Properties

Label 630.2.j.b.211.1
Level $630$
Weight $2$
Character 630.211
Analytic conductor $5.031$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(211,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.211"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,-3,-1,1,-3,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 211.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 630.211
Dual form 630.2.j.b.421.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-1.50000 - 0.866025i) q^{6} +(-0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +1.00000 q^{10} +(-1.50000 - 2.59808i) q^{11} -1.73205i q^{12} +(2.00000 - 3.46410i) q^{13} +(0.500000 - 0.866025i) q^{14} +1.73205i q^{15} +(-0.500000 - 0.866025i) q^{16} +3.00000 q^{17} +3.00000 q^{18} -7.00000 q^{19} +(0.500000 + 0.866025i) q^{20} +(1.50000 + 0.866025i) q^{21} +(1.50000 - 2.59808i) q^{22} +(3.00000 - 5.19615i) q^{23} +(1.50000 - 0.866025i) q^{24} +(-0.500000 - 0.866025i) q^{25} +4.00000 q^{26} +5.19615i q^{27} +1.00000 q^{28} +(3.00000 + 5.19615i) q^{29} +(-1.50000 + 0.866025i) q^{30} +(5.00000 - 8.66025i) q^{31} +(0.500000 - 0.866025i) q^{32} +(4.50000 + 2.59808i) q^{33} +(1.50000 + 2.59808i) q^{34} -1.00000 q^{35} +(1.50000 + 2.59808i) q^{36} +8.00000 q^{37} +(-3.50000 - 6.06218i) q^{38} +6.92820i q^{39} +(-0.500000 + 0.866025i) q^{40} +(-4.50000 + 7.79423i) q^{41} +1.73205i q^{42} +(0.500000 + 0.866025i) q^{43} +3.00000 q^{44} +(-1.50000 - 2.59808i) q^{45} +6.00000 q^{46} +(-6.00000 - 10.3923i) q^{47} +(1.50000 + 0.866025i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(0.500000 - 0.866025i) q^{50} +(-4.50000 + 2.59808i) q^{51} +(2.00000 + 3.46410i) q^{52} +6.00000 q^{53} +(-4.50000 + 2.59808i) q^{54} -3.00000 q^{55} +(0.500000 + 0.866025i) q^{56} +(10.5000 - 6.06218i) q^{57} +(-3.00000 + 5.19615i) q^{58} +(-4.50000 + 7.79423i) q^{59} +(-1.50000 - 0.866025i) q^{60} +(-7.00000 - 12.1244i) q^{61} +10.0000 q^{62} -3.00000 q^{63} +1.00000 q^{64} +(-2.00000 - 3.46410i) q^{65} +5.19615i q^{66} +(3.50000 - 6.06218i) q^{67} +(-1.50000 + 2.59808i) q^{68} +10.3923i q^{69} +(-0.500000 - 0.866025i) q^{70} +6.00000 q^{71} +(-1.50000 + 2.59808i) q^{72} -7.00000 q^{73} +(4.00000 + 6.92820i) q^{74} +(1.50000 + 0.866025i) q^{75} +(3.50000 - 6.06218i) q^{76} +(-1.50000 + 2.59808i) q^{77} +(-6.00000 + 3.46410i) q^{78} +(-1.00000 - 1.73205i) q^{79} -1.00000 q^{80} +(-4.50000 - 7.79423i) q^{81} -9.00000 q^{82} +(6.00000 + 10.3923i) q^{83} +(-1.50000 + 0.866025i) q^{84} +(1.50000 - 2.59808i) q^{85} +(-0.500000 + 0.866025i) q^{86} +(-9.00000 - 5.19615i) q^{87} +(1.50000 + 2.59808i) q^{88} +6.00000 q^{89} +(1.50000 - 2.59808i) q^{90} -4.00000 q^{91} +(3.00000 + 5.19615i) q^{92} +17.3205i q^{93} +(6.00000 - 10.3923i) q^{94} +(-3.50000 + 6.06218i) q^{95} +1.73205i q^{96} +(-5.50000 - 9.52628i) q^{97} -1.00000 q^{98} -9.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 3 q^{3} - q^{4} + q^{5} - 3 q^{6} - q^{7} - 2 q^{8} + 3 q^{9} + 2 q^{10} - 3 q^{11} + 4 q^{13} + q^{14} - q^{16} + 6 q^{17} + 6 q^{18} - 14 q^{19} + q^{20} + 3 q^{21} + 3 q^{22} + 6 q^{23}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −1.50000 + 0.866025i −0.866025 + 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) −1.50000 0.866025i −0.612372 0.353553i
\(7\) −0.500000 0.866025i −0.188982 0.327327i
\(8\) −1.00000 −0.353553
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 1.00000 0.316228
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 1.73205i 0.500000i
\(13\) 2.00000 3.46410i 0.554700 0.960769i −0.443227 0.896410i \(-0.646166\pi\)
0.997927 0.0643593i \(-0.0205004\pi\)
\(14\) 0.500000 0.866025i 0.133631 0.231455i
\(15\) 1.73205i 0.447214i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 3.00000 0.707107
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0.500000 + 0.866025i 0.111803 + 0.193649i
\(21\) 1.50000 + 0.866025i 0.327327 + 0.188982i
\(22\) 1.50000 2.59808i 0.319801 0.553912i
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) 1.50000 0.866025i 0.306186 0.176777i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 4.00000 0.784465
\(27\) 5.19615i 1.00000i
\(28\) 1.00000 0.188982
\(29\) 3.00000 + 5.19615i 0.557086 + 0.964901i 0.997738 + 0.0672232i \(0.0214140\pi\)
−0.440652 + 0.897678i \(0.645253\pi\)
\(30\) −1.50000 + 0.866025i −0.273861 + 0.158114i
\(31\) 5.00000 8.66025i 0.898027 1.55543i 0.0680129 0.997684i \(-0.478334\pi\)
0.830014 0.557743i \(-0.188333\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 4.50000 + 2.59808i 0.783349 + 0.452267i
\(34\) 1.50000 + 2.59808i 0.257248 + 0.445566i
\(35\) −1.00000 −0.169031
\(36\) 1.50000 + 2.59808i 0.250000 + 0.433013i
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) −3.50000 6.06218i −0.567775 0.983415i
\(39\) 6.92820i 1.10940i
\(40\) −0.500000 + 0.866025i −0.0790569 + 0.136931i
\(41\) −4.50000 + 7.79423i −0.702782 + 1.21725i 0.264704 + 0.964330i \(0.414726\pi\)
−0.967486 + 0.252924i \(0.918608\pi\)
\(42\) 1.73205i 0.267261i
\(43\) 0.500000 + 0.866025i 0.0762493 + 0.132068i 0.901629 0.432511i \(-0.142372\pi\)
−0.825380 + 0.564578i \(0.809039\pi\)
\(44\) 3.00000 0.452267
\(45\) −1.50000 2.59808i −0.223607 0.387298i
\(46\) 6.00000 0.884652
\(47\) −6.00000 10.3923i −0.875190 1.51587i −0.856560 0.516047i \(-0.827403\pi\)
−0.0186297 0.999826i \(-0.505930\pi\)
\(48\) 1.50000 + 0.866025i 0.216506 + 0.125000i
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) −4.50000 + 2.59808i −0.630126 + 0.363803i
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) −4.50000 + 2.59808i −0.612372 + 0.353553i
\(55\) −3.00000 −0.404520
\(56\) 0.500000 + 0.866025i 0.0668153 + 0.115728i
\(57\) 10.5000 6.06218i 1.39076 0.802955i
\(58\) −3.00000 + 5.19615i −0.393919 + 0.682288i
\(59\) −4.50000 + 7.79423i −0.585850 + 1.01472i 0.408919 + 0.912571i \(0.365906\pi\)
−0.994769 + 0.102151i \(0.967427\pi\)
\(60\) −1.50000 0.866025i −0.193649 0.111803i
\(61\) −7.00000 12.1244i −0.896258 1.55236i −0.832240 0.554416i \(-0.812942\pi\)
−0.0640184 0.997949i \(-0.520392\pi\)
\(62\) 10.0000 1.27000
\(63\) −3.00000 −0.377964
\(64\) 1.00000 0.125000
\(65\) −2.00000 3.46410i −0.248069 0.429669i
\(66\) 5.19615i 0.639602i
\(67\) 3.50000 6.06218i 0.427593 0.740613i −0.569066 0.822292i \(-0.692695\pi\)
0.996659 + 0.0816792i \(0.0260283\pi\)
\(68\) −1.50000 + 2.59808i −0.181902 + 0.315063i
\(69\) 10.3923i 1.25109i
\(70\) −0.500000 0.866025i −0.0597614 0.103510i
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) −1.50000 + 2.59808i −0.176777 + 0.306186i
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 4.00000 + 6.92820i 0.464991 + 0.805387i
\(75\) 1.50000 + 0.866025i 0.173205 + 0.100000i
\(76\) 3.50000 6.06218i 0.401478 0.695379i
