Properties

Label 630.2.i.f.151.1
Level 630
Weight 2
Character 630.151
Analytic conductor 5.031
Analytic rank 0
Dimension 12
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 630.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: 12.0.91830304992969.1
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.1
Root \(-0.989378 - 1.01051i\)
Character \(\chi\) = 630.151
Dual form 630.2.i.f.121.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-1.56899 + 0.733675i) q^{3} +1.00000 q^{4} +(-0.500000 + 0.866025i) q^{5} +(1.56899 - 0.733675i) q^{6} +(-2.56238 + 0.658939i) q^{7} -1.00000 q^{8} +(1.92344 - 2.30225i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(-1.56899 + 0.733675i) q^{3} +1.00000 q^{4} +(-0.500000 + 0.866025i) q^{5} +(1.56899 - 0.733675i) q^{6} +(-2.56238 + 0.658939i) q^{7} -1.00000 q^{8} +(1.92344 - 2.30225i) q^{9} +(0.500000 - 0.866025i) q^{10} +(-2.23607 - 3.87298i) q^{11} +(-1.56899 + 0.733675i) q^{12} +(0.827555 + 1.43337i) q^{13} +(2.56238 - 0.658939i) q^{14} +(0.149112 - 1.72562i) q^{15} +1.00000 q^{16} +(1.35309 - 2.34362i) q^{17} +(-1.92344 + 2.30225i) q^{18} +(0.827555 + 1.43337i) q^{19} +(-0.500000 + 0.866025i) q^{20} +(3.53690 - 2.91382i) q^{21} +(2.23607 + 3.87298i) q^{22} +(-0.474466 + 0.821799i) q^{23} +(1.56899 - 0.733675i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(-0.827555 - 1.43337i) q^{26} +(-1.32875 + 5.02339i) q^{27} +(-2.56238 + 0.658939i) q^{28} +(2.07678 - 3.59710i) q^{29} +(-0.149112 + 1.72562i) q^{30} +3.00713 q^{31} -1.00000 q^{32} +(6.34987 + 4.43611i) q^{33} +(-1.35309 + 2.34362i) q^{34} +(0.710533 - 2.54856i) q^{35} +(1.92344 - 2.30225i) q^{36} +(4.87541 + 8.44445i) q^{37} +(-0.827555 - 1.43337i) q^{38} +(-2.35005 - 1.64178i) q^{39} +(0.500000 - 0.866025i) q^{40} +(0.970293 + 1.68060i) q^{41} +(-3.53690 + 2.91382i) q^{42} +(2.50757 - 4.34323i) q^{43} +(-2.23607 - 3.87298i) q^{44} +(1.03209 + 2.81688i) q^{45} +(0.474466 - 0.821799i) q^{46} +1.01513 q^{47} +(-1.56899 + 0.733675i) q^{48} +(6.13160 - 3.37690i) q^{49} +(0.500000 + 0.866025i) q^{50} +(-0.403524 + 4.66984i) q^{51} +(0.827555 + 1.43337i) q^{52} +(6.65730 - 11.5308i) q^{53} +(1.32875 - 5.02339i) q^{54} +4.47213 q^{55} +(2.56238 - 0.658939i) q^{56} +(-2.35005 - 1.64178i) q^{57} +(-2.07678 + 3.59710i) q^{58} +8.84247 q^{59} +(0.149112 - 1.72562i) q^{60} +12.0183 q^{61} -3.00713 q^{62} +(-3.41155 + 7.16668i) q^{63} +1.00000 q^{64} -1.65511 q^{65} +(-6.34987 - 4.43611i) q^{66} +0.773956 q^{67} +(1.35309 - 2.34362i) q^{68} +(0.141497 - 1.63750i) q^{69} +(-0.710533 + 2.54856i) q^{70} -13.8907 q^{71} +(-1.92344 + 2.30225i) q^{72} +(0.166120 - 0.287728i) q^{73} +(-4.87541 - 8.44445i) q^{74} +(1.41988 + 0.991945i) q^{75} +(0.827555 + 1.43337i) q^{76} +(8.28172 + 8.45063i) q^{77} +(2.35005 + 1.64178i) q^{78} +9.92508 q^{79} +(-0.500000 + 0.866025i) q^{80} +(-1.60075 - 8.85650i) q^{81} +(-0.970293 - 1.68060i) q^{82} +(1.60804 - 2.78521i) q^{83} +(3.53690 - 2.91382i) q^{84} +(1.35309 + 2.34362i) q^{85} +(-2.50757 + 4.34323i) q^{86} +(-0.619347 + 7.16748i) q^{87} +(2.23607 + 3.87298i) q^{88} +(-2.86642 - 4.96478i) q^{89} +(-1.03209 - 2.81688i) q^{90} +(-3.06501 - 3.12753i) q^{91} +(-0.474466 + 0.821799i) q^{92} +(-4.71815 + 2.20626i) q^{93} -1.01513 q^{94} -1.65511 q^{95} +(1.56899 - 0.733675i) q^{96} +(-2.85868 + 4.95139i) q^{97} +(-6.13160 + 3.37690i) q^{98} +(-13.2175 - 2.30146i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 12q^{2} + 2q^{3} + 12q^{4} - 6q^{5} - 2q^{6} + 4q^{7} - 12q^{8} - 4q^{9} + O(q^{10}) \) \( 12q - 12q^{2} + 2q^{3} + 12q^{4} - 6q^{5} - 2q^{6} + 4q^{7} - 12q^{8} - 4q^{9} + 6q^{10} - 7q^{11} + 2q^{12} - 2q^{13} - 4q^{14} - q^{15} + 12q^{16} + q^{17} + 4q^{18} - 2q^{19} - 6q^{20} + 29q^{21} + 7q^{22} - 9q^{23} - 2q^{24} - 6q^{25} + 2q^{26} + 11q^{27} + 4q^{28} + 3q^{29} + q^{30} + 18q^{31} - 12q^{32} + 27q^{33} - q^{34} - 8q^{35} - 4q^{36} + 6q^{37} + 2q^{38} + 10q^{39} + 6q^{40} - 11q^{41} - 29q^{42} + 23q^{43} - 7q^{44} + 5q^{45} + 9q^{46} - 