Properties

Label 630.2.t.a
Level 630
Weight 2
Character orbit 630.t
Analytic conductor 5.031
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 630.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{12} q^{2} + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{3} + \zeta_{12}^{2} q^{4} - q^{5} + ( 2 - \zeta_{12}^{2} ) q^{6} + ( 2 - 3 \zeta_{12}^{2} ) q^{7} -\zeta_{12}^{3} q^{8} -3 \zeta_{12}^{2} q^{9} +O(q^{10})\) \( q -\zeta_{12} q^{2} + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{3} + \zeta_{12}^{2} q^{4} - q^{5} + ( 2 - \zeta_{12}^{2} ) q^{6} + ( 2 - 3 \zeta_{12}^{2} ) q^{7} -\zeta_{12}^{3} q^{8} -3 \zeta_{12}^{2} q^{9} + \zeta_{12} q^{10} + ( -1 + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{11} + ( -2 \zeta_{12} + \zeta_{12}^{3} ) q^{12} + ( 2 + 2 \zeta_{12}^{2} ) q^{13} + ( -2 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{14} + ( \zeta_{12} - 2 \zeta_{12}^{3} ) q^{15} + ( -1 + \zeta_{12}^{2} ) q^{16} + 3 \zeta_{12}^{3} q^{18} + ( 2 - 3 \zeta_{12} - \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{19} -\zeta_{12}^{2} q^{20} + ( 4 \zeta_{12} + \zeta_{12}^{3} ) q^{21} + ( 3 + \zeta_{12} - 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{22} + ( 2 - 4 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{23} + ( 1 + \zeta_{12}^{2} ) q^{24} + q^{25} + ( -2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{26} + ( 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{27} + ( 3 - \zeta_{12}^{2} ) q^{28} + ( -4 - 3 \zeta_{12} + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{29} + ( -2 + \zeta_{12}^{2} ) q^{30} + ( -6 - 3 \zeta_{12} + 3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{31} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{32} + ( -3 - 3 \zeta_{12} - 3 \zeta_{12}^{2} ) q^{33} + ( -2 + 3 \zeta_{12}^{2} ) q^{35} + ( 3 - 3 \zeta_{12}^{2} ) q^{36} + ( -3 \zeta_{12} - \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{37} + ( 3 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{38} + ( -6 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{39} + \zeta_{12}^{3} q^{40} + ( -9 + 9 \zeta_{12}^{2} ) q^{41} + ( 1 - 5 \zeta_{12}^{2} ) q^{42} + ( -3 \zeta_{12} + 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{43} + ( -2 - 3 \zeta_{12} + \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{44} + 3 \zeta_{12}^{2} q^{45} + ( 6 - 2 \zeta_{12} - 6 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{46} + ( -9 + 9 \zeta_{12}^{2} ) q^{47} + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{48} + ( -5 - 3 \zeta_{12}^{2} ) q^{49} -\zeta_{12} q^{50} + ( -2 + 4 \zeta_{12}^{2} ) q^{52} + ( 1 - 9 \zeta_{12} + \zeta_{12}^{2} ) q^{53} + ( -3 - 3 \zeta_{12}^{2} ) q^{54} + ( 1 - 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{55} + ( -3 \zeta_{12} + \zeta_{12}^{3} ) q^{56} + ( 3 - 6 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{57} + ( 3 + 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{58} + ( 3 \zeta_{12} - 3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{59} + ( 2 \zeta_{12} - \zeta_{12}^{3} ) q^{60} + ( 4 + 6 \zeta_{12} + 4 \zeta_{12}^{2} ) q^{61} + ( 