\(77\) −1.50000 + 2.59808i −0.170941 + 0.296078i
\(78\) −6.00000 + 3.46410i −0.679366 + 0.392232i
\(79\) −1.00000 1.73205i −0.112509 0.194871i 0.804272 0.594261i \(-0.202555\pi\)
−0.916781 + 0.399390i \(0.869222\pi\)
\(80\) −1.00000 −0.111803
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −9.00000 −0.993884
\(83\) 6.00000 + 10.3923i 0.658586 + 1.14070i 0.980982 + 0.194099i \(0.0621783\pi\)
−0.322396 + 0.946605i \(0.604488\pi\)
\(84\) −1.50000 + 0.866025i −0.163663 + 0.0944911i
\(85\) 1.50000 2.59808i 0.162698 0.281801i
\(86\) −0.500000 + 0.866025i −0.0539164 + 0.0933859i
\(87\) −9.00000 5.19615i −0.964901 0.557086i
\(88\) 1.50000 + 2.59808i 0.159901 + 0.276956i
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 1.50000 2.59808i 0.158114 0.273861i
\(91\) −4.00000 −0.419314
\(92\) 3.00000 + 5.19615i 0.312772 + 0.541736i
\(93\) 17.3205i 1.79605i
\(94\) 6.00000 10.3923i 0.618853 1.07188i
\(95\) −3.50000 + 6.06218i −0.359092 + 0.621966i
\(96\) 1.73205i 0.176777i
\(97\) −5.50000 9.52628i −0.558440 0.967247i −0.997627 0.0688512i \(-0.978067\pi\)
0.439187 0.898396i \(-0.355267\pi\)
\(98\) −1.00000 −0.101015
\(99\) −9.00000 −0.904534
\(100\) 1.00000 0.100000
\(101\) −6.00000 10.3923i −0.597022 1.03407i −0.993258 0.115924i \(-0.963017\pi\)
0.396236 0.918149i \(-0.370316\pi\)
\(102\) −4.50000 2.59808i −0.445566 0.257248i
\(103\) 2.00000 3.46410i 0.197066 0.341328i −0.750510 0.660859i \(-0.770192\pi\)
0.947576 + 0.319531i \(0.103525\pi\)
\(104\) −2.00000 + 3.46410i −0.196116 + 0.339683i
\(105\) 1.50000 0.866025i 0.146385 0.0845154i
\(106\) 3.00000 + 5.19615i 0.291386 + 0.504695i
\(107\) 3.00000 0.290021 0.145010 0.989430i \(-0.453678\pi\)
0.145010 + 0.989430i \(0.453678\pi\)
\(108\) −4.50000 2.59808i −0.433013 0.250000i
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) −1.50000 2.59808i −0.143019 0.247717i
\(111\) −12.0000 + 6.92820i −1.13899 + 0.657596i
\(112\) −0.500000 + 0.866025i −0.0472456 + 0.0818317i
\(113\) 3.00000 5.19615i 0.282216 0.488813i −0.689714 0.724082i \(-0.742264\pi\)
0.971930 + 0.235269i \(0.0755971\pi\)
\(114\) 10.5000 + 6.06218i 0.983415 + 0.567775i
\(115\) −3.00000 5.19615i −0.279751 0.484544i
\(116\) −6.00000 −0.557086
\(117\) −6.00000 10.3923i −0.554700 0.960769i
\(118\) −9.00000 −0.828517
\(119\) −1.50000 2.59808i −0.137505 0.238165i
\(120\) 1.73205i 0.158114i
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 7.00000 12.1244i 0.633750 1.09769i
\(123\) 15.5885i 1.40556i
\(124\) 5.00000 + 8.66025i 0.449013 + 0.777714i
\(125\) −1.00000 −0.0894427
\(126\) −1.50000 2.59808i −0.133631 0.231455i
\(127\) −10.0000 −0.887357 −0.443678 0.896186i \(-0.646327\pi\)
−0.443678 + 0.896186i \(0.646327\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −1.50000 0.866025i −0.132068 0.0762493i
\(130\) 2.00000 3.46410i 0.175412 0.303822i
\(131\) −6.00000 + 10.3923i −0.524222 + 0.907980i 0.475380 + 0.879781i \(0.342311\pi\)
−0.999602 + 0.0281993i \(0.991023\pi\)
\(132\) −4.50000 + 2.59808i −0.391675 + 0.226134i
\(133\) 3.50000 + 6.06218i 0.303488 + 0.525657i
\(134\) 7.00000 0.604708
\(135\) 4.50000 + 2.59808i 0.387298 + 0.223607i
\(136\) −3.00000 −0.257248
\(137\) 10.5000 + 18.1865i 0.897076 + 1.55378i 0.831215 + 0.555952i \(0.187646\pi\)
0.0658609 + 0.997829i \(0.479021\pi\)
\(138\) −9.00000 + 5.19615i −0.766131 + 0.442326i
\(139\) −5.50000 + 9.52628i −0.466504 + 0.808008i −0.999268 0.0382553i \(-0.987820\pi\)
0.532764 + 0.846264i \(0.321153\pi\)
\(140\) 0.500000 0.866025i 0.0422577 0.0731925i
\(141\) 18.0000 + 10.3923i 1.51587 + 0.875190i
\(142\) 3.00000 + 5.19615i 0.251754 + 0.436051i
\(143\) −12.0000 −1.00349
\(144\) −3.00000 −0.250000
\(145\) 6.00000 0.498273
\(146\) −3.50000 6.06218i −0.289662 0.501709i
\(147\) 1.73205i 0.142857i
\(148\) −4.00000 + 6.92820i −0.328798 + 0.569495i
\(149\) −6.00000 + 10.3923i −0.491539 + 0.851371i −0.999953 0.00974235i \(-0.996899\pi\)
0.508413 + 0.861113i \(0.330232\pi\)
\(150\) 1.73205i 0.141421i
\(151\) −7.00000 12.1244i −0.569652 0.986666i −0.996600 0.0823900i \(-0.973745\pi\)
0.426948 0.904276i \(-0.359589\pi\)
\(152\) 7.00000 0.567775
\(153\) 4.50000 7.79423i 0.363803 0.630126i
\(154\) −3.00000 −0.241747
\(155\) −5.00000 8.66025i −0.401610 0.695608i
\(156\) −6.00000 3.46410i −0.480384 0.277350i
\(157\) 2.00000 3.46410i 0.159617 0.276465i −0.775113 0.631822i \(-0.782307\pi\)
0.934731 + 0.355357i \(0.115641\pi\)
\(158\) 1.00000 1.73205i 0.0795557 0.137795i
\(159\) −9.00000 + 5.19615i −0.713746 + 0.412082i
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) −6.00000 −0.472866
\(162\) 4.50000 7.79423i 0.353553 0.612372i
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) −4.50000 7.79423i −0.351391 0.608627i
\(165\) 4.50000 2.59808i 0.350325 0.202260i
\(166\) −6.00000 + 10.3923i −0.465690 + 0.806599i
\(167\) −3.00000 + 5.19615i −0.232147 + 0.402090i −0.958440 0.285295i \(-0.907908\pi\)
0.726293 + 0.687386i \(0.241242\pi\)
\(168\) −1.50000 0.866025i −0.115728 0.0668153i
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 3.00000 0.230089
\(171\) −10.5000 + 18.1865i −0.802955 + 1.39076i
\(172\) −1.00000 −0.0762493
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 10.3923i 0.787839i
\(175\) −0.500000 + 0.866025i −0.0377964 + 0.0654654i
\(176\) −1.50000 + 2.59808i −0.113067 + 0.195837i
\(177\) 15.5885i 1.17170i
\(178\) 3.00000 + 5.19615i 0.224860 + 0.389468i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 3.00000 0.223607
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) −2.00000 3.46410i −0.148250 0.256776i
\(183\) 21.0000 + 12.1244i 1.55236 + 0.896258i
\(184\) −3.00000 + 5.19615i −0.221163 + 0.383065i
\(185\) 4.00000 6.92820i 0.294086 0.509372i
\(186\) −15.0000 + 8.66025i −1.09985 + 0.635001i
\(187\) −4.50000 7.79423i −0.329073 0.569970i
\(188\) 12.0000 0.875190
\(189\) 4.50000 2.59808i 0.327327 0.188982i
\(190\) −7.00000 −0.507833
\(191\) 6.00000 + 10.3923i 0.434145 + 0.751961i 0.997225 0.0744412i \(-0.0237173\pi\)
−0.563081 + 0.826402i \(0.690384\pi\)
\(192\) −1.50000 + 0.866025i −0.108253 + 0.0625000i
\(193\) 0.500000 0.866025i 0.0359908 0.0623379i −0.847469 0.530845i \(-0.821875\pi\)
0.883460 + 0.468507i \(0.155208\pi\)
\(194\) 5.50000 9.52628i 0.394877 0.683947i
\(195\) 6.00000 + 3.46410i 0.429669 + 0.248069i
\(196\) −0.500000 0.866025i −0.0357143 0.0618590i
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) −4.50000 7.79423i −0.319801 0.553912i
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 12.1244i 0.855186i
\(202\) 6.00000 10.3923i 0.422159 0.731200i
\(203\) 3.00000 5.19615i 0.210559 0.364698i
\(204\) 5.19615i 0.363803i
\(205\) 4.50000 + 7.79423i 0.314294 + 0.544373i
\(206\) 4.00000 0.278693
\(207\) −9.00000 15.5885i −0.625543 1.08347i
\(208\) −4.00000 −0.277350