2q^{47} + 2q^{48} + 24q^{49} + 6q^{50} - 15q^{51} - 2q^{52} - 4q^{53} - 11q^{54} + 14q^{55} - 4q^{56} + 10q^{57} - 3q^{58} - 22q^{59} - q^{60} + 50q^{61} - 18q^{62} - q^{63} + 12q^{64} + 4q^{65} - 27q^{66} + 4q^{67} + q^{68} - 12q^{69} + 8q^{70} + 22q^{71} + 4q^{72} + 24q^{73} - 6q^{74} - q^{75} - 2q^{76} - 11q^{77} - 10q^{78} + 2q^{79} - 6q^{80} + 20q^{81} + 11q^{82} + 4q^{83} + 29q^{84} + q^{85} - 23q^{86} + 7q^{88} + 2q^{89} - 5q^{90} - 8q^{91} - 9q^{92} + 40q^{93} + 2q^{94} + 4q^{95} - 2q^{96} - 36q^{97} - 24q^{98} + 15q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.56899 + 0.733675i −0.905855 + 0.423588i
\(4\) 1.00000 0.500000
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 1.56899 0.733675i 0.640536 0.299522i
\(7\) −2.56238 + 0.658939i −0.968489 + 0.249055i
\(8\) −1.00000 −0.353553
\(9\) 1.92344 2.30225i 0.641147 0.767418i
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) −2.23607 3.87298i −0.674200 1.16775i −0.976702 0.214599i \(-0.931155\pi\)
0.302502 0.953149i \(-0.402178\pi\)
\(12\) −1.56899 + 0.733675i −0.452928 + 0.211794i
\(13\) 0.827555 + 1.43337i 0.229522 + 0.397545i 0.957667 0.287879i \(-0.0929502\pi\)
−0.728144 + 0.685424i \(0.759617\pi\)
\(14\) 2.56238 0.658939i 0.684825 0.176109i
\(15\) 0.149112 1.72562i 0.0385006 0.445553i
\(16\) 1.00000 0.250000
\(17\) 1.35309 2.34362i 0.328172 0.568411i −0.653977 0.756514i \(-0.726901\pi\)
0.982149 + 0.188103i \(0.0602340\pi\)
\(18\) −1.92344 + 2.30225i −0.453359 + 0.542647i
\(19\) 0.827555 + 1.43337i 0.189854 + 0.328837i 0.945201 0.326488i \(-0.105865\pi\)
−0.755347 + 0.655325i \(0.772532\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) 3.53690 2.91382i 0.771814 0.635848i
\(22\) 2.23607 + 3.87298i 0.476731 + 0.825723i
\(23\) −0.474466 + 0.821799i −0.0989330 + 0.171357i −0.911243 0.411869i \(-0.864876\pi\)
0.812310 + 0.583226i \(0.198210\pi\)
\(24\) 1.56899 0.733675i 0.320268 0.149761i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −0.827555 1.43337i −0.162297 0.281106i
\(27\) −1.32875 + 5.02339i −0.255717 + 0.966752i
\(28\) −2.56238 + 0.658939i −0.484245 + 0.124528i
\(29\) 2.07678 3.59710i 0.385649 0.667964i −0.606210 0.795305i \(-0.707311\pi\)
0.991859 + 0.127341i \(0.0406442\pi\)
\(30\) −0.149112 + 1.72562i −0.0272240 + 0.315054i
\(31\) 3.00713 0.540097 0.270048 0.962847i \(-0.412960\pi\)
0.270048 + 0.962847i \(0.412960\pi\)
\(32\) −1.00000 −0.176777
\(33\) 6.34987 + 4.43611i 1.10537 + 0.772228i
\(34\) −1.35309 + 2.34362i −0.232053 + 0.401927i
\(35\) 0.710533 2.54856i 0.120102 0.430785i
\(36\) 1.92344 2.30225i 0.320573 0.383709i
\(37\) 4.87541 + 8.44445i 0.801512 + 1.38826i 0.918621 + 0.395140i \(0.129304\pi\)
−0.117109 + 0.993119i \(0.537363\pi\)
\(38\) −0.827555 1.43337i −0.134247 0.232523i
\(39\) −2.35005 1.64178i −0.376309 0.262895i
\(40\) 0.500000 0.866025i 0.0790569 0.136931i
\(41\) 0.970293 + 1.68060i 0.151534 + 0.262465i 0.931792 0.362993i \(-0.118245\pi\)
−0.780257 + 0.625459i \(0.784912\pi\)
\(42\) −3.53690 + 2.91382i −0.545755 + 0.449613i
\(43\) 2.50757 4.34323i 0.382400 0.662337i −0.609005 0.793167i \(-0.708431\pi\)
0.991405 + 0.130830i \(0.0417642\pi\)
\(44\) −2.23607 3.87298i −0.337100 0.583874i
\(45\) 1.03209 + 2.81688i 0.153855 + 0.419915i
\(46\) 0.474466 0.821799i 0.0699562 0.121168i
\(47\) 1.01513 0.148072 0.0740361 0.997256i \(-0.476412\pi\)
0.0740361 + 0.997256i \(0.476412\pi\)
\(48\) −1.56899 + 0.733675i −0.226464 + 0.105897i
\(49\) 6.13160 3.37690i 0.875943 0.482415i
\(50\) 0.500000 + 0.866025i 0.0707107 + 0.122474i
\(51\) −0.403524 + 4.66984i −0.0565046 + 0.653908i
\(52\) 0.827555 + 1.43337i 0.114761 + 0.198772i
\(53\) 6.65730 11.5308i 0.914451 1.58387i 0.106747 0.994286i \(-0.465957\pi\)
0.807704 0.589589i \(-0.200710\pi\)
\(54\) 1.32875 5.02339i 0.180820 0.683597i
\(55\) 4.47213 0.603023
\(56\) 2.56238 0.658939i 0.342413 0.0880544i
\(57\) −2.35005 1.64178i −0.311272 0.217459i
\(58\) −2.07678 + 3.59710i −0.272695 + 0.472322i
\(59\) 8.84247 1.15119 0.575596 0.817735i \(-0.304770\pi\)
