Properties

Label 630.2.j.b
Level 630
Weight 2
Character orbit 630.j
Analytic conductor 5.031
Analytic rank 0
Dimension 2
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 630.j (of order \(3\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{6} ) q^{2} + ( -1 - \zeta_{6} ) q^{3} -\zeta_{6} q^{4} + \zeta_{6} q^{5} + ( -2 + \zeta_{6} ) q^{6} + ( -1 + \zeta_{6} ) q^{7} - q^{8} + 3 \zeta_{6} q^{9} +O(q^{10})\) \( q + ( 1 - \zeta_{6} ) q^{2} + ( -1 - \zeta_{6} ) q^{3} -\zeta_{6} q^{4} + \zeta_{6} q^{5} + ( -2 + \zeta_{6} ) q^{6} + ( -1 + \zeta_{6} ) q^{7} - q^{8} + 3 \zeta_{6} q^{9} + q^{10} + ( -3 + 3 \zeta_{6} ) q^{11} + ( -1 + 2 \zeta_{6} ) q^{12} + 4 \zeta_{6} q^{13} + \zeta_{6} q^{14} + ( 1 - 2 \zeta_{6} ) q^{15} + ( -1 + \zeta_{6} ) q^{16} + 3 q^{17} + 3 q^{18} -7 q^{19} + ( 1 - \zeta_{6} ) q^{20} + ( 2 - \zeta_{6} ) q^{21} + 3 \zeta_{6} q^{22} + 6 \zeta_{6} q^{23} + ( 1 + \zeta_{6} ) q^{24} + ( -1 + \zeta_{6} ) q^{25} + 4 q^{26} + ( 3 - 6 \zeta_{6} ) q^{27} + q^{28} + ( 6 - 6 \zeta_{6} ) q^{29} + ( -1 - \zeta_{6} ) q^{30} + 10 \zeta_{6} q^{31} + \zeta_{6} q^{32} + ( 6 - 3 \zeta_{6} ) q^{33} + ( 3 - 3 \zeta_{6} ) q^{34} - q^{35} + ( 3 - 3 \zeta_{6} ) q^{36} + 8 q^{37} + ( -7 + 7 \zeta_{6} ) q^{38} + ( 4 - 8 \zeta_{6} ) q^{39} -\zeta_{6} q^{40} -9 \zeta_{6} q^{41} + ( 1 - 2 \zeta_{6} ) q^{42} + ( 1 - \zeta_{6} ) q^{43} + 3 q^{44} + ( -3 + 3 \zeta_{6} ) q^{45} + 6 q^{46} + ( -12 + 12 \zeta_{6} ) q^{47} + ( 2 - \zeta_{6} ) q^{48} -\zeta_{6} q^{49} + \zeta_{6} q^{50} + ( -3 - 3 \zeta_{6} ) q^{51} + ( 4 - 4 \zeta_{6} ) q^{52} + 6 q^{53} + ( -3 - 3 \zeta_{6} ) q^{54} -3 q^{55} + ( 1 - \zeta_{6} ) q^{56} + ( 7 + 7 \zeta_{6} ) q^{57} -6 \zeta_{6} q^{58} -9 \zeta_{6} q^{59} + ( -2 + \zeta_{6} ) q^{60} + ( -14 + 14 \zeta_{6} ) q^{61} + 10 q^{62} -3 q^{63} + q^{64} + ( -4 + 4 \zeta_{6} ) q^{65} + ( 3 - 6 \zeta_{6} ) q^{66} + 7 \zeta_{6} q^{67} -3 \zeta_{6} q^{68} + ( 6 - 12 \zeta_{6} ) q^{69} + ( -1 + \zeta_{6} ) q^{70} + 6 q^{71} -3 \zeta_{6} q^{72} -7 q^{73} + ( 8 - 8 \zeta_{6} ) q^{74} + ( 2 - \zeta_{6} ) q^{75} + 7 \zeta_{6} q^{76} -3 \zeta_{6} q^{77} + ( -4 - 4 \zeta_{6} ) q^{78} + ( -2 + 2 \zeta_{6} ) q^{79} - q^{80} + ( -9 + 9 \zeta_{6} ) q^{81} -9 q^{82} + ( 12 - 12 \zeta_{6} ) q^{83} + ( -1 - \zeta_{6} ) q^{84} + 3 \zeta_{6} q^{85} -\zeta_{6} q^{86} + ( -12 + 6 \zeta_{6} ) q^{87} + ( 3 - 3 \zeta_{6} ) q^{88} + 6 q^{89} + 3 \zeta_{6} q^{90} -4 q^{91} + ( 6 - 6 \zeta_{6} ) q^{92} + ( 10 - 20 \zeta_{6} ) q^{93} + 12 \zeta_{6} q^{94} -7 \zeta_{6} q^{95} + ( 1 - 2 \zeta_{6} ) q^{96} + ( -11 + 11 \zeta_{6} ) q^{97} - q^{98} -9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{2} - 3q^{3} - q^{4} + q^{5} - 3q^{6} - q^{7} - 2q^{8} + 3q^{9} + O(q^{10}) \) \( 2q + q^{2} - 3q^{3} - q^{4} + q^{5} - 3q^{6} - q^{7} - 2q^{8} + 3q^{9} + 2q^{10} - 3q^{11} + 4q^{13} + q^{14} - q^{16} + 6q^{17} + 6q^{18} - 14q^{19} + q^{20} + 3q^{21} + 3q^{22} + 6q^{23} + 3q^{24} - q^{25} + 8q^{26} + 2q^{28} + 6q^{29} - 3q^{30} + 10q^{31} + q^{32} + 9q^{33} + 3q^{34} - 2q^{35} + 3q^{36} + 16q^{37} - 7q^{38} - q^{40} - 9q^{41} + q^{43} + 6q^{44} - 3q^{45} + 12q^{46} - 12q^{47} + 3q^{48} - q^{49} + q^{50} - 9q^{51} + 4q^{52} + 12q^{53} - 9q^{54} - 6q^{55} + q^{56} + 21q^{57} - 6q^{58} - 9q^{59} - 3q^{60} - 14q^{61} + 20q^{62} - 6q^{63} + 2q^{64} - 4q^{65} + 7q^{67} - 3q^{68} - q^{70} + 12q^{71} - 3q^{72} - 14q^{73} + 8q^{74} + 3q^{75} + 7q^{76} - 3q^{77} - 12q^{78} - 2q^{79} - 2q^{80} - 9q^{81} - 18q^{82} + 12q^{83} - 3q^{84} + 3q^{85} - q^{86} - 18q^{87} + 3q^{88} + 12q^{89} + 3q^{90} - 8q^{91} + 6q^{92} + 12q^{94} - 7q^{95} - 11q^{97} - 2q^{98} - 18q^{99} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
211.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.500000 0.866025i −1.50000 0.866025i −0.500000 0.866025i −1.00000 1.50000 2.59808i 1.00000
421.1 0.500000 0.866025i −1.50000 0.866025i −0.500000 0.866025i 0.500000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i −1.00000 1.50000 + 2.59808i 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
9.c Even 1 yes

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(630, [\chi])\):

\( T_{11}^{2} + 3 T_{11} + 9 \)
\( T_{13}^{2} - 4 T_{13} + 16 \)