\(209\) 10.5000 + 18.1865i 0.726300 + 1.25799i
\(210\) 1.50000 + 0.866025i 0.103510 + 0.0597614i
\(211\) 2.00000 3.46410i 0.137686 0.238479i −0.788935 0.614477i \(-0.789367\pi\)
0.926620 + 0.375999i \(0.122700\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) −9.00000 + 5.19615i −0.616670 + 0.356034i
\(214\) 1.50000 + 2.59808i 0.102538 + 0.177601i
\(215\) 1.00000 0.0681994
\(216\) 5.19615i 0.353553i
\(217\) −10.0000 −0.678844
\(218\) −8.00000 13.8564i −0.541828 0.938474i
\(219\) 10.5000 6.06218i 0.709524 0.409644i
\(220\) 1.50000 2.59808i 0.101130 0.175162i
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) −12.0000 6.92820i −0.805387 0.464991i
\(223\) 5.00000 + 8.66025i 0.334825 + 0.579934i 0.983451 0.181173i \(-0.0579895\pi\)
−0.648626 + 0.761107i \(0.724656\pi\)
\(224\) −1.00000 −0.0668153
\(225\) −3.00000 −0.200000
\(226\) 6.00000 0.399114
\(227\) 1.50000 + 2.59808i 0.0995585 + 0.172440i 0.911502 0.411296i \(-0.134924\pi\)
−0.811943 + 0.583736i \(0.801590\pi\)
\(228\) 12.1244i 0.802955i
\(229\) −10.0000 + 17.3205i −0.660819 + 1.14457i 0.319582 + 0.947559i \(0.396457\pi\)
−0.980401 + 0.197013i \(0.936876\pi\)
\(230\) 3.00000 5.19615i 0.197814 0.342624i
\(231\) 5.19615i 0.341882i
\(232\) −3.00000 5.19615i −0.196960 0.341144i
\(233\) 9.00000 0.589610 0.294805 0.955557i \(-0.404745\pi\)
0.294805 + 0.955557i \(0.404745\pi\)
\(234\) 6.00000 10.3923i 0.392232 0.679366i
\(235\) −12.0000 −0.782794
\(236\) −4.50000 7.79423i −0.292925 0.507361i
\(237\) 3.00000 + 1.73205i 0.194871 + 0.112509i
\(238\) 1.50000 2.59808i 0.0972306 0.168408i
\(239\) −3.00000 + 5.19615i −0.194054 + 0.336111i −0.946590 0.322440i \(-0.895497\pi\)
0.752536 + 0.658551i \(0.228830\pi\)
\(240\) 1.50000 0.866025i 0.0968246 0.0559017i
\(241\) −2.50000 4.33013i −0.161039 0.278928i 0.774202 0.632938i \(-0.218151\pi\)
−0.935242 + 0.354010i \(0.884818\pi\)
\(242\) 2.00000 0.128565
\(243\) 13.5000 + 7.79423i 0.866025 + 0.500000i
\(244\) 14.0000 0.896258
\(245\) 0.500000 + 0.866025i 0.0319438 + 0.0553283i
\(246\) 13.5000 7.79423i 0.860729 0.496942i
\(247\) −14.0000 + 24.2487i −0.890799 + 1.54291i
\(248\) −5.00000 + 8.66025i −0.317500 + 0.549927i
\(249\) −18.0000 10.3923i −1.14070 0.658586i
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) −9.00000 −0.568075 −0.284037 0.958813i \(-0.591674\pi\)
−0.284037 + 0.958813i \(0.591674\pi\)
\(252\) 1.50000 2.59808i 0.0944911 0.163663i
\(253\) −18.0000 −1.13165
\(254\) −5.00000 8.66025i −0.313728 0.543393i
\(255\) 5.19615i 0.325396i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.50000 12.9904i 0.467837 0.810318i −0.531487 0.847066i \(-0.678367\pi\)
0.999325 + 0.0367485i \(0.0117000\pi\)
\(258\) 1.73205i 0.107833i
\(259\) −4.00000 6.92820i −0.248548 0.430498i
\(260\) 4.00000 0.248069
\(261\) 18.0000 1.11417
\(262\) −12.0000 −0.741362
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) −4.50000 2.59808i −0.276956 0.159901i
\(265\) 3.00000 5.19615i 0.184289 0.319197i
\(266\) −3.50000 + 6.06218i −0.214599 + 0.371696i
\(267\) −9.00000 + 5.19615i −0.550791 + 0.317999i
\(268\) 3.50000 + 6.06218i 0.213797 + 0.370306i
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 5.19615i 0.316228i
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) −1.50000 2.59808i −0.0909509 0.157532i
\(273\) 6.00000 3.46410i 0.363137 0.209657i
\(274\) −10.5000 + 18.1865i −0.634328 + 1.09869i
\(275\) −1.50000 + 2.59808i −0.0904534 + 0.156670i
\(276\) −9.00000 5.19615i −0.541736 0.312772i
\(277\) 11.0000 + 19.0526i 0.660926 + 1.14476i 0.980373 + 0.197153i \(0.0631696\pi\)
−0.319447 + 0.947604i \(0.603497\pi\)
\(278\) −11.0000 −0.659736
\(279\) −15.0000 25.9808i −0.898027 1.55543i
\(280\) 1.00000 0.0597614
\(281\) 3.00000 + 5.19615i 0.178965 + 0.309976i 0.941526 0.336939i \(-0.109392\pi\)
−0.762561 + 0.646916i \(0.776058\pi\)
\(282\) 20.7846i 1.23771i
\(283\) −10.0000 + 17.3205i −0.594438 + 1.02960i 0.399188 + 0.916869i \(0.369292\pi\)
−0.993626 + 0.112728i \(0.964041\pi\)
\(284\) −3.00000 + 5.19615i −0.178017 + 0.308335i
\(285\) 12.1244i 0.718185i
\(286\) −6.00000 10.3923i −0.354787 0.614510i
\(287\) 9.00000 0.531253
\(288\) −1.50000 2.59808i −0.0883883 0.153093i
\(289\) −8.00000 −0.470588
\(290\) 3.00000 + 5.19615i 0.176166 + 0.305129i
\(291\) 16.5000 + 9.52628i 0.967247 + 0.558440i
\(292\) 3.50000 6.06218i 0.204822 0.354762i
\(293\) −9.00000 + 15.5885i −0.525786 + 0.910687i 0.473763 + 0.880652i \(0.342895\pi\)
−0.999549 + 0.0300351i \(0.990438\pi\)
\(294\) 1.50000 0.866025i 0.0874818 0.0505076i
\(295\) 4.50000 + 7.79423i 0.262000 + 0.453798i
\(296\) −8.00000 −0.464991
\(297\) 13.5000 7.79423i 0.783349 0.452267i
\(298\) −12.0000 −0.695141
\(299\) −12.0000 20.7846i −0.693978 1.20201i
\(300\) −1.50000 + 0.866025i −0.0866025 + 0.0500000i
\(301\) 0.500000 0.866025i 0.0288195 0.0499169i
\(302\) 7.00000 12.1244i 0.402805 0.697678i
\(303\) 18.0000 + 10.3923i 1.03407 + 0.597022i
\(304\) 3.50000 + 6.06218i 0.200739 + 0.347690i
\(305\) −14.0000 −0.801638
\(306\) 9.00000 0.514496
\(307\) 17.0000 0.970241 0.485121 0.874447i \(-0.338776\pi\)
0.485121 + 0.874447i \(0.338776\pi\)
\(308\) −1.50000 2.59808i −0.0854704 0.148039i
\(309\) 6.92820i 0.394132i
\(310\) 5.00000 8.66025i 0.283981 0.491869i
\(311\) −9.00000 + 15.5885i −0.510343 + 0.883940i 0.489585 + 0.871956i \(0.337148\pi\)
−0.999928 + 0.0119847i \(0.996185\pi\)
\(312\) 6.92820i 0.392232i
\(313\) 0.500000 + 0.866025i 0.0282617 + 0.0489506i 0.879810 0.475325i \(-0.157669\pi\)
−0.851549 + 0.524276i \(0.824336\pi\)
\(314\) 4.00000 0.225733
\(315\) −1.50000 + 2.59808i −0.0845154 + 0.146385i
\(316\) 2.00000 0.112509
\(317\) −12.0000 20.7846i −0.673987 1.16738i −0.976764 0.214318i \(-0.931247\pi\)
0.302777 0.953062i \(-0.402086\pi\)
\(318\) −9.00000 5.19615i −0.504695 0.291386i
\(319\) 9.00000 15.5885i 0.503903 0.872786i
\(320\) 0.500000 0.866025i 0.0279508 0.0484123i
\(321\) −4.50000 + 2.59808i −0.251166 + 0.145010i
\(322\) −3.00000 5.19615i −0.167183 0.289570i
\(323\) −21.0000 −1.16847
\(324\) 9.00000 0.500000
\(325\) −4.00000 −0.221880
\(326\) 4.00000 + 6.92820i 0.221540 + 0.383718i
\(327\) 24.0000 13.8564i 1.32720 0.766261i
\(328\) 4.50000 7.79423i 0.248471 0.430364i
\(329\) −6.00000 + 10.3923i −0.330791 + 0.572946i
\(330\) 4.50000 + 2.59808i 0.247717 + 0.143019i
\(331\) 14.0000 + 24.2487i 0.769510 + 1.33283i 0.937829 + 0.347097i \(0.112833\pi\)
−0.168320 + 0.985732i \(0.553834\pi\)
\(332\) −12.0000 −0.658586
\(333\) 12.0000 20.7846i 0.657596 1.13899i
\(334\) −6.00000 −0.328305
\(335\) −3.50000 6.06218i −0.191225 0.331212i
\(336\) 1.73205i 0.0944911i
\(337\) −2.50000 + 4.33013i −0.136184 + 0.235877i −0.926049 0.377403i \(-0.876817\pi\)
0.789865 + 0.613280i \(0.210150\pi\)