0.575596 + 0.817735i \(0.304770\pi\)
\(60\) 0.149112 1.72562i 0.0192503 0.222777i
\(61\) 12.0183 1.53879 0.769394 0.638775i \(-0.220559\pi\)
0.769394 + 0.638775i \(0.220559\pi\)
\(62\) −3.00713 −0.381906
\(63\) −3.41155 + 7.16668i −0.429814 + 0.902917i
\(64\) 1.00000 0.125000
\(65\) −1.65511 −0.205291
\(66\) −6.34987 4.43611i −0.781615 0.546048i
\(67\) 0.773956 0.0945538 0.0472769 0.998882i \(-0.484946\pi\)
0.0472769 + 0.998882i \(0.484946\pi\)
\(68\) 1.35309 2.34362i 0.164086 0.284206i
\(69\) 0.141497 1.63750i 0.0170343 0.197131i
\(70\) −0.710533 + 2.54856i −0.0849250 + 0.304611i
\(71\) −13.8907 −1.64852 −0.824262 0.566209i \(-0.808410\pi\)
−0.824262 + 0.566209i \(0.808410\pi\)
\(72\) −1.92344 + 2.30225i −0.226680 + 0.271323i
\(73\) 0.166120 0.287728i 0.0194429 0.0336760i −0.856140 0.516743i \(-0.827144\pi\)
0.875583 + 0.483067i \(0.160477\pi\)
\(74\) −4.87541 8.44445i −0.566754 0.981648i
\(75\) 1.41988 + 0.991945i 0.163953 + 0.114540i
\(76\) 0.827555 + 1.43337i 0.0949271 + 0.164419i
\(77\) 8.28172 + 8.45063i 0.943789 + 0.963038i
\(78\) 2.35005 + 1.64178i 0.266091 + 0.185895i
\(79\) 9.92508 1.11666 0.558329 0.829619i \(-0.311443\pi\)
0.558329 + 0.829619i \(0.311443\pi\)
\(80\) −0.500000 + 0.866025i −0.0559017 + 0.0968246i
\(81\) −1.60075 8.85650i −0.177861 0.984056i
\(82\) −0.970293 1.68060i −0.107151 0.185591i
\(83\) 1.60804 2.78521i 0.176506 0.305717i −0.764176 0.645008i \(-0.776854\pi\)
0.940681 + 0.339292i \(0.110187\pi\)
\(84\) 3.53690 2.91382i 0.385907 0.317924i
\(85\) 1.35309 + 2.34362i 0.146763 + 0.254201i
\(86\) −2.50757 + 4.34323i −0.270398 + 0.468343i
\(87\) −0.619347 + 7.16748i −0.0664010 + 0.768435i
\(88\) 2.23607 + 3.87298i 0.238366 + 0.412861i
\(89\) −2.86642 4.96478i −0.303840 0.526266i 0.673163 0.739494i \(-0.264935\pi\)
−0.977002 + 0.213229i \(0.931602\pi\)
\(90\) −1.03209 2.81688i −0.108792 0.296925i
\(91\) −3.06501 3.12753i −0.321301 0.327854i
\(92\) −0.474466 + 0.821799i −0.0494665 + 0.0856785i
\(93\) −4.71815 + 2.20626i −0.489249 + 0.228778i
\(94\) −1.01513 −0.104703
\(95\) −1.65511 −0.169811
\(96\) 1.56899 0.733675i 0.160134 0.0748804i
\(97\) −2.85868 + 4.95139i −0.290255 + 0.502737i −0.973870 0.227106i \(-0.927074\pi\)
0.683615 + 0.729843i \(0.260407\pi\)
\(98\) −6.13160 + 3.37690i −0.619385 + 0.341119i
\(99\) −13.2175 2.30146i −1.32841 0.231305i
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 4.63374 + 8.02588i 0.461075 + 0.798605i 0.999015 0.0443783i \(-0.0141307\pi\)
−0.537940 + 0.842983i \(0.680797\pi\)
\(102\) 0.403524 4.66984i 0.0399548 0.462383i
\(103\) 9.52418 16.4964i 0.938446 1.62544i 0.170075 0.985431i \(-0.445599\pi\)
0.768371 0.640005i \(-0.221068\pi\)
\(104\) −0.827555 1.43337i −0.0811484 0.140553i
\(105\) 0.754996 + 4.51995i 0.0736801 + 0.441102i
\(106\) −6.65730 + 11.5308i −0.646614 + 1.11997i
\(107\) 1.37308 + 2.37825i 0.132741 + 0.229914i 0.924732 0.380619i \(-0.124289\pi\)
−0.791991 + 0.610532i \(0.790956\pi\)
\(108\) −1.32875 + 5.02339i −0.127859 + 0.483376i
\(109\) −4.00622 + 6.93898i −0.383727 + 0.664634i −0.991592 0.129406i \(-0.958693\pi\)
0.607865 + 0.794040i \(0.292026\pi\)
\(110\) −4.47213 −0.426401
\(111\) −13.8449 9.67227i −1.31410 0.918051i
\(112\) −2.56238 + 0.658939i −0.242122 + 0.0622638i
\(113\) −2.47971 4.29498i −0.233271 0.404038i 0.725498 0.688225i \(-0.241610\pi\)
−0.958769 + 0.284187i \(0.908276\pi\)
\(114\) 2.35005 + 1.64178i 0.220102 + 0.153767i
\(115\) −0.474466 0.821799i −0.0442442 0.0766332i
\(116\) 2.07678 3.59710i 0.192825 0.333982i
\(117\) 4.89173 + 0.851755i 0.452241 + 0.0787448i
\(118\) −8.84247 −0.814015
\(119\) −1.92283 + 6.89685i −0.176266 + 0.632233i
\(120\) −0.149112 + 1.72562i −0.0136120 + 0.157527i
\(121\) −4.49999 + 7.79422i −0.409090 + 0.708565i
\(122\) −12.0183 −1.08809
\(123\) −2.75539 1.92495i −0.248445 0.173567i
\(124\) 3.00713 0.270048
\(125\) 1.00000 0.0894427
\(126\) 3.41155 7.16668i 0.303925 0.638459i
\(127\) −19.3979 −1.72129 −0.860644 0.509208i \(-0.829938\pi\)