3 + 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{62} + ( -9 + 3 \zeta_{12}^{2} ) q^{63} - q^{64} + ( -2 - 2 \zeta_{12}^{2} ) q^{65} + ( 3 \zeta_{12} + 3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{66} + 4 \zeta_{12}^{2} q^{67} + ( -6 + 6 \zeta_{12} - 6 \zeta_{12}^{2} ) q^{69} + ( 2 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{70} + ( 1 - 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{71} + ( -3 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{72} + ( 4 + 4 \zeta_{12}^{2} ) q^{73} + ( -3 + 6 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{74} + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{75} + ( 1 - 3 \zeta_{12} + \zeta_{12}^{2} ) q^{76} + ( 4 + 9 \zeta_{12} + \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{77} + 6 q^{78} + ( 1 - 9 \zeta_{12} - \zeta_{12}^{2} + 18 \zeta_{12}^{3} ) q^{79} + ( 1 - \zeta_{12}^{2} ) q^{80} + ( -9 + 9 \zeta_{12}^{2} ) q^{81} + ( 9 \zeta_{12} - 9 \zeta_{12}^{3} ) q^{82} + ( 3 \zeta_{12} + 6 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{83} + ( -\zeta_{12} + 5 \zeta_{12}^{3} ) q^{84} + ( -3 + 6 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{86} + ( 3 - 6 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{87} + ( 3 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{88} + ( -6 \zeta_{12} + 6 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{89} -3 \zeta_{12}^{3} q^{90} + ( 10 - 8 \zeta_{12}^{2} ) q^{91} + ( 4 - 6 \zeta_{12} - 2 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{92} + ( 3 - 6 \zeta_{12}^{2} - 9 \zeta_{12}^{3} ) q^{93} + ( 9 \zeta_{12} - 9 \zeta_{12}^{3} ) q^{94} + ( -2 + 3 \zeta_{12} + \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{95} + ( -1 + 2 \zeta_{12}^{2} ) q^{96} + ( -4 + 12 \zeta_{12} + 2 \zeta_{12}^{2} - 12 \zeta_{12}^{3} ) q^{97} + ( 5 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{98} + ( 6 + 9 \zeta_{12} - 3 \zeta_{12}^{2} - 9 \zeta_{12}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{4} - 4q^{5} + 6q^{6} + 2q^{7} - 6q^{9} + O(q^{10}) \) \( 4q + 2q^{4} - 4q^{5} + 6q^{6} + 2q^{7} - 6q^{9} + 12q^{13} - 2q^{16} + 6q^{19} - 2q^{20} + 6q^{22} + 6q^{24} + 4q^{25} + 10q^{28} - 12q^{29} - 6q^{30} - 18q^{31} - 18q^{33} - 2q^{35} + 6q^{36} - 2q^{37} + 12q^{38} - 18q^{41} - 6q^{42} + 4q^{43} - 6q^{44} + 6q^{45} + 12q^{46} - 18q^{47} - 26q^{49} + 6q^{53} - 18q^{54} + 12q^{58} - 6q^{59} + 24q^{61} + 12q^{62} - 30q^{63} - 4q^{64} - 12q^{65} + 6q^{66} + 8q^{67} - 36q^{69} + 24q^{73} + 6q^{76} + 18q^{77} + 24q^{78} + 2q^{79} + 2q^{80} - 18q^{81} + 12q^{83} + 12q^{88} + 12q^{89} + 24q^{91} + 12q^{92} - 6q^{95} - 12q^{97} + 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(1 - \zeta_{12}^{2}\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
311.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i −0.866025 + 1.50000i 0.500000 + 0.866025i −1.00000 1.50000 0.866025i 0.500000 2.59808i 1.00000i −1.50000 2.59808i 0.866025 + 0.500000i
311.2 0.866025 + 0.500000i 0.866025 1.50000i 0.500000 + 0.866025i −1.00000 1.50000 0.866025i 0.500000 2.59808i 1.00000i −1.50000 2.59808i −0.866025 0.500000i