\(338\) 1.50000 2.59808i 0.0815892 0.141317i
\(339\) 10.3923i 0.564433i
\(340\) 1.50000 + 2.59808i 0.0813489 + 0.140900i
\(341\) −30.0000 −1.62459
\(342\) −21.0000 −1.13555
\(343\) 1.00000 0.0539949
\(344\) −0.500000 0.866025i −0.0269582 0.0466930i
\(345\) 9.00000 + 5.19615i 0.484544 + 0.279751i
\(346\) 3.00000 5.19615i 0.161281 0.279347i
\(347\) −4.50000 + 7.79423i −0.241573 + 0.418416i −0.961162 0.275983i \(-0.910997\pi\)
0.719590 + 0.694399i \(0.244330\pi\)
\(348\) 9.00000 5.19615i 0.482451 0.278543i
\(349\) −10.0000 17.3205i −0.535288 0.927146i −0.999149 0.0412379i \(-0.986870\pi\)
0.463862 0.885908i \(-0.346463\pi\)
\(350\) −1.00000 −0.0534522
\(351\) 18.0000 + 10.3923i 0.960769 + 0.554700i
\(352\) −3.00000 −0.159901
\(353\) −4.50000 7.79423i −0.239511 0.414845i 0.721063 0.692869i \(-0.243654\pi\)
−0.960574 + 0.278024i \(0.910320\pi\)
\(354\) 13.5000 7.79423i 0.717517 0.414259i
\(355\) 3.00000 5.19615i 0.159223 0.275783i
\(356\) −3.00000 + 5.19615i −0.159000 + 0.275396i
\(357\) 4.50000 + 2.59808i 0.238165 + 0.137505i
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 1.50000 + 2.59808i 0.0790569 + 0.136931i
\(361\) 30.0000 1.57895
\(362\) 10.0000 + 17.3205i 0.525588 + 0.910346i
\(363\) 3.46410i 0.181818i
\(364\) 2.00000 3.46410i 0.104828 0.181568i
\(365\) −3.50000 + 6.06218i −0.183198 + 0.317309i
\(366\) 24.2487i 1.26750i
\(367\) 14.0000 + 24.2487i 0.730794 + 1.26577i 0.956544 + 0.291587i \(0.0941834\pi\)
−0.225750 + 0.974185i \(0.572483\pi\)
\(368\) −6.00000 −0.312772
\(369\) 13.5000 + 23.3827i 0.702782 + 1.21725i
\(370\) 8.00000 0.415900
\(371\) −3.00000 5.19615i −0.155752 0.269771i
\(372\) −15.0000 8.66025i −0.777714 0.449013i
\(373\) −7.00000 + 12.1244i −0.362446 + 0.627775i −0.988363 0.152115i \(-0.951392\pi\)
0.625917 + 0.779890i \(0.284725\pi\)
\(374\) 4.50000 7.79423i 0.232689 0.403030i
\(375\) 1.50000 0.866025i 0.0774597 0.0447214i
\(376\) 6.00000 + 10.3923i 0.309426 + 0.535942i
\(377\) 24.0000 1.23606
\(378\) 4.50000 + 2.59808i 0.231455 + 0.133631i
\(379\) 5.00000 0.256833 0.128416 0.991720i \(-0.459011\pi\)
0.128416 + 0.991720i \(0.459011\pi\)
\(380\) −3.50000 6.06218i −0.179546 0.310983i
\(381\) 15.0000 8.66025i 0.768473 0.443678i
\(382\) −6.00000 + 10.3923i −0.306987 + 0.531717i
\(383\) 6.00000 10.3923i 0.306586 0.531022i −0.671027 0.741433i \(-0.734147\pi\)
0.977613 + 0.210411i \(0.0674801\pi\)
\(384\) −1.50000 0.866025i −0.0765466 0.0441942i
\(385\) 1.50000 + 2.59808i 0.0764471 + 0.132410i
\(386\) 1.00000 0.0508987
\(387\) 3.00000 0.152499
\(388\) 11.0000 0.558440
\(389\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(390\) 6.92820i 0.350823i
\(391\) 9.00000 15.5885i 0.455150 0.788342i
\(392\) 0.500000 0.866025i 0.0252538 0.0437409i
\(393\) 20.7846i 1.04844i
\(394\) 6.00000 + 10.3923i 0.302276 + 0.523557i
\(395\) −2.00000 −0.100631
\(396\) 4.50000 7.79423i 0.226134 0.391675i
\(397\) −4.00000 −0.200754 −0.100377 0.994949i \(-0.532005\pi\)
−0.100377 + 0.994949i \(0.532005\pi\)
\(398\) 10.0000 + 17.3205i 0.501255 + 0.868199i
\(399\) −10.5000 6.06218i −0.525657 0.303488i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 7.50000 12.9904i 0.374532 0.648709i −0.615725 0.787961i \(-0.711137\pi\)
0.990257 + 0.139253i \(0.0444700\pi\)
\(402\) −10.5000 + 6.06218i −0.523692 + 0.302354i
\(403\) −20.0000 34.6410i −0.996271 1.72559i
\(404\) 12.0000 0.597022
\(405\) −9.00000 −0.447214
\(406\) 6.00000 0.297775
\(407\) −12.0000 20.7846i −0.594818 1.03025i
\(408\) 4.50000 2.59808i 0.222783 0.128624i
\(409\) 9.50000 16.4545i 0.469745 0.813622i −0.529657 0.848212i \(-0.677679\pi\)
0.999402 + 0.0345902i \(0.0110126\pi\)
\(410\) −4.50000 + 7.79423i −0.222239 + 0.384930i
\(411\) −31.5000 18.1865i −1.55378 0.897076i
\(412\) 2.00000 + 3.46410i 0.0985329 + 0.170664i
\(413\) 9.00000 0.442861
\(414\) 9.00000 15.5885i 0.442326 0.766131i
\(415\) 12.0000 0.589057
\(416\) −2.00000 3.46410i −0.0980581 0.169842i
\(417\) 19.0526i 0.933008i
\(418\) −10.5000 + 18.1865i −0.513572 + 0.889532i
\(419\) −12.0000 + 20.7846i −0.586238 + 1.01539i 0.408481 + 0.912767i \(0.366058\pi\)
−0.994720 + 0.102628i \(0.967275\pi\)
\(420\) 1.73205i 0.0845154i
\(421\) −13.0000 22.5167i −0.633581 1.09739i −0.986814 0.161859i \(-0.948251\pi\)
0.353233 0.935536i \(-0.385082\pi\)
\(422\) 4.00000 0.194717
\(423\) −36.0000 −1.75038
\(424\) −6.00000 −0.291386
\(425\) −1.50000 2.59808i −0.0727607 0.126025i
\(426\) −9.00000 5.19615i −0.436051 0.251754i
\(427\) −7.00000 + 12.1244i −0.338754 + 0.586739i
\(428\) −1.50000 + 2.59808i −0.0725052 + 0.125583i
\(429\) 18.0000 10.3923i 0.869048 0.501745i
\(430\) 0.500000 + 0.866025i 0.0241121 + 0.0417635i
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 4.50000 2.59808i 0.216506 0.125000i
\(433\) 11.0000 0.528626 0.264313 0.964437i \(-0.414855\pi\)
0.264313 + 0.964437i \(0.414855\pi\)
\(434\) −5.00000 8.66025i −0.240008 0.415705i
\(435\) −9.00000 + 5.19615i −0.431517 + 0.249136i
\(436\) 8.00000 13.8564i 0.383131 0.663602i
\(437\) −21.0000 + 36.3731i −1.00457 + 1.73996i
\(438\) 10.5000 + 6.06218i 0.501709 + 0.289662i
\(439\) 5.00000 + 8.66025i 0.238637 + 0.413331i 0.960323 0.278889i \(-0.0899661\pi\)
−0.721686 + 0.692220i \(0.756633\pi\)
\(440\) 3.00000 0.143019
\(441\) 1.50000 + 2.59808i 0.0714286 + 0.123718i
\(442\) 12.0000 0.570782
\(443\) −7.50000 12.9904i −0.356336 0.617192i 0.631010 0.775775i \(-0.282641\pi\)
−0.987346 + 0.158583i \(0.949307\pi\)
\(444\) 13.8564i 0.657596i
\(445\) 3.00000 5.19615i 0.142214 0.246321i
\(446\) −5.00000 + 8.66025i −0.236757 + 0.410075i
\(447\) 20.7846i 0.983078i
\(448\) −0.500000 0.866025i −0.0236228 0.0409159i
\(449\) −39.0000 −1.84052 −0.920262 0.391303i \(-0.872024\pi\)
−0.920262 + 0.391303i \(0.872024\pi\)
\(450\) −1.50000 2.59808i −0.0707107 0.122474i
\(451\) 27.0000 1.27138
\(452\) 3.00000 + 5.19615i 0.141108 + 0.244406i
\(453\) 21.0000 + 12.1244i 0.986666 + 0.569652i
\(454\) −1.50000 + 2.59808i −0.0703985 + 0.121934i
\(455\) −2.00000 + 3.46410i −0.0937614 + 0.162400i
\(456\) −10.5000 + 6.06218i −0.491708 + 0.283887i
\(457\) −5.50000 9.52628i −0.257279 0.445621i 0.708233 0.705979i \(-0.249493\pi\)
−0.965512 + 0.260358i \(0.916159\pi\)
\(458\) −20.0000 −0.934539
\(459\) 15.5885i 0.727607i
\(460\) 6.00000 0.279751
\(461\) 12.0000 + 20.7846i 0.558896 + 0.968036i 0.997589 + 0.0693989i \(0.0221081\pi\)
−0.438693 + 0.898637i \(0.644559\pi\)
\(462\) 4.50000 2.59808i 0.209359 0.120873i
\(463\) 2.00000 3.46410i 0.0929479 0.160990i −0.815802 0.578331i \(-0.803704\pi\)
0.908750 + 0.417340i \(0.137038\pi\)
\(464\) 3.00000 5.19615i 0.139272 0.241225i
\(465\) 15.0000 + 8.66025i 0.695608 + 0.401610i
\(466\) 4.50000 + 7.79423i 0.208458 + 0.361061i
\(467\) −27.0000 −1.24941 −0.624705 0.780860i \(-0.714781\pi\)