−0.860644 + 0.509208i \(0.829938\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −0.747816 + 8.65421i −0.0658416 + 0.761961i
\(130\) 1.65511 0.145163
\(131\) 1.77033 3.06630i 0.154674 0.267904i −0.778266 0.627935i \(-0.783900\pi\)
0.932940 + 0.360031i \(0.117234\pi\)
\(132\) 6.34987 + 4.43611i 0.552685 + 0.386114i
\(133\) −3.06501 3.12753i −0.265770 0.271191i
\(134\) −0.773956 −0.0668597
\(135\) −3.68601 3.66242i −0.317241 0.315211i
\(136\) −1.35309 + 2.34362i −0.116026 + 0.200964i
\(137\) −8.90949 15.4317i −0.761189 1.31842i −0.942238 0.334945i \(-0.891282\pi\)
0.181048 0.983474i \(-0.442051\pi\)
\(138\) −0.141497 + 1.63750i −0.0120450 + 0.139393i
\(139\) −6.41271 11.1071i −0.543919 0.942095i −0.998674 0.0514789i \(-0.983607\pi\)
0.454755 0.890617i \(-0.349727\pi\)
\(140\) 0.710533 2.54856i 0.0600510 0.215392i
\(141\) −1.59273 + 0.744777i −0.134132 + 0.0627215i
\(142\) 13.8907 1.16568
\(143\) 3.70094 6.41021i 0.309488 0.536049i
\(144\) 1.92344 2.30225i 0.160287 0.191855i
\(145\) 2.07678 + 3.59710i 0.172468 + 0.298723i
\(146\) −0.166120 + 0.287728i −0.0137482 + 0.0238125i
\(147\) −7.14285 + 9.79692i −0.589132 + 0.808037i
\(148\) 4.87541 + 8.44445i 0.400756 + 0.694130i
\(149\) −4.96565 + 8.60076i −0.406802 + 0.704602i −0.994529 0.104457i \(-0.966690\pi\)
0.587727 + 0.809059i \(0.300023\pi\)
\(150\) −1.41988 0.991945i −0.115932 0.0809920i
\(151\) −4.03641 6.99127i −0.328479 0.568942i 0.653732 0.756727i \(-0.273203\pi\)
−0.982210 + 0.187785i \(0.939869\pi\)
\(152\) −0.827555 1.43337i −0.0671236 0.116261i
\(153\) −2.79302 7.62297i −0.225802 0.616280i
\(154\) −8.28172 8.45063i −0.667360 0.680971i
\(155\) −1.50357 + 2.60425i −0.120769 + 0.209179i
\(156\) −2.35005 1.64178i −0.188155 0.131447i
\(157\) −19.8019 −1.58036 −0.790181 0.612874i \(-0.790013\pi\)
−0.790181 + 0.612874i \(0.790013\pi\)
\(158\) −9.92508 −0.789597
\(159\) −1.98537 + 22.9759i −0.157450 + 1.82211i
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) 0.674248 2.41841i 0.0531382 0.190597i
\(162\) 1.60075 + 8.85650i 0.125767 + 0.695832i
\(163\) −8.46813 14.6672i −0.663275 1.14883i −0.979750 0.200226i \(-0.935832\pi\)
0.316474 0.948601i \(-0.397501\pi\)
\(164\) 0.970293 + 1.68060i 0.0757671 + 0.131233i
\(165\) −7.01672 + 3.28109i −0.546251 + 0.255433i
\(166\) −1.60804 + 2.78521i −0.124808 + 0.216174i
\(167\) 9.80368 + 16.9805i 0.758631 + 1.31399i 0.943549 + 0.331234i \(0.107465\pi\)
−0.184917 + 0.982754i \(0.559202\pi\)
\(168\) −3.53690 + 2.91382i −0.272878 + 0.224806i
\(169\) 5.13031 8.88595i 0.394639 0.683535i
\(170\) −1.35309 2.34362i −0.103777 0.179747i
\(171\) 4.89173 + 0.851755i 0.374080 + 0.0651353i
\(172\) 2.50757 4.34323i 0.191200 0.331168i
\(173\) 7.46596 0.567626 0.283813 0.958880i \(-0.408400\pi\)
0.283813 + 0.958880i \(0.408400\pi\)
\(174\) 0.619347 7.16748i 0.0469526 0.543365i
\(175\) 1.85185 + 1.88962i 0.139987 + 0.142842i
\(176\) −2.23607 3.87298i −0.168550 0.291937i
\(177\) −13.8737 + 6.48750i −1.04281 + 0.487630i
\(178\) 2.86642 + 4.96478i 0.214847 + 0.372126i
\(179\) −2.74363 + 4.75211i −0.205069 + 0.355190i −0.950155 0.311779i \(-0.899075\pi\)
0.745086 + 0.666969i \(0.232408\pi\)
\(180\) 1.03209 + 2.81688i 0.0769275 + 0.209958i
\(181\) 13.6477 1.01443 0.507213 0.861821i \(-0.330676\pi\)
0.507213 + 0.861821i \(0.330676\pi\)
\(182\) 3.06501 + 3.12753i 0.227194 + 0.231828i
\(183\) −18.8566 + 8.81754i −1.39392 + 0.651811i
\(184\) 0.474466 0.821799i 0.0349781 0.0605838i
\(185\) −9.75081 −0.716894
\(186\) 4.71815 2.20626i 0.345952 0.161771i
\(187\) −12.1024 −0.885015
\(188\) 1.01513 0.0740361
\(189\) 0.0946515 13.7474i 0.00688488 0.999976i
\(190\) 1.65511 0.120074
\(191\) 24.7176 1.78850 0.894251 0.447565i \(-0.147709\pi\)
0.894251 + 0.447565i \(0.147709\pi\)
\(192\) −1.56899 + 0.733675i −0.113232 + 0.0529485i
\(193\) 15.0374 1.08242 0.541208 0.840889i \(-0.317967\pi\)
0.541208 + 0.840889i \(0.317967\pi\)
\(194\) 2.85868 4.95139i 0.205242 0.355489i
\(195\) 2.59685 1.21431i 0.185964 0.0869588i
\(196\) 6.13160 3.37690i 0.437971 0.241207i
