0.385892i \(-0.126106\pi\)
\(242\) 9.03779 + 5.21797i 0.580971 + 0.335424i
\(243\) 1.57690 + 15.5085i 0.101158 + 0.994870i
\(244\) 10.7415i 0.687656i
\(245\) 4.21534 + 5.58846i 0.269308 + 0.357034i
\(246\) −3.73612 6.17852i −0.238206 0.393928i
\(247\) −4.48415 −0.285319
\(248\) 3.10788 + 5.38301i 0.197351 + 0.341821i
\(249\) −3.01864 + 1.82536i −0.191298 + 0.115677i
\(250\) −0.866025 0.500000i −0.0547723 0.0316228i
\(251\) −30.3694 −1.91690 −0.958449 0.285265i \(-0.907918\pi\)
−0.958449 + 0.285265i \(0.907918\pi\)
\(252\) 7.89612 0.807051i 0.497409 0.0508394i
\(253\) −3.80139 −0.238992
\(254\) 5.47224 + 3.15940i 0.343359 + 0.198238i
\(255\) −1.31429 0.723695i −0.0823038 0.0453195i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −0.800054 −0.0499060 −0.0249530 0.999689i \(-0.507944\pi\)
−0.0249530 + 0.999689i \(0.507944\pi\)
\(258\) −12.7976 + 0.259394i −0.796742 + 0.0161492i
\(259\) −19.0343 + 1.16869i −1.18273 + 0.0726190i
\(260\) 3.14314i 0.194929i
\(261\) 15.3208 9.69379i 0.948335 0.600030i
\(262\) 9.50274 + 5.48641i 0.587081 + 0.338951i
\(263\) 20.8541i 1.28592i −0.765900 0.642960i \(-0.777706\pi\)
0.765900 0.642960i \(-0.222294\pi\)
\(264\) −0.0263612 1.30057i −0.00162242 0.0800443i
\(265\) 0.790248 + 0.456250i 0.0485445 + 0.0280272i
\(266\) −1.68340 + 3.37837i −0.103216 + 0.207141i
\(267\) 3.62983 2.19494i 0.222142 0.134328i
\(268\) −5.44637 + 9.43339i −0.332690 + 0.576236i
\(269\) −15.0545 + 26.0752i −0.917889 + 1.58983i −0.115273 + 0.993334i \(0.536774\pi\)
−0.802616 + 0.596497i \(0.796559\pi\)
\(270\) −2.31985 + 4.64955i −0.141182 + 0.282962i
\(271\) −12.3296 + 7.11850i −0.748970 + 0.432418i −0.825322 0.564663i \(-0.809006\pi\)
0.0763514 + 0.997081i \(0.475673\pi\)
\(272\) 0.433117 + 0.750180i 0.0262616 + 0.0454864i
\(273\) 8.19449 + 11.8455i 0.495953 + 0.716924i
\(274\) −10.6188 + 18.3924i −0.641508 + 1.11112i
\(275\) 0.751037i 0.0452892i
\(276\) −4.53637 7.50190i −0.273057 0.451562i
\(277\) −16.9306 −1.01726 −0.508631 0.860985i \(-0.669848\pi\)
−0.508631 + 0.860985i \(0.669848\pi\)
\(278\) −5.19341 8.99525i −0.311480 0.539499i
\(279\) −15.7580 + 9.97037i −0.943404 + 0.596910i
\(280\) 2.36805 + 1.17997i 0.141518 + 0.0705167i
\(281\) −16.7637 + 9.67853i −1.00004 + 0.577373i −0.908260 0.418407i \(-0.862589\pi\)
−0.0917791 + 0.995779i \(0.529255\pi\)
\(282\) −3.09961 5.12590i −0.184579 0.305243i
\(283\) 26.4542 15.2734i 1.57254 0.907907i 0.576685 0.816966i \(-0.304346\pi\)
0.995856 0.0909409i \(-0.0289874\pi\)
\(284\) 4.70546 2.71670i 0.279218 0.161206i
\(285\) −1.27862 2.11449i −0.0757391 0.125252i
\(286\) 2.04435 1.18031i 0.120885 0.0697930i
\(287\) −6.08958 9.19565i −0.359457 0.542802i
\(288\) 2.53516 1.60405i 0.149386 0.0945193i
\(289\) 8.12482 + 14.0726i 0.477931 + 0.827800i
\(290\) 6.04334 0.354877
\(291\) 9.55745 + 15.8054i 0.560268 + 0.926528i
\(292\) 0.623194i 0.0364697i
\(293\) 0.844143 1.46210i 0.0493154 0.0854167i −0.840314 0.542100i \(-0.817629\pi\)
0.889629 + 0.456683i \(0.150963\pi\)
\(294\) 12.0008 1.72681i 0.699898 0.100710i
\(295\) 4.21910 + 7.30769i 0.245645 + 0.425470i
\(296\) −6.24216 + 3.60391i −0.362818 + 0.209473i
\(297\) 3.89529 0.237121i 0.226028 0.0137592i
\(298\) −6.48421 + 11.2310i −0.375620 + 0.650593i
\(299\) 7.95455 13.7777i 0.460024 0.796784i
\(300\) −1.48214 + 0.896245i −0.0855715 + 0.0517447i
\(301\) −19.5159 + 1.19826i −1.12488 + 0.0690667i
\(302\) 19.8411 + 11.4553i 1.14173 + 0.659177i
\(303\) −0.201557 9.94407i −0.0115791 0.571272i
\(304\) 1.42664i 0.0818237i
\(305\) −9.30244 5.37077i −0.532656 0.307529i
\(306\) −2.19604 + 1.38948i −0.125539 + 0.0794312i
\(307\) 7.15873i 0.408570i −0.978911 0.204285i \(-0.934513\pi\)