−0.624705 + 0.780860i \(0.714781\pi\)
\(468\) 12.0000 0.554700
\(469\) −7.00000 −0.323230
\(470\) −6.00000 10.3923i −0.276759 0.479361i
\(471\) 6.92820i 0.319235i
\(472\) 4.50000 7.79423i 0.207129 0.358758i
\(473\) 1.50000 2.59808i 0.0689701 0.119460i
\(474\) 3.46410i 0.159111i
\(475\) 3.50000 + 6.06218i 0.160591 + 0.278152i
\(476\) 3.00000 0.137505
\(477\) 9.00000 15.5885i 0.412082 0.713746i
\(478\) −6.00000 −0.274434
\(479\) −15.0000 25.9808i −0.685367 1.18709i −0.973321 0.229447i \(-0.926308\pi\)
0.287954 0.957644i \(-0.407025\pi\)
\(480\) 1.50000 + 0.866025i 0.0684653 + 0.0395285i
\(481\) 16.0000 27.7128i 0.729537 1.26360i
\(482\) 2.50000 4.33013i 0.113872 0.197232i
\(483\) 9.00000 5.19615i 0.409514 0.236433i
\(484\) 1.00000 + 1.73205i 0.0454545 + 0.0787296i
\(485\) −11.0000 −0.499484
\(486\) 15.5885i 0.707107i
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 7.00000 + 12.1244i 0.316875 + 0.548844i
\(489\) −12.0000 + 6.92820i −0.542659 + 0.313304i
\(490\) −0.500000 + 0.866025i −0.0225877 + 0.0391230i
\(491\) 4.50000 7.79423i 0.203082 0.351749i −0.746438 0.665455i \(-0.768237\pi\)
0.949520 + 0.313707i \(0.101571\pi\)
\(492\) 13.5000 + 7.79423i 0.608627 + 0.351391i
\(493\) 9.00000 + 15.5885i 0.405340 + 0.702069i
\(494\) −28.0000 −1.25978
\(495\) −4.50000 + 7.79423i −0.202260 + 0.350325i
\(496\) −10.0000 −0.449013
\(497\) −3.00000 5.19615i −0.134568 0.233079i
\(498\) 20.7846i 0.931381i
\(499\) −8.50000 + 14.7224i −0.380512 + 0.659067i −0.991136 0.132855i \(-0.957586\pi\)
0.610623 + 0.791921i \(0.290919\pi\)
\(500\) 0.500000 0.866025i 0.0223607 0.0387298i
\(501\) 10.3923i 0.464294i
\(502\) −4.50000 7.79423i −0.200845 0.347873i
\(503\) 42.0000 1.87269 0.936344 0.351085i \(-0.114187\pi\)
0.936344 + 0.351085i \(0.114187\pi\)
\(504\) 3.00000 0.133631
\(505\) −12.0000 −0.533993
\(506\) −9.00000 15.5885i −0.400099 0.692991i
\(507\) 4.50000 + 2.59808i 0.199852 + 0.115385i
\(508\) 5.00000 8.66025i 0.221839 0.384237i
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) −4.50000 + 2.59808i −0.199263 + 0.115045i
\(511\) 3.50000 + 6.06218i 0.154831 + 0.268175i
\(512\) −1.00000 −0.0441942
\(513\) 36.3731i 1.60591i
\(514\) 15.0000 0.661622
\(515\) −2.00000 3.46410i −0.0881305 0.152647i
\(516\) 1.50000 0.866025i 0.0660338 0.0381246i
\(517\) −18.0000 + 31.1769i −0.791639 + 1.37116i
\(518\) 4.00000 6.92820i 0.175750 0.304408i
\(519\) 9.00000 + 5.19615i 0.395056 + 0.228086i
\(520\) 2.00000 + 3.46410i 0.0877058 + 0.151911i
\(521\) −15.0000 −0.657162 −0.328581 0.944476i \(-0.606570\pi\)
−0.328581 + 0.944476i \(0.606570\pi\)
\(522\) 9.00000 + 15.5885i 0.393919 + 0.682288i
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) −6.00000 10.3923i −0.262111 0.453990i
\(525\) 1.73205i 0.0755929i
\(526\) 0 0
\(527\) 15.0000 25.9808i 0.653410 1.13174i
\(528\) 5.19615i 0.226134i
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 6.00000 0.260623
\(531\) 13.5000 + 23.3827i 0.585850 + 1.01472i
\(532\) −7.00000 −0.303488
\(533\) 18.0000 + 31.1769i 0.779667 + 1.35042i
\(534\) −9.00000 5.19615i −0.389468 0.224860i
\(535\) 1.50000 2.59808i 0.0648507 0.112325i
\(536\) −3.50000 + 6.06218i −0.151177 + 0.261846i
\(537\) 0 0
\(538\) 15.0000 + 25.9808i 0.646696 + 1.12011i
\(539\) 3.00000 0.129219
\(540\) −4.50000 + 2.59808i −0.193649 + 0.111803i
\(541\) −16.0000 −0.687894 −0.343947 0.938989i \(-0.611764\pi\)
−0.343947 + 0.938989i \(0.611764\pi\)
\(542\) 10.0000 + 17.3205i 0.429537 + 0.743980i
\(543\) −30.0000 + 17.3205i −1.28742 + 0.743294i
\(544\) 1.50000 2.59808i 0.0643120 0.111392i
\(545\) −8.00000 + 13.8564i −0.342682 + 0.593543i
\(546\) 6.00000 + 3.46410i 0.256776 + 0.148250i
\(547\) 18.5000 + 32.0429i 0.791003 + 1.37006i 0.925347 + 0.379122i \(0.123774\pi\)
−0.134344 + 0.990935i \(0.542893\pi\)
\(548\) −21.0000 −0.897076
\(549\) −42.0000 −1.79252
\(550\) −3.00000 −0.127920
\(551\) −21.0000 36.3731i −0.894630 1.54954i
\(552\) 10.3923i 0.442326i
\(553\) −1.00000 + 1.73205i −0.0425243 + 0.0736543i
\(554\) −11.0000 + 19.0526i −0.467345 + 0.809466i
\(555\) 13.8564i 0.588172i
\(556\) −5.50000 9.52628i −0.233252 0.404004i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 15.0000 25.9808i 0.635001 1.09985i
\(559\) 4.00000 0.169182
\(560\) 0.500000 + 0.866025i 0.0211289 + 0.0365963i
\(561\) 13.5000 + 7.79423i 0.569970 + 0.329073i
\(562\) −3.00000 + 5.19615i −0.126547 + 0.219186i
\(563\) 13.5000 23.3827i 0.568957 0.985463i −0.427712 0.903915i \(-0.640680\pi\)
0.996669 0.0815478i \(-0.0259863\pi\)
\(564\) −18.0000 + 10.3923i −0.757937 + 0.437595i
\(565\) −3.00000 5.19615i −0.126211 0.218604i
\(566\) −20.0000 −0.840663
\(567\) −4.50000 + 7.79423i −0.188982 + 0.327327i
\(568\) −6.00000 −0.251754
\(569\) −4.50000 7.79423i −0.188650 0.326751i 0.756151 0.654398i \(-0.227078\pi\)
−0.944800 + 0.327647i \(0.893744\pi\)
\(570\) 10.5000 6.06218i 0.439797 0.253917i
\(571\) −2.50000 + 4.33013i −0.104622 + 0.181210i −0.913584 0.406651i \(-0.866697\pi\)
0.808962 + 0.587861i \(0.200030\pi\)
\(572\) 6.00000 10.3923i 0.250873 0.434524i
\(573\) −18.0000 10.3923i −0.751961 0.434145i
\(574\) 4.50000 + 7.79423i 0.187826 + 0.325325i
\(575\) −6.00000 −0.250217
\(576\) 1.50000 2.59808i 0.0625000 0.108253i
\(577\) −31.0000 −1.29055 −0.645273 0.763952i \(-0.723257\pi\)
−0.645273 + 0.763952i \(0.723257\pi\)
\(578\) −4.00000 6.92820i −0.166378 0.288175i
\(579\) 1.73205i 0.0719816i
\(580\) −3.00000 + 5.19615i −0.124568 + 0.215758i
\(581\) 6.00000 10.3923i 0.248922 0.431145i
\(582\) 19.0526i 0.789754i
\(583\) −9.00000 15.5885i −0.372742 0.645608i
\(584\) 7.00000 0.289662
\(585\) −12.0000 −0.496139
\(586\) −18.0000 −0.743573
\(587\) 4.50000 + 7.79423i 0.185735 + 0.321702i 0.943824 0.330449i \(-0.107200\pi\)
−0.758089 + 0.652151i \(0.773867\pi\)
\(588\) 1.50000 + 0.866025i 0.0618590 + 0.0357143i
\(589\) −35.0000 + 60.6218i −1.44215 + 2.49788i
\(590\) −4.50000 + 7.79423i −0.185262 + 0.320883i
\(591\) −18.0000 + 10.3923i −0.740421 + 0.427482i
\(592\) −4.00000 6.92820i −0.164399 0.284747i
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 13.5000 + 7.79423i 0.553912 + 0.319801i
\(595\) −3.00000 −0.122988
\(596\) −6.00000 10.3923i −0.245770 0.425685i
\(597\) −30.0000 + 17.3205i −1.22782 + 0.708881i
\(598\) 12.0000 20.7846i 0.490716 0.849946i
\(599\) 12.0000 20.7846i 0.490307 0.849236i −0.509631 0.860393i \(-0.670218\pi\)
0.999938 + 0.0111569i \(0.00355143\pi\)
\(600\) −1.50000 0.866025i −0.0612372 0.0353553i
\(601\) −17.5000 30.3109i −0.713840 1.23641i −0.963405 0.268049i \(-0.913621\pi\)
0.249565 0.968358i \(-0.419712\pi\)
\(602\) 1.00000 0.0407570
\(603\) −10.5000 18.1865i −0.427593 0.740613i
\(604\) 14.0000 0.569652
\(605\) −1.00000 1.73205i −0.0406558 0.0704179i
\(606\) 20.7846i 0.844317i