\(197\) 21.9097 1.56100 0.780500 0.625156i \(-0.214965\pi\)
0.780500 + 0.625156i \(0.214965\pi\)
\(198\) 13.2175 + 2.30146i 0.939329 + 0.163557i
\(199\) −12.1642 + 21.0691i −0.862300 + 1.49355i 0.00740280 + 0.999973i \(0.497644\pi\)
−0.869703 + 0.493575i \(0.835690\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) −1.21433 + 0.567833i −0.0856521 + 0.0400518i
\(202\) −4.63374 8.02588i −0.326029 0.564699i
\(203\) −2.95125 + 10.5856i −0.207137 + 0.742964i
\(204\) −0.403524 + 4.66984i −0.0282523 + 0.326954i
\(205\) −1.94059 −0.135536
\(206\) −9.52418 + 16.4964i −0.663581 + 1.14936i
\(207\) 0.979384 + 2.67302i 0.0680719 + 0.185788i
\(208\) 0.827555 + 1.43337i 0.0573806 + 0.0993861i
\(209\) 3.70094 6.41021i 0.255999 0.443404i
\(210\) −0.754996 4.51995i −0.0520997 0.311906i
\(211\) 9.43146 + 16.3358i 0.649288 + 1.12460i 0.983293 + 0.182029i \(0.0582664\pi\)
−0.334005 + 0.942571i \(0.608400\pi\)
\(212\) 6.65730 11.5308i 0.457225 0.791937i
\(213\) 21.7943 10.1913i 1.49332 0.698294i
\(214\) −1.37308 2.37825i −0.0938619 0.162574i
\(215\) 2.50757 + 4.34323i 0.171015 + 0.296206i
\(216\) 1.32875 5.02339i 0.0904098 0.341798i
\(217\) −7.70542 + 1.98152i −0.523078 + 0.134514i
\(218\) 4.00622 6.93898i 0.271336 0.469967i
\(219\) −0.0495409 + 0.573319i −0.00334766 + 0.0387413i
\(220\) 4.47213 0.301511
\(221\) 4.47902 0.301292
\(222\) 13.8449 + 9.67227i 0.929211 + 0.649160i
\(223\) 9.42519 16.3249i 0.631157 1.09320i −0.356158 0.934426i \(-0.615914\pi\)
0.987315 0.158771i \(-0.0507531\pi\)
\(224\) 2.56238 0.658939i 0.171206 0.0440272i
\(225\) −2.95553 0.514622i −0.197035 0.0343081i
\(226\) 2.47971 + 4.29498i 0.164948 + 0.285698i
\(227\) 2.10153 + 3.63995i 0.139483 + 0.241592i 0.927301 0.374316i \(-0.122122\pi\)
−0.787818 + 0.615908i \(0.788789\pi\)
\(228\) −2.35005 1.64178i −0.155636 0.108729i
\(229\) 11.4403 19.8152i 0.755997 1.30943i −0.188880 0.982000i \(-0.560486\pi\)
0.944877 0.327426i \(-0.106181\pi\)
\(230\) 0.474466 + 0.821799i 0.0312854 + 0.0541878i
\(231\) −19.1939 7.18283i −1.26287 0.472596i
\(232\) −2.07678 + 3.59710i −0.136348 + 0.236161i
\(233\) −11.9917 20.7703i −0.785605 1.36071i −0.928637 0.370990i \(-0.879018\pi\)
0.143032 0.989718i \(-0.454315\pi\)
\(234\) −4.89173 0.851755i −0.319782 0.0556810i
\(235\) −0.507566 + 0.879130i −0.0331099 + 0.0573481i
\(236\) 8.84247 0.575596
\(237\) −15.5723 + 7.28178i −1.01153 + 0.473003i
\(238\) 1.92283 6.89685i 0.124639 0.447056i
\(239\) −6.66407 11.5425i −0.431063 0.746622i 0.565902 0.824472i \(-0.308528\pi\)
−0.996965 + 0.0778498i \(0.975195\pi\)
\(240\) 0.149112 1.72562i 0.00962514 0.111388i
\(241\) −0.245101 0.424527i −0.0157883 0.0273462i 0.858023 0.513611i \(-0.171692\pi\)
−0.873812 + 0.486265i \(0.838359\pi\)
\(242\) 4.49999 7.79422i 0.289271 0.501031i
\(243\) 9.00935 + 12.7213i 0.577950 + 0.816072i
\(244\) 12.0183 0.769394
\(245\) −0.141315 + 6.99857i −0.00902829 + 0.447122i
\(246\) 2.75539 + 1.92495i 0.175677 + 0.122731i
\(247\) −1.36969 + 2.37238i −0.0871516 + 0.150951i
\(248\) −3.00713 −0.190953
\(249\) −0.479557 + 5.54974i −0.0303907 + 0.351700i
\(250\) −1.00000 −0.0632456
\(251\) −21.2007 −1.33818 −0.669089 0.743182i \(-0.733315\pi\)
−0.669089 + 0.743182i \(0.733315\pi\)
\(252\) −3.41155 + 7.16668i −0.214907 + 0.451459i
\(253\) 4.24375 0.266802
\(254\) 19.3979 1.21713
\(255\) −3.84243 2.68438i −0.240623 0.168102i
\(256\) 1.00000 0.0625000
\(257\) −10.3554 + 17.9361i −0.645953 + 1.11882i 0.338128 + 0.941100i \(0.390206\pi\)
−0.984081 + 0.177723i \(0.943127\pi\)
\(258\) 0.747816 8.65421i 0.0465570 0.538788i
\(259\) −18.0570 18.4253i −1.12201 1.14489i
\(260\) −1.65511 −0.102646
\(261\) −4.28686 11.7001i −0.265350 0.724217i
\(262\) −1.77033 + 3.06630i −0.109371 + 0.189437i
\(263\) −5.79295 10.0337i −0.357208 0.618703i 0.630285 0.776364i \(-0.282938\pi\)
−0.987493 + 0.157661i \(0.949605\pi\)
\(264\) −6.34987 4.43611i −0.390808 0.273024i
\(265\) 6.65730 + 11.5308i 0.408955 + 0.708330i
\(266\) 3.06501 + 3.12753i 0.187928 + 0.191761i