0.978911 0.204285i \(-0.0654869\pi\)
\(308\) −0.121775 1.98332i −0.00693876 0.113010i
\(309\) −27.1093 + 0.549479i −1.54219 + 0.0312588i
\(310\) −6.21576 −0.353032
\(311\) 12.3177 + 21.3350i 0.698475 + 1.20979i 0.968995 + 0.247080i \(0.0794711\pi\)
−0.270520 + 0.962714i \(0.587196\pi\)
\(312\) 4.76891 + 2.62594i 0.269986 + 0.148665i
\(313\) −11.0002 6.35095i −0.621766 0.358977i 0.155790 0.987790i \(-0.450208\pi\)
−0.777556 + 0.628813i \(0.783541\pi\)
\(314\) 8.94569 0.504835
\(315\) −3.24913 + 7.24176i −0.183068 + 0.408027i
\(316\) −0.00585214 −0.000329209
\(317\) 22.1158 + 12.7685i 1.24214 + 0.717152i 0.969530 0.244971i \(-0.0787784\pi\)
0.272614 + 0.962123i \(0.412112\pi\)
\(318\) 1.35245 0.817823i 0.0758419 0.0458612i
\(319\) −2.26938 3.93069i −0.127061 0.220076i
\(320\) 1.00000 0.0559017
\(321\) 12.0625 + 19.9480i 0.673263 + 1.11339i
\(322\) −7.39392 11.1653i −0.412047 0.622217i
\(323\) 1.23581i 0.0687622i
\(324\) 5.11637 + 7.40424i 0.284243 + 0.411347i
\(325\) −2.72204 1.57157i −0.150992 0.0871751i
\(326\) 17.3750i 0.962310i
\(327\) −19.0855 10.5092i −1.05543 0.581161i
\(328\) −3.61015 2.08432i −0.199337 0.115087i
\(329\) −5.05212 7.62901i −0.278532 0.420601i
\(330\) 1.13950 + 0.627454i 0.0627277 + 0.0345402i
\(331\) 7.01463 12.1497i 0.385559 0.667807i −0.606288 0.795245i \(-0.707342\pi\)
0.991847 + 0.127438i \(0.0406754\pi\)
\(332\) −1.01834 + 1.76381i −0.0558884 + 0.0968016i
\(333\) −11.5617 18.2730i −0.633576 1.00135i
\(334\) 14.7064 8.49076i 0.804700 0.464594i
\(335\) −5.44637 9.43339i −0.297567 0.515401i
\(336\) 3.76869 2.60710i 0.205599 0.142229i
\(337\) 13.7946 23.8930i 0.751442 1.30154i −0.195682 0.980667i \(-0.562692\pi\)
0.947124 0.320868i \(-0.103975\pi\)
\(338\) 3.12066i 0.169741i
\(339\) 2.81397 5.11038i 0.152834 0.277558i
\(340\) −0.866234 −0.0469781
\(341\) 2.33413 + 4.04284i 0.126400 + 0.218932i
\(342\) −4.27642 + 0.173429i −0.231242 + 0.00937797i
\(343\) 18.2077 3.38793i 0.983126 0.182931i
\(344\) −6.40010 + 3.69510i −0.345070 + 0.199226i
\(345\) 8.76502 0.177659i 0.471893 0.00956482i
\(346\) −7.92483 + 4.57540i −0.426041 + 0.245975i
\(347\) −10.1962 + 5.88676i −0.547359 + 0.316018i −0.748056 0.663635i \(-0.769013\pi\)
0.200697 + 0.979653i \(0.435679\pi\)
\(348\) 5.04891 9.16920i 0.270650 0.491521i
\(349\) −25.3085 + 14.6119i −1.35473 + 0.782155i −0.988908 0.148530i \(-0.952546\pi\)
−0.365824 + 0.930684i \(0.619213\pi\)
\(350\) −2.20591 + 1.46081i −0.117911 + 0.0780835i
\(351\) −7.29162 + 14.6142i −0.389198 + 0.780048i
\(352\) −0.375518 0.650417i −0.0200152 0.0346673i
\(353\) 0.301856 0.0160662 0.00803309 0.999968i \(-0.497443\pi\)
0.00803309 + 0.999968i \(0.497443\pi\)
\(354\) 14.6124 0.296179i 0.776639 0.0157417i
\(355\) 5.43339i 0.288375i
\(356\) 1.22452 2.12093i 0.0648995 0.112409i
\(357\) −3.26457 + 2.25836i −0.172779 + 0.119525i
\(358\) −9.97688 17.2805i −0.527294 0.913301i
\(359\) 22.8586 13.1974i 1.20643 0.696534i 0.244455 0.969661i \(-0.421391\pi\)
0.961978 + 0.273126i \(0.0880577\pi\)
\(360\) 0.121564 + 2.99754i 0.00640700 + 0.157984i
\(361\) −8.48234 + 14.6918i −0.446439 + 0.773255i
\(362\) 10.8449 18.7840i 0.569996 0.987263i
\(363\) 0.366300 + 18.0719i 0.0192257 + 0.948527i
\(364\) 7.44312 + 3.70881i 0.390126 + 0.194395i
\(365\) −0.539702 0.311597i −0.0282493 0.0163097i
\(366\) −15.9205 + 9.62705i −0.832177 + 0.503214i
\(367\) 9.73338i 0.508079i 0.967194 + 0.254039i \(0.0817592\pi\)
−0.967194 + 0.254039i \(0.918241\pi\)
\(368\) −4.38341 2.53076i −0.228501 0.131925i
\(369\) 5.80896 11.0749i 0.302402 0.576538i
\(370\) 7.20782i 0.374717i
\(371\) 2.01289 1.33299i 0.104504 0.0692052i
\(372\) −5.19296 + 9.43081i −0.269242 + 0.488965i