\(607\) −16.0000 + 27.7128i −0.649420 + 1.12483i 0.333842 + 0.942629i \(0.391655\pi\)
−0.983262 + 0.182199i \(0.941678\pi\)
\(608\) −3.50000 + 6.06218i −0.141944 + 0.245854i
\(609\) 10.3923i 0.421117i
\(610\) −7.00000 12.1244i −0.283422 0.490901i
\(611\) −48.0000 −1.94187
\(612\) 4.50000 + 7.79423i 0.181902 + 0.315063i
\(613\) 38.0000 1.53481 0.767403 0.641165i \(-0.221549\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(614\) 8.50000 + 14.7224i 0.343032 + 0.594149i
\(615\) −13.5000 7.79423i −0.544373 0.314294i
\(616\) 1.50000 2.59808i 0.0604367 0.104679i
\(617\) −10.5000 + 18.1865i −0.422714 + 0.732162i −0.996204 0.0870504i \(-0.972256\pi\)
0.573490 + 0.819213i \(0.305589\pi\)
\(618\) −6.00000 + 3.46410i −0.241355 + 0.139347i
\(619\) 3.50000 + 6.06218i 0.140677 + 0.243659i 0.927752 0.373198i \(-0.121739\pi\)
−0.787075 + 0.616858i \(0.788405\pi\)
\(620\) 10.0000 0.401610
\(621\) 27.0000 + 15.5885i 1.08347 + 0.625543i
\(622\) −18.0000 −0.721734
\(623\) −3.00000 5.19615i −0.120192 0.208179i
\(624\) 6.00000 3.46410i 0.240192 0.138675i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −0.500000 + 0.866025i −0.0199840 + 0.0346133i
\(627\) −31.5000 18.1865i −1.25799 0.726300i
\(628\) 2.00000 + 3.46410i 0.0798087 + 0.138233i
\(629\) 24.0000 0.956943
\(630\) −3.00000 −0.119523
\(631\) −10.0000 −0.398094 −0.199047 0.979990i \(-0.563785\pi\)
−0.199047 + 0.979990i \(0.563785\pi\)
\(632\) 1.00000 + 1.73205i 0.0397779 + 0.0688973i
\(633\) 6.92820i 0.275371i
\(634\) 12.0000 20.7846i 0.476581 0.825462i
\(635\) −5.00000 + 8.66025i −0.198419 + 0.343672i
\(636\) 10.3923i 0.412082i
\(637\) 2.00000 + 3.46410i 0.0792429 + 0.137253i
\(638\) 18.0000 0.712627
\(639\) 9.00000 15.5885i 0.356034 0.616670i
\(640\) 1.00000 0.0395285
\(641\) 7.50000 + 12.9904i 0.296232 + 0.513089i 0.975271 0.221013i \(-0.0709364\pi\)
−0.679039 + 0.734103i \(0.737603\pi\)
\(642\) −4.50000 2.59808i −0.177601 0.102538i
\(643\) 24.5000 42.4352i 0.966186 1.67348i 0.259791 0.965665i \(-0.416346\pi\)
0.706395 0.707818i \(-0.250320\pi\)
\(644\) 3.00000 5.19615i 0.118217 0.204757i
\(645\) −1.50000 + 0.866025i −0.0590624 + 0.0340997i
\(646\) −10.5000 18.1865i −0.413117 0.715540i
\(647\) 18.0000 0.707653 0.353827 0.935311i \(-0.384880\pi\)
0.353827 + 0.935311i \(0.384880\pi\)
\(648\) 4.50000 + 7.79423i 0.176777 + 0.306186i
\(649\) 27.0000 1.05984
\(650\) −2.00000 3.46410i −0.0784465 0.135873i
\(651\) 15.0000 8.66025i 0.587896 0.339422i
\(652\) −4.00000 + 6.92820i −0.156652 + 0.271329i
\(653\) −9.00000 + 15.5885i −0.352197 + 0.610023i −0.986634 0.162951i \(-0.947899\pi\)
0.634437 + 0.772975i \(0.281232\pi\)
\(654\) 24.0000 + 13.8564i 0.938474 + 0.541828i
\(655\) 6.00000 + 10.3923i 0.234439 + 0.406061i
\(656\) 9.00000 0.351391
\(657\) −10.5000 + 18.1865i −0.409644 + 0.709524i
\(658\) −12.0000 −0.467809
\(659\) −6.00000 10.3923i −0.233727 0.404827i 0.725175 0.688565i \(-0.241759\pi\)
−0.958902 + 0.283738i \(0.908425\pi\)
\(660\) 5.19615i 0.202260i
\(661\) −16.0000 + 27.7128i −0.622328 + 1.07790i 0.366723 + 0.930330i \(0.380480\pi\)
−0.989051 + 0.147573i \(0.952854\pi\)
\(662\) −14.0000 + 24.2487i −0.544125 + 0.942453i
\(663\) 20.7846i 0.807207i
\(664\) −6.00000 10.3923i −0.232845 0.403300i
\(665\) 7.00000 0.271448
\(666\) 24.0000 0.929981
\(667\) 36.0000 1.39393
\(668\) −3.00000 5.19615i −0.116073 0.201045i
\(669\) −15.0000 8.66025i −0.579934 0.334825i
\(670\) 3.50000 6.06218i 0.135217 0.234202i
\(671\) −21.0000 + 36.3731i −0.810696 + 1.40417i
\(672\) 1.50000 0.866025i 0.0578638 0.0334077i
\(673\) 5.00000 + 8.66025i 0.192736 + 0.333828i 0.946156 0.323711i \(-0.104931\pi\)
−0.753420 + 0.657539i \(0.771597\pi\)
\(674\) −5.00000 −0.192593
\(675\) 4.50000 2.59808i 0.173205 0.100000i
\(676\) 3.00000 0.115385
\(677\) 12.0000 + 20.7846i 0.461197 + 0.798817i 0.999021 0.0442400i \(-0.0140866\pi\)
−0.537823 + 0.843057i \(0.680753\pi\)
\(678\) −9.00000 + 5.19615i −0.345643 + 0.199557i
\(679\) −5.50000 + 9.52628i −0.211071 + 0.365585i
\(680\) −1.50000 + 2.59808i −0.0575224 + 0.0996317i
\(681\) −4.50000 2.59808i −0.172440 0.0995585i
\(682\) −15.0000 25.9808i −0.574380 0.994855i
\(683\) −9.00000 −0.344375 −0.172188 0.985064i \(-0.555084\pi\)
−0.172188 + 0.985064i \(0.555084\pi\)
\(684\) −10.5000 18.1865i −0.401478 0.695379i
\(685\) 21.0000 0.802369
\(686\) 0.500000 + 0.866025i 0.0190901 + 0.0330650i
\(687\) 34.6410i 1.32164i
\(688\) 0.500000 0.866025i 0.0190623 0.0330169i
\(689\) 12.0000 20.7846i 0.457164 0.791831i
\(690\) 10.3923i 0.395628i
\(691\) 8.00000 + 13.8564i 0.304334 + 0.527123i 0.977113 0.212721i \(-0.0682327\pi\)
−0.672779 + 0.739844i \(0.734899\pi\)
\(692\) 6.00000 0.228086
\(693\) 4.50000 + 7.79423i 0.170941 + 0.296078i
\(694\) −9.00000 −0.341635
\(695\) 5.50000 + 9.52628i 0.208627 + 0.361352i
\(696\) 9.00000 + 5.19615i 0.341144 + 0.196960i
\(697\) −13.5000 + 23.3827i −0.511349 + 0.885682i
\(698\) 10.0000 17.3205i 0.378506 0.655591i
\(699\) −13.5000 + 7.79423i −0.510617 + 0.294805i
\(700\) −0.500000 0.866025i −0.0188982 0.0327327i
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 20.7846i 0.784465i
\(703\) −56.0000 −2.11208
\(704\) −1.50000 2.59808i −0.0565334 0.0979187i
\(705\) 18.0000 10.3923i 0.677919 0.391397i
\(706\) 4.50000 7.79423i 0.169360 0.293340i
\(707\) −6.00000 + 10.3923i −0.225653 + 0.390843i
\(708\) 13.5000 + 7.79423i 0.507361 + 0.292925i
\(709\) −19.0000 32.9090i −0.713560 1.23592i −0.963512 0.267664i \(-0.913748\pi\)
0.249952 0.968258i \(-0.419585\pi\)
\(710\) 6.00000 0.225176
\(711\) −6.00000 −0.225018
\(712\) −6.00000 −0.224860
\(713\) −30.0000 51.9615i −1.12351 1.94597i
\(714\) 5.19615i 0.194461i
\(715\) −6.00000 + 10.3923i −0.224387 + 0.388650i
\(716\) 0 0
\(717\) 10.3923i 0.388108i
\(718\) 12.0000 + 20.7846i 0.447836 + 0.775675i
\(719\) 12.0000 0.447524 0.223762 0.974644i \(-0.428166\pi\)
0.223762 + 0.974644i \(0.428166\pi\)
\(720\) −1.50000 + 2.59808i −0.0559017 + 0.0968246i
\(721\) −4.00000 −0.148968
\(722\) 15.0000 + 25.9808i 0.558242 + 0.966904i
\(723\) 7.50000 + 4.33013i 0.278928 + 0.161039i
\(724\) −10.0000 + 17.3205i −0.371647 + 0.643712i
\(725\) 3.00000 5.19615i 0.111417 0.192980i
\(726\) −3.00000 + 1.73205i −0.111340 + 0.0642824i
\(727\) −10.0000 17.3205i −0.370879 0.642382i 0.618822 0.785532i \(-0.287610\pi\)
−0.989701 + 0.143149i \(0.954277\pi\)
\(728\) 4.00000 0.148250
\(729\) −27.0000 −1.00000
\(730\) −7.00000 −0.259082
\(731\) 1.50000 + 2.59808i 0.0554795 + 0.0960933i
\(732\) −21.0000 + 12.1244i −0.776182 + 0.448129i
\(733\) 8.00000 13.8564i 0.295487 0.511798i −0.679611 0.733572i \(-0.737852\pi\)
0.975098 + 0.221774i \(0.0711849\pi\)
\(734\) −14.0000 + 24.2487i −0.516749 + 0.895036i
\(735\) −1.50000 0.866025i −0.0553283 0.0319438i