\(267\) 8.13991 + 5.68666i 0.498154 + 0.348018i
\(268\) 0.773956 0.0472769
\(269\) 4.15928 7.20408i 0.253596 0.439240i −0.710918 0.703275i \(-0.751720\pi\)
0.964513 + 0.264035i \(0.0850534\pi\)
\(270\) 3.68601 + 3.66242i 0.224323 + 0.222888i
\(271\) −6.60231 11.4355i −0.401062 0.694660i 0.592792 0.805355i \(-0.298025\pi\)
−0.993854 + 0.110696i \(0.964692\pi\)
\(272\) 1.35309 2.34362i 0.0820431 0.142103i
\(273\) 7.10355 + 2.65832i 0.429927 + 0.160889i
\(274\) 8.90949 + 15.4317i 0.538242 + 0.932263i
\(275\) −2.23607 + 3.87298i −0.134840 + 0.233550i
\(276\) 0.141497 1.63750i 0.00851713 0.0985657i
\(277\) −3.17767 5.50389i −0.190928 0.330697i 0.754630 0.656150i \(-0.227816\pi\)
−0.945558 + 0.325454i \(0.894483\pi\)
\(278\) 6.41271 + 11.1071i 0.384609 + 0.666162i
\(279\) 5.78404 6.92318i 0.346281 0.414480i
\(280\) −0.710533 + 2.54856i −0.0424625 + 0.152305i
\(281\) −2.01375 + 3.48791i −0.120130 + 0.208071i −0.919819 0.392343i \(-0.871665\pi\)
0.799689 + 0.600415i \(0.204998\pi\)
\(282\) 1.59273 0.744777i 0.0948456 0.0443508i
\(283\) 16.6101 0.987370 0.493685 0.869641i \(-0.335650\pi\)
0.493685 + 0.869641i \(0.335650\pi\)
\(284\) −13.8907 −0.824262
\(285\) 2.59685 1.21431i 0.153824 0.0719297i
\(286\) −3.70094 + 6.41021i −0.218841 + 0.379044i
\(287\) −3.59367 3.66697i −0.212128 0.216454i
\(288\) −1.92344 + 2.30225i −0.113340 + 0.135662i
\(289\) 4.83830 + 8.38018i 0.284606 + 0.492952i
\(290\) −2.07678 3.59710i −0.121953 0.211229i
\(291\) 0.852529 9.86601i 0.0499761 0.578356i
\(292\) 0.166120 0.287728i 0.00972143 0.0168380i
\(293\) 2.98560 + 5.17121i 0.174420 + 0.302105i 0.939961 0.341283i \(-0.110861\pi\)
−0.765540 + 0.643388i \(0.777528\pi\)
\(294\) 7.14285 9.79692i 0.416579 0.571368i
\(295\) −4.42123 + 7.65780i −0.257414 + 0.445854i
\(296\) −4.87541 8.44445i −0.283377 0.490824i
\(297\) 22.4267 6.08642i 1.30133 0.353170i
\(298\) 4.96565 8.60076i 0.287653 0.498229i
\(299\) −1.57059 −0.0908294
\(300\) 1.41988 + 0.991945i 0.0819765 + 0.0572700i
\(301\) −3.56342 + 12.7813i −0.205392 + 0.736705i
\(302\) 4.03641 + 6.99127i 0.232270 + 0.402303i
\(303\) −13.1587 9.19284i −0.755946 0.528115i
\(304\) 0.827555 + 1.43337i 0.0474635 + 0.0822093i
\(305\) −6.00916 + 10.4082i −0.344083 + 0.595970i
\(306\) 2.79302 + 7.62297i 0.159666 + 0.435776i
\(307\) 19.3496 1.10434 0.552171 0.833731i \(-0.313800\pi\)
0.552171 + 0.833731i \(0.313800\pi\)
\(308\) 8.28172 + 8.45063i 0.471895 + 0.481519i
\(309\) −2.84034 + 32.8703i −0.161581 + 1.86992i
\(310\) 1.50357 2.60425i 0.0853968 0.147912i
\(311\) 20.5760 1.16676 0.583379 0.812200i \(-0.301730\pi\)
0.583379 + 0.812200i \(0.301730\pi\)
\(312\) 2.35005 + 1.64178i 0.133045 + 0.0929474i
\(313\) −8.26984 −0.467439 −0.233720 0.972304i \(-0.575090\pi\)
−0.233720 + 0.972304i \(0.575090\pi\)
\(314\) 19.8019 1.11748
\(315\) −4.50076 6.53783i −0.253589 0.368365i
\(316\) 9.92508 0.558329
\(317\) 29.4641 1.65487 0.827435 0.561561i \(-0.189799\pi\)
0.827435 + 0.561561i \(0.189799\pi\)
\(318\) 1.98537 22.9759i 0.111334 1.28843i
\(319\) −18.5753 −1.04002
\(320\) −0.500000 + 0.866025i −0.0279508 + 0.0484123i
\(321\) −3.89921 2.72404i −0.217633 0.152041i
\(322\) −0.674248 + 2.41841i −0.0375744 + 0.134773i
\(323\) 4.47902 0.249219
\(324\) −1.60075 8.85650i −0.0889306 0.492028i
\(325\) 0.827555 1.43337i 0.0459045 0.0795089i
\(326\) 8.46813 + 14.6672i 0.469007 + 0.812343i
\(327\) 1.19475 13.8264i 0.0660699 0.764604i
\(328\) −0.970293 1.68060i −0.0535755 0.0927954i
\(329\) −2.60115 + 0.668909i −0.143406 + 0.0368782i
\(330\) 7.01672 3.28109i 0.386258 0.180618i
\(331\) 2.90680 0.159772 0.0798860 0.996804i \(-0.474544\pi\)
0.0798860 + 0.996804i \(0.474544\pi\)
\(332\) 1.60804 2.78521i 0.0882528 0.152858i
\(333\) 28.8188 + 5.01798i 1.57926 + 0.274983i
\(334\) −9.80368 16.9805i −0.536433 0.929130i
\(335\) −0.386978 + 0.670266i −0.0211429 + 0.0366205i
\(336\) 3.53690 2.91382i 0.192954 0.158962i
\(337\) −7.13923 12.3655i −0.388899 0.673592i 0.603403 0.797436i \(-0.293811\pi\)