\(373\) −19.2585 −0.997168 −0.498584 0.866841i \(-0.666146\pi\)
−0.498584 + 0.866841i \(0.666146\pi\)
\(374\) 0.325287 + 0.563413i 0.0168202 + 0.0291334i
\(375\) −0.0350998 1.73170i −0.00181255 0.0894244i
\(376\) −2.99510 1.72922i −0.154460 0.0891777i
\(377\) 18.9951 0.978296
\(378\) 8.27302 + 10.9799i 0.425518 + 0.564743i
\(379\) −29.4361 −1.51203 −0.756015 0.654554i \(-0.772856\pi\)
−0.756015 + 0.654554i \(0.772856\pi\)
\(380\) −1.23551 0.713322i −0.0633804 0.0365927i
\(381\) 0.221789 + 10.9422i 0.0113626 + 0.560588i
\(382\) −3.52337 6.10266i −0.180271 0.312239i
\(383\) 17.8073 0.909912 0.454956 0.890514i \(-0.349655\pi\)
0.454956 + 0.890514i \(0.349655\pi\)
\(384\) 0.835450 1.51724i 0.0426339 0.0774264i
\(385\) 1.77849 + 0.886201i 0.0906405 + 0.0451650i
\(386\) 2.40478i 0.122400i
\(387\) −11.8542 18.7353i −0.602584 0.952371i
\(388\) 9.23519 + 5.33194i 0.468846 + 0.270688i
\(389\) 12.5302i 0.635306i 0.948207 + 0.317653i \(0.102895\pi\)
−0.948207 + 0.317653i \(0.897105\pi\)
\(390\) −4.65858 + 2.81702i −0.235897 + 0.142646i
\(391\) 3.79706 + 2.19223i 0.192026 + 0.110866i
\(392\) 5.58846 4.21534i 0.282260 0.212907i
\(393\) 0.385144 + 19.0016i 0.0194279 + 0.958502i
\(394\) 0.792122 1.37200i 0.0399066 0.0691202i
\(395\) 0.00292607 0.00506811i 0.000147227 0.000255004i
\(396\) 1.90400 1.20470i 0.0956795 0.0605383i
\(397\) −26.6549 + 15.3892i −1.33777 + 0.772361i −0.986476 0.163905i \(-0.947591\pi\)
−0.351293 + 0.936266i \(0.614258\pi\)
\(398\) 3.87574 + 6.71297i 0.194273 + 0.336491i
\(399\) −6.51596 + 0.532811i −0.326206 + 0.0266739i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 7.17154i 0.358129i −0.983837 0.179065i \(-0.942693\pi\)
0.983837 0.179065i \(-0.0573071\pi\)
\(402\) −18.8629 + 0.382333i −0.940797 + 0.0190690i
\(403\) −19.5370 −0.973208
\(404\) −2.87119 4.97305i −0.142847 0.247419i
\(405\) −8.97044 + 0.728787i −0.445745 + 0.0362137i
\(406\) 7.13096 14.3109i 0.353903 0.710240i
\(407\) −4.68809 + 2.70667i −0.232380 + 0.134165i
\(408\) −0.723695 + 1.31429i −0.0358282 + 0.0650669i
\(409\) 23.0919 13.3321i 1.14182 0.659232i 0.194942 0.980815i \(-0.437548\pi\)
0.946881 + 0.321583i \(0.104215\pi\)
\(410\) 3.61015 2.08432i 0.178293 0.102937i
\(411\) −36.7772 + 0.745439i −1.81409 + 0.0367698i
\(412\) −13.5574 + 7.82738i −0.667926 + 0.385627i
\(413\) 22.2834 1.36819i 1.09649 0.0673241i
\(414\) 7.05319 13.4471i 0.346645 0.660888i
\(415\) −1.01834 1.76381i −0.0499881 0.0865820i
\(416\) 3.14314 0.154105
\(417\) 8.67767 15.7593i 0.424947 0.771737i
\(418\) 1.07146i 0.0524070i
\(419\) 12.2128 21.1533i 0.596636 1.03340i −0.396677 0.917958i \(-0.629837\pi\)
0.993314 0.115446i \(-0.0368298\pi\)
\(420\) 0.373471 + 4.56733i 0.0182235 + 0.222863i
\(421\) 8.84702 + 15.3235i 0.431177 + 0.746821i 0.996975 0.0777229i \(-0.0247649\pi\)
−0.565798 + 0.824544i \(0.691432\pi\)
\(422\) 11.5040 6.64182i 0.560005 0.323319i
\(423\) 4.81930 9.18813i 0.234323 0.446742i
\(424\) 0.456250 0.790248i 0.0221574 0.0383778i
\(425\) 0.433117 0.750180i 0.0210093 0.0363891i
\(426\) 8.24377 + 4.53933i 0.399412 + 0.219931i
\(427\) −23.6949 + 15.6913i −1.14667 + 0.759356i
\(428\) 11.6558 + 6.72947i 0.563403 + 0.325281i
\(429\) 3.58162 + 1.97218i 0.172922 + 0.0952176i
\(430\) 7.39020i 0.356387i
\(431\) −20.5184 11.8463i −0.988335 0.570616i −0.0835591 0.996503i \(-0.526629\pi\)
−0.904776 + 0.425887i \(0.859962\pi\)
\(432\) 4.64955 + 2.31985i 0.223701 + 0.111614i
\(433\) 24.1077i 1.15854i −0.815135 0.579271i \(-0.803337\pi\)
0.815135 0.579271i \(-0.196663\pi\)
\(434\) −7.33441 + 14.7192i −0.352063 + 0.706547i
\(435\) 5.41631 + 8.95708i 0.259692 + 0.429459i
\(436\) −12.5791 −0.602430
\(437\) 3.61050 + 6.25357i 0.172714 + 0.299149i