\(736\) −3.00000 5.19615i −0.110581 0.191533i
\(737\) −21.0000 −0.773545
\(738\) −13.5000 + 23.3827i −0.496942 + 0.860729i
\(739\) −19.0000 −0.698926 −0.349463 0.936950i \(-0.613636\pi\)
−0.349463 + 0.936950i \(0.613636\pi\)
\(740\) 4.00000 + 6.92820i 0.147043 + 0.254686i
\(741\) 48.4974i 1.78160i
\(742\) 3.00000 5.19615i 0.110133 0.190757i
\(743\) 3.00000 5.19615i 0.110059 0.190628i −0.805735 0.592277i \(-0.798229\pi\)
0.915794 + 0.401648i \(0.131563\pi\)
\(744\) 17.3205i 0.635001i
\(745\) 6.00000 + 10.3923i 0.219823 + 0.380745i
\(746\) −14.0000 −0.512576
\(747\) 36.0000 1.31717
\(748\) 9.00000 0.329073
\(749\) −1.50000 2.59808i −0.0548088 0.0949316i
\(750\) 1.50000 + 0.866025i 0.0547723 + 0.0316228i
\(751\) −16.0000 + 27.7128i −0.583848 + 1.01125i 0.411170 + 0.911559i \(0.365120\pi\)
−0.995018 + 0.0996961i \(0.968213\pi\)
\(752\) −6.00000 + 10.3923i −0.218797 + 0.378968i
\(753\) 13.5000 7.79423i 0.491967 0.284037i
\(754\) 12.0000 + 20.7846i 0.437014 + 0.756931i
\(755\) −14.0000 −0.509512
\(756\) 5.19615i 0.188982i
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 2.50000 + 4.33013i 0.0908041 + 0.157277i
\(759\) 27.0000 15.5885i 0.980038 0.565825i
\(760\) 3.50000 6.06218i 0.126958 0.219898i
\(761\) 3.00000 5.19615i 0.108750 0.188360i −0.806514 0.591215i \(-0.798649\pi\)
0.915264 + 0.402854i \(0.131982\pi\)
\(762\) 15.0000 + 8.66025i 0.543393 + 0.313728i
\(763\) 8.00000 + 13.8564i 0.289619 + 0.501636i
\(764\) −12.0000 −0.434145
\(765\) −4.50000 7.79423i −0.162698 0.281801i
\(766\) 12.0000 0.433578
\(767\) 18.0000 + 31.1769i 0.649942 + 1.12573i
\(768\) 1.73205i 0.0625000i
\(769\) 11.0000 19.0526i 0.396670 0.687053i −0.596643 0.802507i \(-0.703499\pi\)
0.993313 + 0.115454i \(0.0368323\pi\)
\(770\) −1.50000 + 2.59808i −0.0540562 + 0.0936282i
\(771\) 25.9808i 0.935674i
\(772\) 0.500000 + 0.866025i 0.0179954 + 0.0311689i
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 1.50000 + 2.59808i 0.0539164 + 0.0933859i
\(775\) −10.0000 −0.359211
\(776\) 5.50000 + 9.52628i 0.197438 + 0.341974i
\(777\) 12.0000 + 6.92820i 0.430498 + 0.248548i
\(778\) 0 0
\(779\) 31.5000 54.5596i 1.12860 1.95480i
\(780\) −6.00000 + 3.46410i −0.214834 + 0.124035i
\(781\) −9.00000 15.5885i −0.322045 0.557799i
\(782\) 18.0000 0.643679
\(783\) −27.0000 + 15.5885i −0.964901 + 0.557086i
\(784\) 1.00000 0.0357143
\(785\) −2.00000 3.46410i −0.0713831 0.123639i
\(786\) 18.0000 10.3923i 0.642039 0.370681i
\(787\) −10.0000 + 17.3205i −0.356462 + 0.617409i −0.987367 0.158450i \(-0.949350\pi\)
0.630905 + 0.775860i \(0.282684\pi\)
\(788\) −6.00000 + 10.3923i −0.213741 + 0.370211i
\(789\) 0 0
\(790\) −1.00000 1.73205i −0.0355784 0.0616236i
\(791\) −6.00000 −0.213335
\(792\) 9.00000 0.319801
\(793\) −56.0000 −1.98862
\(794\) −2.00000 3.46410i −0.0709773 0.122936i
\(795\) 10.3923i 0.368577i
\(796\) −10.0000 + 17.3205i −0.354441 + 0.613909i
\(797\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(798\) 12.1244i 0.429198i
\(799\) −18.0000 31.1769i −0.636794 1.10296i
\(800\) −1.00000 −0.0353553
\(801\) 9.00000 15.5885i 0.317999 0.550791i
\(802\) 15.0000 0.529668
\(803\) 10.5000 + 18.1865i 0.370537 + 0.641789i
\(804\) −10.5000 6.06218i −0.370306 0.213797i
\(805\) −3.00000 + 5.19615i −0.105736 + 0.183140i
\(806\) 20.0000 34.6410i 0.704470 1.22018i
\(807\) −45.0000 + 25.9808i −1.58408 + 0.914566i
\(808\) 6.00000 + 10.3923i 0.211079 + 0.365600i
\(809\) 33.0000 1.16022 0.580109 0.814539i \(-0.303010\pi\)
0.580109 + 0.814539i \(0.303010\pi\)
\(810\) −4.50000 7.79423i −0.158114 0.273861i
\(811\) 47.0000 1.65039 0.825197 0.564846i \(-0.191064\pi\)
0.825197 + 0.564846i \(0.191064\pi\)
\(812\) 3.00000 + 5.19615i 0.105279 + 0.182349i
\(813\) −30.0000 + 17.3205i −1.05215 + 0.607457i
\(814\) 12.0000 20.7846i 0.420600 0.728500i
\(815\) 4.00000 6.92820i 0.140114 0.242684i
\(816\) 4.50000 + 2.59808i 0.157532 + 0.0909509i
\(817\) −3.50000 6.06218i −0.122449 0.212089i
\(818\) 19.0000 0.664319
\(819\) −6.00000 + 10.3923i −0.209657 + 0.363137i
\(820\) −9.00000 −0.314294
\(821\) −12.0000 20.7846i −0.418803 0.725388i 0.577016 0.816733i \(-0.304217\pi\)
−0.995819 + 0.0913446i \(0.970884\pi\)
\(822\) 36.3731i 1.26866i
\(823\) 20.0000 34.6410i 0.697156 1.20751i −0.272292 0.962215i \(-0.587782\pi\)
0.969448 0.245295i \(-0.0788849\pi\)
\(824\) −2.00000 + 3.46410i −0.0696733 + 0.120678i
\(825\) 5.19615i 0.180907i
\(826\) 4.50000 + 7.79423i 0.156575 + 0.271196i
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 18.0000 0.625543
\(829\) 56.0000 1.94496 0.972480 0.232986i \(-0.0748495\pi\)
0.972480 + 0.232986i \(0.0748495\pi\)
\(830\) 6.00000 + 10.3923i 0.208263 + 0.360722i
\(831\) −33.0000 19.0526i −1.14476 0.660926i
\(832\) 2.00000 3.46410i 0.0693375 0.120096i
\(833\) −1.50000 + 2.59808i −0.0519719 + 0.0900180i
\(834\) 16.5000 9.52628i 0.571348 0.329868i
\(835\) 3.00000 + 5.19615i 0.103819 + 0.179820i
\(836\) −21.0000 −0.726300
\(837\) 45.0000 + 25.9808i 1.55543 + 0.898027i
\(838\) −24.0000 −0.829066
\(839\) 15.0000 + 25.9808i 0.517858 + 0.896956i 0.999785 + 0.0207443i \(0.00660359\pi\)
−0.481927 + 0.876211i \(0.660063\pi\)
\(840\) −1.50000 + 0.866025i −0.0517549 + 0.0298807i
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 13.0000 22.5167i 0.448010 0.775975i
\(843\) −9.00000 5.19615i −0.309976 0.178965i
\(844\) 2.00000 + 3.46410i 0.0688428 + 0.119239i
\(845\) −3.00000 −0.103203
\(846\) −18.0000 31.1769i −0.618853 1.07188i
\(847\) −2.00000 −0.0687208
\(848\) −3.00000 5.19615i −0.103020 0.178437i
\(849\) 34.6410i 1.18888i
\(850\) 1.50000 2.59808i 0.0514496 0.0891133i
\(851\) 24.0000 41.5692i 0.822709 1.42497i
\(852\) 10.3923i 0.356034i
\(853\) −4.00000 6.92820i −0.136957 0.237217i 0.789386 0.613897i \(-0.210399\pi\)
−0.926343 + 0.376680i \(0.877066\pi\)
\(854\) −14.0000 −0.479070
\(855\) 10.5000 + 18.1865i 0.359092 + 0.621966i
\(856\) −3.00000 −0.102538
\(857\) 21.0000 + 36.3731i 0.717346 + 1.24248i 0.962048 + 0.272882i \(0.0879768\pi\)
−0.244701 + 0.969599i \(0.578690\pi\)
\(858\) 18.0000 + 10.3923i 0.614510 + 0.354787i
\(859\) 27.5000 47.6314i 0.938288 1.62516i 0.169625 0.985509i \(-0.445745\pi\)
0.768663 0.639654i \(-0.220922\pi\)
\(860\) −0.500000 + 0.866025i −0.0170499 + 0.0295312i
\(861\) −13.5000 + 7.79423i −0.460079 + 0.265627i
\(862\) 6.00000 + 10.3923i 0.204361 + 0.353963i
\(863\) 30.0000 1.02121 0.510606 0.859815i \(-0.329421\pi\)
0.510606 + 0.859815i \(0.329421\pi\)
\(864\) 4.50000 + 2.59808i 0.153093 + 0.0883883i
\(865\) −6.00000 −0.204006
\(866\) 5.50000 + 9.52628i 0.186898 + 0.323716i
\(867\) 12.0000 6.92820i 0.407541 0.235294i
\(868\) 5.00000 8.66025i 0.169711 0.293948i
\(869\) −3.00000 + 5.19615i −0.101768 + 0.176267i
\(870\) −9.00000 5.19615i −0.305129 0.176166i