−0.992302 + 0.123844i \(0.960478\pi\)
\(338\) −5.13031 + 8.88595i −0.279052 + 0.483332i
\(339\) 7.04175 + 4.91947i 0.382455 + 0.267189i
\(340\) 1.35309 + 2.34362i 0.0733816 + 0.127101i
\(341\) −6.72415 11.6466i −0.364133 0.630697i
\(342\) −4.89173 0.851755i −0.264514 0.0460576i
\(343\) −13.4863 + 12.6933i −0.728193 + 0.685372i
\(344\) −2.50757 + 4.34323i −0.135199 + 0.234171i
\(345\) 1.34736 + 0.941288i 0.0725397 + 0.0506773i
\(346\) −7.46596 −0.401372
\(347\) 18.2254 0.978388 0.489194 0.872175i \(-0.337291\pi\)
0.489194 + 0.872175i \(0.337291\pi\)
\(348\) −0.619347 + 7.16748i −0.0332005 + 0.384217i
\(349\) 3.76675 6.52420i 0.201630 0.349233i −0.747424 0.664347i \(-0.768710\pi\)
0.949054 + 0.315115i \(0.102043\pi\)
\(350\) −1.85185 1.88962i −0.0989855 0.101004i
\(351\) −8.29997 + 2.25255i −0.443020 + 0.120232i
\(352\) 2.23607 + 3.87298i 0.119183 + 0.206431i
\(353\) −2.78377 4.82163i −0.148165 0.256629i 0.782384 0.622796i \(-0.214003\pi\)
−0.930549 + 0.366167i \(0.880670\pi\)
\(354\) 13.8737 6.48750i 0.737380 0.344807i
\(355\) 6.94535 12.0297i 0.368621 0.638470i
\(356\) −2.86642 4.96478i −0.151920 0.263133i
\(357\) −2.04315 12.2318i −0.108135 0.647375i
\(358\) 2.74363 4.75211i 0.145006 0.251157i
\(359\) 10.7999 + 18.7059i 0.569994 + 0.987259i 0.996566 + 0.0828052i \(0.0263879\pi\)
−0.426571 + 0.904454i \(0.640279\pi\)
\(360\) −1.03209 2.81688i −0.0543959 0.148462i
\(361\) 8.13031 14.0821i 0.427911 0.741163i
\(362\) −13.6477 −0.717308
\(363\) 1.34201 15.5306i 0.0704371 0.815143i
\(364\) −3.06501 3.12753i −0.160650 0.163927i
\(365\) 0.166120 + 0.287728i 0.00869511 + 0.0150604i
\(366\) 18.8566 8.81754i 0.985649 0.460900i
\(367\) −10.2270 17.7136i −0.533844 0.924644i −0.999218 0.0395304i \(-0.987414\pi\)
0.465375 0.885114i \(-0.345920\pi\)
\(368\) −0.474466 + 0.821799i −0.0247333 + 0.0428392i
\(369\) 5.73546 + 0.998667i 0.298576 + 0.0519885i
\(370\) 9.75081 0.506921
\(371\) −9.46047 + 33.9330i −0.491163 + 1.76171i
\(372\) −4.71815 + 2.20626i −0.244625 + 0.114389i
\(373\) 1.10865 1.92024i 0.0574037 0.0994261i −0.835896 0.548889i \(-0.815051\pi\)
0.893299 + 0.449462i \(0.148384\pi\)
\(374\) 12.1024 0.625800
\(375\) −1.56899 + 0.733675i −0.0810221 + 0.0378868i
\(376\) −1.01513 −0.0523514
\(377\) 6.87461 0.354061
\(378\) −0.0946515 + 13.7474i −0.00486835 + 0.707090i
\(379\) 5.04110 0.258944 0.129472 0.991583i \(-0.458672\pi\)
0.129472 + 0.991583i \(0.458672\pi\)
\(380\) −1.65511 −0.0849054
\(381\) 30.4351 14.2318i 1.55924 0.729116i
\(382\) −24.7176 −1.26466
\(383\) −13.1820 + 22.8319i −0.673570 + 1.16666i 0.303314 + 0.952891i \(0.401907\pi\)
−0.976885 + 0.213767i \(0.931427\pi\)
\(384\) 1.56899 0.733675i 0.0800670 0.0374402i
\(385\) −11.4593 + 2.94686i −0.584021 + 0.150186i
\(386\) −15.0374 −0.765384
\(387\) −5.17607 14.1270i −0.263114 0.718116i
\(388\) −2.85868 + 4.95139i −0.145128 + 0.251369i
\(389\) −8.36238 14.4841i −0.423989 0.734371i 0.572336 0.820019i \(-0.306037\pi\)
−0.996325 + 0.0856480i \(0.972704\pi\)
\(390\) −2.59685 + 1.21431i −0.131496 + 0.0614892i
\(391\) 1.28399 + 2.22394i 0.0649341 + 0.112469i
\(392\) −6.13160 + 3.37690i −0.309693 + 0.170559i
\(393\) −0.527955 + 6.10983i −0.0266318 + 0.308200i
\(394\) −21.9097 −1.10379
\(395\) −4.96254 + 8.59537i −0.249692 + 0.432480i
\(396\) −13.2175 2.30146i −0.664206 0.115653i
\(397\) −6.52922 11.3089i −0.327692 0.567579i 0.654361 0.756182i \(-0.272938\pi\)
−0.982054 + 0.188603i \(0.939604\pi\)
\(398\) 12.1642 21.0691i 0.609738 1.05610i
\(399\) 7.10355 + 2.65832i 0.355623 + 0.133083i
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) −19.1172 + 33.1120i −0.954668 + 1.65353i −0.219542 + 0.975603i \(0.570456\pi\)
−0.735126 + 0.677931i \(0.762877\pi\)
\(402\) 1.21433 0.567833i 0.0605652 0.0283209i
\(403\) 2.48857 + 4.31032i 0.123964 + 0.214713i
\(404\) 4.63374 + 8.02588i 0.230537 + 0.399302i
\(405\) 8.47033 + 3.04196i 0.420894 + 0.151156i
\(406\) 2.95125 10.5856i 0.146468 0.525355i
\(407\) 21.8035 37.7647i 1.08076 1.87193i