\(438\) −0.923662 + 0.558534i −0.0441343 + 0.0266878i
\(439\) −0.925536 0.534359i −0.0441734 0.0255035i 0.477751 0.878495i \(-0.341452\pi\)
−0.521924 + 0.852992i \(0.674786\pi\)
\(440\) 0.751037 0.0358043
\(441\) 13.3150 + 16.2392i 0.634047 + 0.773294i
\(442\) −2.72270 −0.129505
\(443\) −26.8115 15.4796i −1.27385 0.735459i −0.298142 0.954522i \(-0.596367\pi\)
−0.975711 + 0.219062i \(0.929700\pi\)
\(444\) −10.9360 6.02178i −0.519000 0.285781i
\(445\) 1.22452 + 2.12093i 0.0580479 + 0.100542i
\(446\) −15.9370 −0.754637
\(447\) −22.4574 + 0.455189i −1.06220 + 0.0215297i
\(448\) 1.17997 2.36805i 0.0557483 0.111880i
\(449\) 22.4824i 1.06101i −0.847682 0.530505i \(-0.822002\pi\)
0.847682 0.530505i \(-0.177998\pi\)
\(450\) −2.65672 1.39349i −0.125239 0.0656898i
\(451\) −2.71135 1.56540i −0.127673 0.0737119i
\(452\) 3.36820i 0.158427i
\(453\) 0.804155 + 39.6741i 0.0377825 + 1.86405i
\(454\) −11.4211 6.59397i −0.536018 0.309470i
\(455\) −6.93349 + 4.59153i −0.325047 + 0.215254i
\(456\) −2.11449 + 1.27862i −0.0990201 + 0.0598770i
\(457\) −20.6626 + 35.7886i −0.966554 + 1.67412i −0.261174 + 0.965292i \(0.584110\pi\)
−0.705380 + 0.708829i \(0.749224\pi\)
\(458\) 9.87685 17.1072i 0.461515 0.799367i
\(459\) −4.02760 2.00953i −0.187992 0.0937969i
\(460\) 4.38341 2.53076i 0.204378 0.117997i
\(461\) −13.0109 22.5356i −0.605979 1.04959i −0.991896 0.127052i \(-0.959448\pi\)
0.385917 0.922533i \(-0.373885\pi\)
\(462\) 2.83042 1.95803i 0.131683 0.0910958i
\(463\) −5.54762 + 9.60876i −0.257820 + 0.446557i −0.965658 0.259818i \(-0.916337\pi\)
0.707838 + 0.706375i \(0.249671\pi\)
\(464\) 6.04334i 0.280555i
\(465\) −5.57084 9.21264i −0.258342 0.427226i
\(466\) 27.5397 1.27575
\(467\) 18.7366 + 32.4527i 0.867025 + 1.50173i 0.865022 + 0.501734i \(0.167304\pi\)
0.00200339 + 0.999998i \(0.499362\pi\)
\(468\) 0.382094 + 9.42168i 0.0176623 + 0.435517i
\(469\) −28.7653 + 1.76617i −1.32826 + 0.0815543i
\(470\) 2.99510 1.72922i 0.138154 0.0797630i
\(471\) 8.01753 + 13.2588i 0.369428 + 0.610933i
\(472\) 7.30769 4.21910i 0.336364 0.194200i
\(473\) −4.80671 + 2.77515i −0.221013 + 0.127602i
\(474\) −0.00524495 0.00867371i −0.000240909 0.000398397i
\(475\) 1.23551 0.713322i 0.0566891 0.0327295i
\(476\) −1.02213 + 2.05129i −0.0468492 + 0.0940206i
\(477\) 2.42426 + 1.27156i 0.110999 + 0.0582207i
\(478\) 3.76567 + 6.52234i 0.172238 + 0.298325i
\(479\) 13.9632 0.637996 0.318998 0.947755i \(-0.396654\pi\)
0.318998 + 0.947755i \(0.396654\pi\)
\(480\) 0.896245 + 1.48214i 0.0409078 + 0.0676502i
\(481\) 22.6552i 1.03299i
\(482\) 5.99066 10.3761i 0.272867 0.472620i
\(483\) 9.92176 20.9657i 0.451456 0.953971i
\(484\) 5.21797 + 9.03779i 0.237181 + 0.410809i
\(485\) −9.23519 + 5.33194i −0.419349 + 0.242111i
\(486\) −6.38861 + 14.2192i −0.289793 + 0.644996i
\(487\) 1.90704 3.30309i 0.0864163 0.149677i −0.819578 0.572968i \(-0.805792\pi\)
0.905994 + 0.423291i \(0.139125\pi\)
\(488\) −5.37077 + 9.30244i −0.243123 + 0.421102i
\(489\) 25.7522 15.5722i 1.16455 0.704200i
\(490\) 0.856363 + 6.94742i 0.0386865 + 0.313852i
\(491\) 23.7383 + 13.7053i 1.07129 + 0.618512i 0.928535 0.371245i \(-0.121069\pi\)
0.142760 + 0.989757i \(0.454402\pi\)
\(492\) −0.146318 7.21881i −0.00659655 0.325449i
\(493\) 5.23494i 0.235770i
\(494\) −3.88339 2.24207i −0.174722 0.100876i
\(495\) 0.0912993 + 2.25126i 0.00410360 + 0.101187i
\(496\) 6.21576i 0.279096i
\(497\) 12.8666 + 6.41124i 0.577144 + 0.287584i
\(498\) −3.52689 + 0.0714868i −0.158044 + 0.00320340i
\(499\) 25.7894 1.15449 0.577247 0.816570i \(-0.304127\pi\)
0.577247 + 0.816570i \(0.304127\pi\)
\(500\) −0.500000 0.866025i −0.0223607 0.0387298i
\(501\) 25.7651 + 14.1872i 1.15110 + 0.633838i