\(871\) −14.0000 24.2487i −0.474372 0.821636i
\(872\) 16.0000 0.541828
\(873\) −33.0000 −1.11688
\(874\) −42.0000 −1.42067
\(875\) 0.500000 + 0.866025i 0.0169031 + 0.0292770i
\(876\) 12.1244i 0.409644i
\(877\) −25.0000 + 43.3013i −0.844190 + 1.46218i 0.0421327 + 0.999112i \(0.486585\pi\)
−0.886323 + 0.463068i \(0.846749\pi\)
\(878\) −5.00000 + 8.66025i −0.168742 + 0.292269i
\(879\) 31.1769i 1.05157i
\(880\) 1.50000 + 2.59808i 0.0505650 + 0.0875811i
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) −1.50000 + 2.59808i −0.0505076 + 0.0874818i
\(883\) 29.0000 0.975928 0.487964 0.872864i \(-0.337740\pi\)
0.487964 + 0.872864i \(0.337740\pi\)
\(884\) 6.00000 + 10.3923i 0.201802 + 0.349531i
\(885\) −13.5000 7.79423i −0.453798 0.262000i
\(886\) 7.50000 12.9904i 0.251967 0.436420i
\(887\) 15.0000 25.9808i 0.503651 0.872349i −0.496340 0.868128i \(-0.665323\pi\)
0.999991 0.00422062i \(-0.00134347\pi\)
\(888\) 12.0000 6.92820i 0.402694 0.232495i
\(889\) 5.00000 + 8.66025i 0.167695 + 0.290456i
\(890\) 6.00000 0.201120
\(891\) −13.5000 + 23.3827i −0.452267 + 0.783349i
\(892\) −10.0000 −0.334825
\(893\) 42.0000 + 72.7461i 1.40548 + 2.43436i
\(894\) 18.0000 10.3923i 0.602010 0.347571i
\(895\) 0 0
\(896\) 0.500000 0.866025i 0.0167038 0.0289319i
\(897\) 36.0000 + 20.7846i 1.20201 + 0.693978i
\(898\) −19.5000 33.7750i −0.650723 1.12709i
\(899\) 60.0000 2.00111
\(900\) 1.50000 2.59808i 0.0500000 0.0866025i
\(901\) 18.0000 0.599667
\(902\) 13.5000 + 23.3827i 0.449501 + 0.778558i
\(903\) 1.73205i 0.0576390i
\(904\) −3.00000 + 5.19615i −0.0997785 + 0.172821i
\(905\) 10.0000 17.3205i 0.332411 0.575753i
\(906\) 24.2487i 0.805609i
\(907\) 3.50000 + 6.06218i 0.116216 + 0.201291i 0.918265 0.395966i \(-0.129590\pi\)
−0.802049 + 0.597258i \(0.796257\pi\)
\(908\) −3.00000 −0.0995585
\(909\) −36.0000 −1.19404
\(910\) −4.00000 −0.132599
\(911\) −21.0000 36.3731i −0.695761 1.20509i −0.969923 0.243410i \(-0.921734\pi\)
0.274162 0.961683i \(-0.411599\pi\)
\(912\) −10.5000 6.06218i −0.347690 0.200739i
\(913\) 18.0000 31.1769i 0.595713 1.03181i
\(914\) 5.50000 9.52628i 0.181924 0.315101i
\(915\) 21.0000 12.1244i 0.694239 0.400819i
\(916\) −10.0000 17.3205i −0.330409 0.572286i
\(917\) 12.0000 0.396275
\(918\) −13.5000 + 7.79423i −0.445566 + 0.257248i
\(919\) −46.0000 −1.51740 −0.758700 0.651440i \(-0.774165\pi\)
−0.758700 + 0.651440i \(0.774165\pi\)
\(920\) 3.00000 + 5.19615i 0.0989071 + 0.171312i
\(921\) −25.5000 + 14.7224i −0.840254 + 0.485121i
\(922\) −12.0000 + 20.7846i −0.395199 + 0.684505i
\(923\) 12.0000 20.7846i 0.394985 0.684134i
\(924\) 4.50000 + 2.59808i 0.148039 + 0.0854704i
\(925\) −4.00000 6.92820i −0.131519 0.227798i
\(926\) 4.00000 0.131448
\(927\) −6.00000 10.3923i −0.197066 0.341328i
\(928\) 6.00000 0.196960
\(929\) 9.00000 + 15.5885i 0.295280 + 0.511441i 0.975050 0.221985i \(-0.0712536\pi\)
−0.679770 + 0.733426i \(0.737920\pi\)
\(930\) 17.3205i 0.567962i
\(931\) 3.50000 6.06218i 0.114708 0.198680i
\(932\) −4.50000 + 7.79423i −0.147402 + 0.255308i
\(933\) 31.1769i 1.02069i
\(934\) −13.5000 23.3827i −0.441733 0.765105i
\(935\) −9.00000 −0.294331
\(936\) 6.00000 + 10.3923i 0.196116 + 0.339683i
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) −3.50000 6.06218i −0.114279 0.197937i
\(939\) −1.50000 0.866025i −0.0489506 0.0282617i
\(940\) 6.00000 10.3923i 0.195698 0.338960i
\(941\) 12.0000 20.7846i 0.391189 0.677559i −0.601418 0.798935i \(-0.705397\pi\)
0.992607 + 0.121376i \(0.0387306\pi\)
\(942\) −6.00000 + 3.46410i −0.195491 + 0.112867i
\(943\) 27.0000 + 46.7654i 0.879241 + 1.52289i
\(944\) 9.00000 0.292925
\(945\) 5.19615i 0.169031i
\(946\) 3.00000 0.0975384
\(947\) −19.5000 33.7750i −0.633665 1.09754i −0.986796 0.161966i \(-0.948217\pi\)
0.353131 0.935574i \(-0.385117\pi\)
\(948\) −3.00000 + 1.73205i −0.0974355 + 0.0562544i
\(949\) −14.0000 + 24.2487i −0.454459 + 0.787146i
\(950\) −3.50000 + 6.06218i −0.113555 + 0.196683i
\(951\) 36.0000 + 20.7846i 1.16738 + 0.673987i
\(952\) 1.50000 + 2.59808i 0.0486153 + 0.0842041i
\(953\) 39.0000 1.26333 0.631667 0.775240i \(-0.282371\pi\)
0.631667 + 0.775240i \(0.282371\pi\)
\(954\) 18.0000 0.582772
\(955\) 12.0000 0.388311
\(956\) −3.00000 5.19615i −0.0970269 0.168056i
\(957\) 31.1769i 1.00781i
\(958\) 15.0000 25.9808i 0.484628 0.839400i
\(959\) 10.5000 18.1865i 0.339063 0.587274i
\(960\) 1.73205i 0.0559017i
\(961\) −34.5000 59.7558i −1.11290 1.92760i
\(962\) 32.0000 1.03172
\(963\) 4.50000 7.79423i 0.145010 0.251166i
\(964\) 5.00000 0.161039
\(965\) −0.500000 0.866025i −0.0160956 0.0278783i
\(966\) 9.00000 + 5.19615i 0.289570 + 0.167183i
\(967\) 11.0000 19.0526i 0.353736 0.612689i −0.633165 0.774017i \(-0.718244\pi\)
0.986901 + 0.161328i \(0.0515777\pi\)
\(968\) −1.00000 + 1.73205i −0.0321412 + 0.0556702i
\(969\) 31.5000 18.1865i 1.01193 0.584236i
\(970\) −5.50000 9.52628i −0.176594 0.305870i
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) −13.5000 + 7.79423i −0.433013 + 0.250000i
\(973\) 11.0000 0.352644
\(974\) 1.00000 + 1.73205i 0.0320421 + 0.0554985i
\(975\) 6.00000 3.46410i 0.192154 0.110940i
\(976\) −7.00000 + 12.1244i −0.224065 + 0.388091i
\(977\) 10.5000 18.1865i 0.335925 0.581839i −0.647737 0.761864i \(-0.724285\pi\)
0.983662 + 0.180025i \(0.0576179\pi\)
\(978\) −12.0000 6.92820i −0.383718 0.221540i
\(979\) −9.00000 15.5885i −0.287641 0.498209i
\(980\) −1.00000 −0.0319438
\(981\) −24.0000 + 41.5692i −0.766261 + 1.32720i
\(982\) 9.00000 0.287202
\(983\) 18.0000 + 31.1769i 0.574111 + 0.994389i 0.996138 + 0.0878058i \(0.0279855\pi\)
−0.422027 + 0.906583i \(0.638681\pi\)
\(984\) 15.5885i 0.496942i
\(985\) 6.00000 10.3923i 0.191176 0.331126i
\(986\) −9.00000 + 15.5885i −0.286618 + 0.496438i
\(987\) 20.7846i 0.661581i
\(988\) −14.0000 24.2487i −0.445399 0.771454i
\(989\) 6.00000 0.190789
\(990\) −9.00000 −0.286039
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) −5.00000 8.66025i −0.158750 0.274963i
\(993\) −42.0000 24.2487i −1.33283 0.769510i
\(994\) 3.00000 5.19615i 0.0951542 0.164812i
\(995\) 10.0000 17.3205i 0.317021 0.549097i
\(996\) 18.0000 10.3923i 0.570352 0.329293i
\(997\) 5.00000 + 8.66025i 0.158352 + 0.274273i 0.934274 0.356555i \(-0.116049\pi\)
−0.775923 + 0.630828i \(0.782715\pi\)
\(998\) −17.0000 −0.538126
\(999\) 41.5692i 1.31519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.j.b.211.1 2
3.2 odd 2 1890.2.j.a.631.1 2
9.2 odd 6 1890.2.j.a.1261.1 2
9.4 even 3 5670.2.a.e.1.1 1
9.5 odd 6 5670.2.a.q.1.1 1
9.7 even 3 inner 630.2.j.b.421.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.j.b.211.1 2 1.1 even 1 trivial
630.2.j.b.421.1 yes 2 9.7 even 3 inner
1890.2.j.a.631.1 2 3.2 odd 2
1890.2.j.a.1261.1 2 9.2 odd 6
5670.2.a.e.1.1 1 9.4 even 3
5670.2.a.q.1.1 1 9.5 odd 6