551.1 −0.866025 + 0.500000i −0.866025 1.50000i 0.500000 0.866025i −1.00000 1.50000 + 0.866025i 0.500000 + 2.59808i 1.00000i −1.50000 + 2.59808i 0.866025 0.500000i
551.2 0.866025 0.500000i 0.866025 + 1.50000i 0.500000 0.866025i −1.00000 1.50000 + 0.866025i 0.500000 + 2.59808i 1.00000i −1.50000 + 2.59808i −0.866025 + 0.500000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.2.t.a 4
3.b odd 2 1 1890.2.t.a 4
7.d odd 6 1 630.2.bk.a yes 4
9.c even 3 1 1890.2.bk.a 4
9.d odd 6 1 630.2.bk.a yes 4
21.g even 6 1 1890.2.bk.a 4
63.k odd 6 1 1890.2.t.a 4
63.s even 6 1 inner 630.2.t.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.2.t.a 4 1.a even 1 1 trivial
630.2.t.a 4 63.s even 6 1 inner
630.2.bk.a yes 4 7.d odd 6 1
630.2.bk.a yes 4 9.d odd 6 1
1890.2.t.a 4 3.b odd 2 1
1890.2.t.a 4 63.k odd 6 1
1890.2.bk.a 4 9.c even 3 1
1890.2.bk.a 4 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{4} + 24 T_{11}^{2} + 36 \) acting on \(S_{2}^{\mathrm{new}}(630, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{2} + T^{4} \)
$3$ \( 1 + 3 T^{2} + 9 T^{4} \)
$5$ \( ( 1 + T )^{4} \)
$7$ \( ( 1 - T + 7 T^{2} )^{2} \)
$11$ \( 1 - 20 T^{2} + 234 T^{4} - 2420 T^{6} + 14641 T^{8} \)
$13$ \( ( 1 - 6 T + 25 T^{2} - 78 T^{3} + 169 T^{4} )^{2} \)
$17$ \( ( 1 - 17 T^{2} + 289 T^{4} )^{2} \)
$19$ \( 1 - 6 T + 44 T^{2} - 192 T^{3} + 891 T^{4} - 3648 T^{5} + 15884 T^{6} - 41154 T^{7} + 130321 T^{8} \)
$23$ \( 1 + 4 T^{2} - 666 T^{4} + 2116 T^{6} + 279841 T^{8} \)
$29$ \( 1 + 12 T + 109 T^{2} + 732 T^{3} + 4272 T^{4} + 21228 T^{5} + 91669 T^{6} + 292668 T^{7} + 707281 T^{8} \)
$31$ \( 1 + 18 T + 188 T^{2} + 1440 T^{3} + 8787 T^{4} + 44640 T^{5} + 180668 T^{6} + 536238 T^{7} + 923521 T^{8} \)
$37$ \( 1 + 2 T - 44 T^{2} - 52 T^{3} + 787 T^{4} - 1924 T^{5} - 60236 T^{6} + 101306 T^{7} + 1874161 T^{8} \)
$41$ \( ( 1 + 9 T + 40 T^{2} + 369 T^{3} + 1681 T^{4} )^{2} \)
$43$ \( 1 - 4 T - 47 T^{2} + 92 T^{3} + 1432 T^{4} + 3956 T^{5} - 86903 T^{6} - 318028 T^{7} + 3418801 T^{8} \)
$47$ \( ( 1 + 9 T + 34 T^{2} + 423 T^{3} + 2209 T^{4} )^{2} \)
$53$ \( 1 - 6 T + 40 T^{2} - 168 T^{3} - 1389 T^{4} - 8904 T^{5} + 112360 T^{6} - 893262 T^{7} + 7890481 T^{8} \)
$59$ \( 1 + 6 T - 64 T^{2} - 108 T^{3} + 4395 T^{4} - 6372 T^{5} - 222784 T^{6} + 1232274 T^{7} + 12117361 T^{8} \)
$61$ \( 1 - 24 T + 326 T^{2} - 3216 T^{3} + 25947 T^{4} - 196176 T^{5} + 1213046 T^{6} - 5447544 T^{7} + 13845841 T^{8} \)
$67$ \( ( 1 - 4 T - 51 T^{2} - 268 T^{3} + 4489 T^{4} )^{2} \)
$71$ \( 1 - 260 T^{2} + 26874 T^{4} - 1310660 T^{6} + 25411681 T^{8} \)
$73$ \( ( 1 - 12 T + 121 T^{2} - 876 T^{3} + 5329 T^{4} )^{2} \)
$79$ \( 1 - 2 T + 88 T^{2} + 484 T^{3} + 499 T^{4} + 38236 T^{5} + 549208 T^{6} - 986078 T^{7} + 38950081 T^{8} \)
$83$ \( 1 - 12 T - 31 T^{2} - 108 T^{3} + 11784 T^{4} - 8964 T^{5} - 213559 T^{6} - 6861444 T^{7} + 47458321 T^{8} \)
$89$ \( 1 - 12 T + 38 T^{2} + 864 T^{3} - 9501 T^{4} + 76896 T^{5} + 300998 T^{6} - 8459628 T^{7} + 62742241 T^{8} \)
$97$ \( 1 + 12 T + 110 T^{2} + 744 T^{3} - 909 T^{4} + 72168 T^{5} + 1034990 T^{6} + 10952076 T^{7} + 88529281 T^{8} \)
show more
show less