\(502\) −26.3006 15.1847i −1.17386 0.677726i
\(503\) 17.3517 0.773675 0.386838 0.922148i \(-0.373567\pi\)
0.386838 + 0.922148i \(0.373567\pi\)
\(504\) 7.24176 + 3.24913i 0.322574 + 0.144728i
\(505\) 5.74239 0.255533
\(506\) −3.29210 1.90070i −0.146352 0.0844963i
\(507\) 4.62526 2.79687i 0.205415 0.124214i
\(508\) 3.15940 + 5.47224i 0.140176 + 0.242792i
\(509\) 28.1334 1.24699 0.623497 0.781826i \(-0.285712\pi\)
0.623497 + 0.781826i \(0.285712\pi\)
\(510\) −0.776357 1.28388i −0.0343777 0.0568512i
\(511\) −1.37471 + 0.910367i −0.0608136 + 0.0402723i
\(512\) 1.00000i 0.0441942i
\(513\) −4.08977 6.18283i −0.180568 0.272978i
\(514\) −0.692867 0.400027i −0.0305611 0.0176444i
\(515\) 15.6548i 0.689831i
\(516\) −11.2127 6.17414i −0.493612 0.271801i
\(517\) −2.24943 1.29871i −0.0989298 0.0571171i
\(518\) −17.0685 8.50501i −0.749947 0.373689i
\(519\) −13.8840 7.64504i −0.609439 0.335580i
\(520\) −1.57157 + 2.72204i −0.0689179 + 0.119369i
\(521\) 3.97534 6.88549i 0.174163 0.301659i −0.765708 0.643188i \(-0.777611\pi\)
0.939871 + 0.341529i \(0.110945\pi\)
\(522\) 18.1151 0.734654i 0.792877 0.0321549i
\(523\) 0.614490 0.354776i 0.0268698 0.0155133i −0.486505 0.873678i \(-0.661728\pi\)
0.513375 + 0.858165i \(0.328395\pi\)
\(524\) 5.48641 + 9.50274i 0.239675 + 0.415129i
\(525\) −4.14216 1.96023i −0.180779 0.0855515i
\(526\) 10.4271 18.0602i 0.454641 0.787462i
\(527\) 5.38430i 0.234544i
\(528\) 0.627454 1.13950i 0.0273064 0.0495906i
\(529\) −2.61907 −0.113873
\(530\) 0.456250 + 0.790248i 0.0198182 + 0.0343262i
\(531\) 13.5353 + 21.3922i 0.587380 + 0.928342i
\(532\) −3.14705 + 2.08405i −0.136442 + 0.0903552i
\(533\) 11.3472 6.55131i 0.491502 0.283769i
\(534\) 4.24100 0.0859610i 0.183526 0.00371989i
\(535\) −11.6558 + 6.72947i −0.503923 + 0.290940i
\(536\) −9.43339 + 5.44637i −0.407461 + 0.235247i
\(537\) 16.6704 30.2747i 0.719380 1.30645i
\(538\) −26.0752 + 15.0545i −1.12418 + 0.649046i
\(539\) 4.19714 3.16588i 0.180784 0.136364i
\(540\) −4.33382 + 2.86670i −0.186498 + 0.123363i
\(541\) −0.152089 0.263426i −0.00653882 0.0113256i 0.862737 0.505652i \(-0.168748\pi\)
−0.869276 + 0.494327i \(0.835415\pi\)
\(542\) −14.2370 −0.611532
\(543\) 37.5602 0.761309i 1.61186 0.0326709i
\(544\) 0.866234i 0.0371395i
\(545\) 6.28955 10.8938i 0.269415 0.466640i
\(546\) 1.17387 + 14.3558i 0.0502372 + 0.614370i
\(547\) 4.14876 + 7.18586i 0.177388 + 0.307245i 0.940985 0.338448i \(-0.109902\pi\)
−0.763597 + 0.645693i \(0.776569\pi\)
\(548\) −18.3924 + 10.6188i −0.785684 + 0.453615i
\(549\) −28.5373 14.9682i −1.21794 0.638828i
\(550\) −0.375518 + 0.650417i −0.0160122 + 0.0277339i
\(551\) −4.31085 + 7.46661i −0.183648 + 0.318088i
\(552\) −0.177659 8.76502i −0.00756165 0.373064i
\(553\) −0.00854886 0.0129093i −0.000363535 0.000548959i
\(554\) −14.6623 8.46531i −0.622943 0.359657i
\(555\) 10.6830 6.45997i 0.453469 0.274211i
\(556\) 10.3868i 0.440499i
\(557\) −2.70966 1.56442i −0.114812 0.0662867i 0.441494 0.897264i \(-0.354449\pi\)
−0.556306 + 0.830977i \(0.687782\pi\)
\(558\) −18.6320 + 0.755615i −0.788754 + 0.0319877i
\(559\) 23.2284i 0.982458i
\(560\) 1.46081 + 2.20591i 0.0617304 + 0.0932167i
\(561\) −0.543522 + 0.987077i −0.0229475 + 0.0416744i
\(562\) −19.3571 −0.816528
\(563\) 10.4373 + 18.0780i 0.439881 + 0.761897i 0.997680 0.0680796i \(-0.0216872\pi\)
−0.557799 + 0.829976i \(0.688354\pi\)
\(564\) −0.121391 5.98897i −0.00511147 0.252181i
\(565\) 2.91695 + 1.68410i 0.122717 + 0.0708507i
\(566\) 30.5467 1.28397
\(567\) −8.85905 + 22.1024i −0.372045 + 0.928215i
\(568\) 5.43339 0.227980
\(569\) 20.0446 + 11.5727i 0.840313 + 0.485155i 0.857371 0.514700i \(-0.172097\pi\)
−0.0170577 + 0.999855i \(0.505430\pi\)
