Properties

Label 630.2.k.b
Level 630630
Weight 22
Character orbit 630.k
Analytic conductor 5.0315.031
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(361,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: N N == 630=23257 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 630.k (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,-1,-1,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.030575327345.03057532734
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qζ6q2+(ζ61)q4ζ6q5+(3ζ6+1)q7+q8+(ζ61)q10+(6ζ66)q114q13+(2ζ63)q14ζ6q16++(5ζ6+3)q98+O(q100) q - \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{4} - \zeta_{6} q^{5} + ( - 3 \zeta_{6} + 1) q^{7} + q^{8} + (\zeta_{6} - 1) q^{10} + (6 \zeta_{6} - 6) q^{11} - 4 q^{13} + (2 \zeta_{6} - 3) q^{14} - \zeta_{6} q^{16} + \cdots + (5 \zeta_{6} + 3) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2q4q5q7+2q8q106q118q134q14q162q19+2q20+12q223q23q25+4q26+5q28+6q298q31++11q98+O(q100) 2 q - q^{2} - q^{4} - q^{5} - q^{7} + 2 q^{8} - q^{10} - 6 q^{11} - 8 q^{13} - 4 q^{14} - q^{16} - 2 q^{19} + 2 q^{20} + 12 q^{22} - 3 q^{23} - q^{25} + 4 q^{26} + 5 q^{28} + 6 q^{29} - 8 q^{31}+ \cdots + 11 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/630Z)×\left(\mathbb{Z}/630\mathbb{Z}\right)^\times.

nn 127127 281281 451451
χ(n)\chi(n) 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 0.866025i 0 −0.500000 + 0.866025i −0.500000 0.866025i 0 −0.500000 2.59808i 1.00000 0 −0.500000 + 0.866025i
541.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i −0.500000 + 0.866025i 0 −0.500000 + 2.59808i 1.00000 0 −0.500000 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.2.k.b 2
3.b odd 2 1 70.2.e.c 2
7.c even 3 1 inner 630.2.k.b 2
7.c even 3 1 4410.2.a.bm 1
7.d odd 6 1 4410.2.a.bd 1
12.b even 2 1 560.2.q.g 2
15.d odd 2 1 350.2.e.e 2
15.e even 4 2 350.2.j.b 4
21.c even 2 1 490.2.e.h 2
21.g even 6 1 490.2.a.b 1
21.g even 6 1 490.2.e.h 2
21.h odd 6 1 70.2.e.c 2
21.h odd 6 1 490.2.a.c 1
84.j odd 6 1 3920.2.a.bc 1
84.n even 6 1 560.2.q.g 2
84.n even 6 1 3920.2.a.p 1
105.o odd 6 1 350.2.e.e 2
105.o odd 6 1 2450.2.a.w 1
105.p even 6 1 2450.2.a.bc 1
105.w odd 12 2 2450.2.c.l 2
105.x even 12 2 350.2.j.b 4
105.x even 12 2 2450.2.c.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.e.c 2 3.b odd 2 1
70.2.e.c 2 21.h odd 6 1
350.2.e.e 2 15.d odd 2 1
350.2.e.e 2 105.o odd 6 1
350.2.j.b 4 15.e even 4 2
350.2.j.b 4 105.x even 12 2
490.2.a.b 1 21.g even 6 1
490.2.a.c 1 21.h odd 6 1
490.2.e.h 2 21.c even 2 1
490.2.e.h 2 21.g even 6 1
560.2.q.g 2 12.b even 2 1
560.2.q.g 2 84.n even 6 1
630.2.k.b 2 1.a even 1 1 trivial
630.2.k.b 2 7.c even 3 1 inner
2450.2.a.w 1 105.o odd 6 1
2450.2.a.bc 1 105.p even 6 1
2450.2.c.g 2 105.x even 12 2
2450.2.c.l 2 105.w odd 12 2
3920.2.a.p 1 84.n even 6 1
3920.2.a.bc 1 84.j odd 6 1
4410.2.a.bd 1 7.d odd 6 1
4410.2.a.bm 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(630,[χ])S_{2}^{\mathrm{new}}(630, [\chi]):

T112+6T11+36 T_{11}^{2} + 6T_{11} + 36 Copy content Toggle raw display
T13+4 T_{13} + 4 Copy content Toggle raw display
T17 T_{17} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
77 T2+T+7 T^{2} + T + 7 Copy content Toggle raw display
1111 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
1313 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
2323 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
2929 (T3)2 (T - 3)^{2} Copy content Toggle raw display
3131 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
3737 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
4141 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
4343 (T+7)2 (T + 7)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
5959 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
6161 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
6767 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
7171 (T6)2 (T - 6)^{2} Copy content Toggle raw display
7373 T216T+256 T^{2} - 16T + 256 Copy content Toggle raw display
7979 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
8383 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
8989 T2+15T+225 T^{2} + 15T + 225 Copy content Toggle raw display
9797 (T14)2 (T - 14)^{2} Copy content Toggle raw display
show more
show less