\(570\) −0.0500750 2.47051i −0.00209741 0.103478i
\(571\) 12.3844 + 21.4504i 0.518271 + 0.897671i 0.999775 + 0.0212272i \(0.00675732\pi\)
−0.481504 + 0.876444i \(0.659909\pi\)
\(572\) 2.36061 0.0987023
\(573\) 5.88720 10.6916i 0.245941 0.446649i
\(574\) −0.675912 11.0085i −0.0282120 0.459484i
\(575\) 5.06153i 0.211080i
\(576\) 2.99754 0.121564i 0.124897 0.00506518i
\(577\) 31.6396 + 18.2671i 1.31717 + 0.760470i 0.983273 0.182138i \(-0.0583019\pi\)
0.333900 + 0.942609i \(0.391635\pi\)
\(578\) 16.2496i 0.675896i
\(579\) −3.56422 + 2.15527i −0.148124 + 0.0895699i
\(580\) 5.23368 + 3.02167i 0.217317 + 0.125468i
\(581\) −5.37840 + 0.330230i −0.223134 + 0.0137003i
\(582\) 0.374300 + 18.4666i 0.0155152 + 0.765465i
\(583\) 0.342660 0.593505i 0.0141915 0.0245805i
\(584\) −0.311597 + 0.539702i −0.0128940 + 0.0223330i
\(585\) −8.35046 4.37994i −0.345249 0.181088i
\(586\) 1.46210 0.844143i 0.0603987 0.0348712i
\(587\) −12.1405 21.0280i −0.501092 0.867918i −0.999999 0.00126186i \(-0.999598\pi\)
0.498907 0.866656i \(-0.333735\pi\)
\(588\) 11.2564 + 4.50491i 0.464205 + 0.185780i
\(589\) 4.43384 7.67964i 0.182693 0.316434i
\(590\) 8.43820i 0.347395i
\(591\) 2.74343 0.0556067i 0.112850 0.00228735i
\(592\) −7.20782 −0.296240
\(593\) 19.7837 + 34.2664i 0.812419 + 1.40715i 0.911166 + 0.412039i \(0.135183\pi\)
−0.0987467 + 0.995113i \(0.531483\pi\)
\(594\) 3.49198 + 1.74229i 0.143278 + 0.0714871i
\(595\) −1.26540 1.91083i −0.0518764 0.0783365i
\(596\) −11.2310 + 6.48421i −0.460039 + 0.265604i
\(597\) −6.47597 + 11.7609i −0.265044 + 0.481340i
\(598\) 13.7777 7.95455i 0.563411 0.325286i
\(599\) 35.4500 20.4671i 1.44845 0.836263i 0.450060 0.892998i \(-0.351402\pi\)
0.998389 + 0.0567354i \(0.0180691\pi\)
\(600\) −1.73170 + 0.0350998i −0.0706962 + 0.00143294i
\(601\) 4.48642 2.59023i 0.183005 0.105658i −0.405699 0.914007i \(-0.632972\pi\)
0.588704 + 0.808349i \(0.299639\pi\)
\(602\) −17.5004 8.72021i −0.713262 0.355409i
\(603\) −17.4725 27.6149i −0.711534 1.12456i
\(604\) 11.4553 + 19.8411i 0.466108 + 0.807323i
\(605\) −10.4359 −0.424281
\(606\) 4.79748 8.71259i 0.194884 0.353925i
\(607\) 3.09536i 0.125637i −0.998025 0.0628183i \(-0.979991\pi\)
0.998025 0.0628183i \(-0.0200089\pi\)
\(608\) −0.713322 + 1.23551i −0.0289290 + 0.0501066i
\(609\) 27.6019 2.25701i 1.11849 0.0914588i
\(610\) −5.37077 9.30244i −0.217456 0.376645i
\(611\) 9.41402 5.43519i 0.380850 0.219884i
\(612\) −2.59657 + 0.105303i −0.104960 + 0.00425663i
\(613\) −1.39906 + 2.42324i −0.0565075 + 0.0978739i −0.892895 0.450264i \(-0.851330\pi\)
0.836388 + 0.548138i \(0.184663\pi\)
\(614\) 3.57936 6.19964i 0.144451 0.250197i
\(615\) 6.32484 + 3.48269i 0.255042 + 0.140436i
\(616\) 0.886201 1.77849i 0.0357060 0.0716576i
\(617\) −20.0878 11.5977i −0.808706 0.466906i 0.0378006 0.999285i \(-0.487965\pi\)
−0.846506 + 0.532379i \(0.821298\pi\)
\(618\) −23.7521 13.0788i −0.955448 0.526106i
\(619\) 9.82235i 0.394793i −0.980324 0.197397i \(-0.936751\pi\)
0.980324 0.197397i \(-0.0632487\pi\)
\(620\) −5.38301 3.10788i −0.216187 0.124816i
\(621\) 26.2519 1.59805i 1.05345 0.0641276i
\(622\) 24.6355i 0.987793i
\(623\) 6.46738 0.397093i 0.259110 0.0159092i
\(624\) 2.81702 + 4.65858i 0.112771 + 0.186493i
\(625\) 1.00000 0.0400000
\(626\) −6.35095 11.0002i −0.253835 0.439655i
\(627\) −1.58806 + 0.960293i −0.0634210 + 0.0383504i
\(628\) 7.74720 + 4.47285i 0.309147 + 0.178486i
\(629\) 6.24366 0.248951
\(630\) −6.43471 + 4.64699i −0.256365 + 0.185140i
\(631\) 26.4402 1.05257 0.526285 0.850308i \(-0.323585\pi\)
0.526285 + 0.850308i \(0.323585\pi\)
\(632\) −0.00506811 0.00292607i −0.000201598 0.000116393i
\(633\) 20.1545 + 11.0978i 0.801070 + 0.441099i
\(634\) 12.7685 + 22.1158i 0.507103 + 0.878329i
\(635\) −6.31880 −0.250754
\(636\) 1.58017 0.0320286i 0.0626579 0.00127001i
\(637\) 2.69167 + 21.8367i 0.106648 + 0.865203i
\(638\) 4.53877i 0.179692i
\(639\) 0.660507 + 16.2868i 0.0261292 + 0.644296i
\(640\) 0.866025 + 0.500000i 0.0342327 + 0.0197642i
\(641\) 27.8267i 1.09909i −0.835465 0.549543i \(-0.814802\pi\)
0.835465 0.549543i \(-0.185198\pi\)
\(642\) 0.472406 + 23.3068i 0.0186444 + 0.919845i
\(643\) 36.4628 + 21.0518i 1.43795 + 0.830203i 0.997707 0.0676745i \(-0.0215580\pi\)
0.440246 + 0.897877i \(0.354891\pi\)
\(644\) −0.820687 13.3664i −0.0323396 0.526709i
\(645\) 10.9533 6.62343i 0.431287 0.260797i
\(646\) 0.617904 1.07024i 0.0243111 0.0421081i
\(647\) −11.5301 + 19.9708i −0.453296 + 0.785132i −0.998588 0.0531139i \(-0.983085\pi\)
0.545292 + 0.838246i \(0.316419\pi\)
\(648\) 0.728787 + 8.97044i 0.0286294 + 0.352392i
\(649\) 5.48835 3.16870i 0.215436 0.124382i
\(650\) −1.57157 2.72204i −0.0616421 0.106767i
\(651\) −28.3894 + 2.32141i −1.11267 + 0.0909832i
\(652\) 8.68748 15.0472i 0.340228 0.589292i
\(653\) 25.7997i 1.00962i 0.863230 + 0.504810i \(0.168437\pi\)
−0.863230 + 0.504810i \(0.831563\pi\)
\(654\) −11.2740 18.6440i −0.440847 0.729039i
\(655\) −10.9728 −0.428743
\(656\) −2.08432 3.61015i −0.0813790 0.140953i
\(657\) −1.65565 0.868415i −0.0645932 0.0338801i
\(658\) −0.560759 9.13298i −0.0218607 0.356040i
\(659\) 25.3231 14.6203i 0.986447 0.569525i 0.0822364 0.996613i \(-0.473794\pi\)
0.904210 + 0.427088i \(0.140460\pi\)
\(660\) 0.673113 + 1.11314i 0.0262009 + 0.0433290i
\(661\) 22.4429 12.9574i 0.872926 0.503984i 0.00460675 0.999989i \(-0.498534\pi\)
0.868320 + 0.496005i \(0.165200\pi\)
\(662\) 12.1497 7.01463i 0.472211 0.272631i
\(663\) −2.44020 4.03542i −0.0947696 0.156723i
\(664\) −1.76381 + 1.01834i −0.0684491 + 0.0395191i
\(665\) −0.231319 3.76745i −0.00897017 0.146096i
\(666\) −0.876214 21.6057i −0.0339526 0.837204i
\(667\) −15.2943 26.4904i −0.592196 1.02571i
\(668\) 16.9815 0.657035
\(669\) −14.2834 23.6208i −0.552229 0.913234i
\(670\) 10.8927i 0.420823i
\(671\) −4.03364 + 6.98648i −0.155717 + 0.269710i
\(672\) 4.56733 0.373471i 0.176189 0.0144070i
\(673\) −4.62323 8.00767i −0.178212 0.308673i 0.763056 0.646332i \(-0.223698\pi\)
−0.941268 + 0.337660i \(0.890365\pi\)
\(674\) 23.8930 13.7946i 0.920325 0.531350i
\(675\) −0.315725 5.18655i −0.0121523 0.199630i
\(676\) 1.56033 2.70257i 0.0600127 0.103945i
\(677\) −12.3613 + 21.4103i −0.475082 + 0.822866i −0.999593 0.0285376i \(-0.990915\pi\)
0.524511 + 0.851404i \(0.324248\pi\)
\(678\) 4.99216 3.01874i 0.191723 0.115934i
\(679\) 1.72906 + 28.1610i 0.0663554 + 1.08072i
\(680\) −0.750180 0.433117i −0.0287681 0.0166093i
\(681\) −0.462894 22.8375i −0.0177381 0.875134i
\(682\) 4.66827i 0.178757i
\(683\) −26.9472 15.5580i −1.03111 0.595309i −0.113804 0.993503i \(-0.536304\pi\)
−0.917301 + 0.398194i \(0.869637\pi\)
\(684\) −3.79020 1.98802i −0.144922 0.0760137i
\(685\) 21.2377i 0.811451i
\(686\) 17.4623 + 6.16984i 0.666715 + 0.235565i
\(687\) 34.2074 0.693351i 1.30509 0.0264530i
\(688\) −7.39020 −0.281749
\(689\) 1.43406 + 2.48386i 0.0546333 + 0.0946276i
\(690\) 7.67956 + 4.22866i 0.292356 + 0.160982i
\(691\) 27.9609 + 16.1432i 1.06368 + 0.614118i 0.926449 0.376421i \(-0.122845\pi\)
0.137235 + 0.990539i \(0.456179\pi\)
\(692\) −9.15080 −0.347861
\(693\) 5.43883 + 2.44022i 0.206604 + 0.0926962i
\(694\) −11.7735 −0.446917
\(695\) 8.99525 + 5.19341i 0.341209 + 0.196997i
\(696\) 8.95708 5.41631i 0.339517 0.205305i
\(697\) 1.80551 + 3.12723i 0.0683885 + 0.118452i
\(698\) −29.2237 −1.10613
\(699\) 24.6824 + 40.8178i 0.933572 + 1.54387i
\(700\) −2.64078 + 0.162142i −0.0998120 + 0.00612839i
\(701\) 26.3883i 0.996673i −0.866984 0.498337i \(-0.833944\pi\)
0.866984 0.498337i \(-0.166056\pi\)
\(702\) −13.6218 + 9.01045i −0.514122 + 0.340078i
\(703\) 8.90534 + 5.14150i 0.335871 + 0.193915i
\(704\) 0.751037i 0.0283058i
\(705\) 5.24729 + 2.88936i 0.197624 + 0.108819i
\(706\) 0.261415 + 0.150928i 0.00983849 + 0.00568025i
\(707\) 6.77585 13.5983i 0.254832 0.511416i
\(708\) 12.8028 + 7.04969i 0.481158 + 0.264944i
\(709\) 4.53937 7.86242i 0.170480 0.295279i −0.768108 0.640320i \(-0.778802\pi\)
0.938588 + 0.345041i \(0.112135\pi\)
\(710\) −2.71670 + 4.70546i −0.101956 + 0.176593i
\(711\) 0.00815491 0.0155475i 0.000305833 0.000583078i
\(712\) 2.12093 1.22452i 0.0794854 0.0458909i
\(713\) 15.7306 + 27.2462i 0.589117 + 1.02038i
\(714\) −3.95638 + 0.323514i −0.148064 + 0.0121072i
\(715\) −1.18031 + 2.04435i −0.0441410 + 0.0764545i
\(716\) 19.9538i 0.745707i
\(717\) −6.29207 + 11.4269i −0.234981 + 0.426744i
\(718\) 26.3949 0.985048
\(719\) 19.1759 + 33.2136i 0.715140 + 1.23866i 0.962906 + 0.269839i \(0.0869703\pi\)
−0.247766 + 0.968820i \(0.579696\pi\)
\(720\) −1.39349 + 2.65672i −0.0519323 + 0.0990103i
\(721\) −37.0713 18.4722i −1.38061 0.687939i
\(722\) −14.6918 + 8.48234i −0.546774 + 0.315680i
\(723\) 20.7480 0.420542i 0.771626 0.0156401i
\(724\) 18.7840 10.8449i 0.698100 0.403048i
\(725\) −5.23368 + 3.02167i −0.194374 + 0.112222i
\(726\) −8.71871 + 15.8339i −0.323582 + 0.587649i
\(727\) 8.55880 4.94142i 0.317428 0.183267i −0.332817 0.942991i \(-0.607999\pi\)
0.650246 + 0.759724i \(0.274666\pi\)
\(728\) 4.59153 + 6.93349i 0.170173 + 0.256972i
\(729\) −26.8006 + 3.27505i −0.992616 + 0.121298i
\(730\) −0.311597 0.539702i −0.0115327 0.0199753i
\(731\) 6.40164 0.236773
\(732\) −18.6011 + 0.377026i −0.687515 + 0.0139353i
\(733\) 6.99187i 0.258251i −0.991628 0.129125i \(-0.958783\pi\)
0.991628 0.129125i \(-0.0412169\pi\)
\(734\) −4.86669 + 8.42936i −0.179633 + 0.311133i
\(735\) −9.52955 + 7.49584i −0.351503 + 0.276488i
\(736\) −2.53076 4.38341i −0.0932852 0.161575i
\(737\) −7.08483 + 4.09043i −0.260973 + 0.150673i
\(738\) 10.5682 6.68669i 0.389020 0.246140i
\(739\) 9.75535 16.8968i 0.358856 0.621558i −0.628914 0.777475i \(-0.716500\pi\)
0.987770 + 0.155918i \(0.0498334\pi\)
\(740\) 3.60391 6.24216i 0.132482 0.229466i
\(741\) −0.157393 7.76518i −0.00578196 0.285261i
\(742\) 2.40971 0.147955i 0.0884632 0.00543158i
\(743\) 33.4098 + 19.2892i 1.22569 + 0.707651i 0.966125 0.258075i \(-0.0830883\pi\)
0.259563 + 0.965726i \(0.416422\pi\)
\(744\) −9.21264 + 5.57084i −0.337752 + 0.204237i
\(745\) 12.9684i 0.475126i
\(746\) −16.6784 9.62926i −0.610638 0.352552i
\(747\) −3.26691 5.16329i −0.119530 0.188915i
\(748\) 0.650573i 0.0237873i
\(749\) 2.18226 + 35.5421i 0.0797380 + 1.29868i
\(750\) 0.835450 1.51724i 0.0305063 0.0554018i
\(751\) −19.7427 −0.720423 −0.360211 0.932871i \(-0.617295\pi\)
−0.360211 + 0.932871i \(0.617295\pi\)
\(752\) −1.72922 2.99510i −0.0630582 0.109220i
\(753\) −1.06596 52.5905i −0.0388457 1.91650i
\(754\) 16.4502 + 9.49753i 0.599081 + 0.345880i
\(755\) −22.9105 −0.833800
\(756\) 1.67472 + 13.6453i 0.0609089 + 0.496276i
\(757\) −21.2004 −0.770540 −0.385270 0.922804i \(-0.625892\pi\)
−0.385270 + 0.922804i \(0.625892\pi\)
\(758\) −25.4924 14.7180i −0.925926 0.534584i
\(759\) −0.133428 6.58285i −0.00484314 0.238942i
\(760\) −0.713322 1.23551i −0.0258749 0.0448167i
\(761\) 1.39505 0.0505706 0.0252853 0.999680i \(-0.491951\pi\)
0.0252853 + 0.999680i \(0.491951\pi\)
\(762\) −5.27904 + 9.58715i −0.191240 + 0.347306i
\(763\) −18.3757 27.7484i −0.665244 1.00456i
\(764\) 7.04674i 0.254942i
\(765\) 1.20709 2.30134i 0.0436424 0.0832053i
\(766\)