\(408\) 0.403524 4.66984i 0.0199774 0.231191i
\(409\) −13.6741 −0.676140 −0.338070 0.941121i \(-0.609774\pi\)
−0.338070 + 0.941121i \(0.609774\pi\)
\(410\) 1.94059 0.0958387
\(411\) 25.3007 + 17.6755i 1.24799 + 0.871866i
\(412\) 9.52418 16.4964i 0.469223 0.812718i
\(413\) −22.6578 + 5.82664i −1.11492 + 0.286710i
\(414\) −0.979384 2.67302i −0.0481341 0.131372i
\(415\) 1.60804 + 2.78521i 0.0789357 + 0.136721i
\(416\) −0.827555 1.43337i −0.0405742 0.0702766i
\(417\) 18.2105 + 12.7221i 0.891772 + 0.623005i
\(418\) −3.70094 + 6.41021i −0.181019 + 0.313534i
\(419\) 4.16825 + 7.21962i 0.203632 + 0.352701i 0.949696 0.313173i \(-0.101392\pi\)
−0.746064 + 0.665874i \(0.768059\pi\)
\(420\) 0.754996 + 4.51995i 0.0368400 + 0.220551i
\(421\) −1.03373 + 1.79048i −0.0503811 + 0.0872626i −0.890116 0.455734i \(-0.849377\pi\)
0.839735 + 0.542996i \(0.182710\pi\)
\(422\) −9.43146 16.3358i −0.459116 0.795212i
\(423\) 1.95255 2.33709i 0.0949360 0.113633i
\(424\) −6.65730 + 11.5308i −0.323307 + 0.559984i
\(425\) −2.70618 −0.131269
\(426\) −21.7943 + 10.1913i −1.05594 + 0.493769i
\(427\) −30.7955 + 7.91933i −1.49030 + 0.383243i
\(428\) 1.37308 + 2.37825i 0.0663704 + 0.114957i
\(429\) −1.10371 + 12.7728i −0.0532876 + 0.616678i
\(430\) −2.50757 4.34323i −0.120926 0.209449i
\(431\) −1.71653 + 2.97311i −0.0826822 + 0.143210i −0.904401 0.426683i \(-0.859682\pi\)
0.821719 + 0.569893i \(0.193015\pi\)
\(432\) −1.32875 + 5.02339i −0.0639294 + 0.241688i
\(433\) 7.62844 0.366599 0.183300 0.983057i \(-0.441322\pi\)
0.183300 + 0.983057i \(0.441322\pi\)
\(434\) 7.70542 1.98152i 0.369872 0.0951158i
\(435\) −5.89755 4.12011i −0.282766 0.197544i
\(436\) −4.00622 + 6.93898i −0.191863 + 0.332317i
\(437\) −1.57059 −0.0751314
\(438\) 0.0495409 0.573319i 0.00236716 0.0273943i
\(439\) −15.3407 −0.732174 −0.366087 0.930581i \(-0.619303\pi\)
−0.366087 + 0.930581i \(0.619303\pi\)
\(440\) −4.47213 −0.213201
\(441\) 4.01928 20.6118i 0.191394 0.981513i
\(442\) −4.47902 −0.213045
\(443\) 10.9405 0.519800 0.259900 0.965636i \(-0.416310\pi\)
0.259900 + 0.965636i \(0.416310\pi\)
\(444\) −13.8449 9.67227i −0.657052 0.459026i
\(445\) 5.73284 0.271762
\(446\) −9.42519 + 16.3249i −0.446296 + 0.773007i
\(447\) 1.48088 17.1377i 0.0700431 0.810584i
\(448\) −2.56238 + 0.658939i −0.121061 + 0.0311319i
\(449\) 11.4979 0.542617 0.271309 0.962492i \(-0.412544\pi\)
0.271309 + 0.962492i \(0.412544\pi\)
\(450\) 2.95553 + 0.514622i 0.139325 + 0.0242595i
\(451\) 4.33928 7.51585i 0.204329 0.353908i
\(452\) −2.47971 4.29498i −0.116636 0.202019i
\(453\) 11.4624 + 8.00780i 0.538551 + 0.376239i
\(454\) −2.10153 3.63995i −0.0986296 0.170832i
\(455\) 4.24102 1.09062i 0.198822 0.0511289i
\(456\) 2.35005 + 1.64178i 0.110051 + 0.0768833i
\(457\) 6.93375 0.324347 0.162174 0.986762i \(-0.448150\pi\)
0.162174 + 0.986762i \(0.448150\pi\)
\(458\) −11.4403 + 19.8152i −0.534571 + 0.925904i
\(459\) 9.97500 + 9.91117i 0.465593 + 0.462614i
\(460\) −0.474466 0.821799i −0.0221221 0.0383166i
\(461\) −19.9618 + 34.5748i −0.929711 + 1.61031i −0.145908 + 0.989298i \(0.546610\pi\)
−0.783803 + 0.621009i \(0.786723\pi\)
\(462\) 19.1939 + 7.18283i 0.892982 + 0.334176i
\(463\) 0.419823 + 0.727155i 0.0195108 + 0.0337938i 0.875616 0.483008i \(-0.160456\pi\)
−0.856105 + 0.516802i \(0.827122\pi\)
\(464\) 2.07678 3.59710i 0.0964123 0.166991i
\(465\) 0.448400 5.18917i 0.0207940 0.240642i
\(466\) 11.9917 + 20.7703i 0.555507 + 0.962166i
\(467\) 6.54621 + 11.3384i 0.302922 + 0.524677i 0.976797 0.214169i \(-0.0687043\pi\)
−0.673874 + 0.738846i \(0.735371\pi\)
\(468\) 4.89173 + 0.851755i 0.226120 + 0.0393724i
\(469\) −1.98317 + 0.509990i −0.0915744 + 0.0235491i
\(470\) 0.507566 0.879130i 0.0234123 0.0405512i
\(471\) 31.0689 14.5281i 1.43158 0.669421i
\(472\) −8.84247 −0.407008
\(473\) −22.4283 −1.03126
\(474\) 15.5723 7.28178i 0.715260 0.334463i
\(475\) 0.827555 1.43337i 0.0379708 0.0657674i
\(476\) −1.92283 + 6.89685i −0.0881328 + 0.316117i
\(477\) −13.7419 37.5056i −0.629197 1.71726i
\(478\) 6.66407 + 11.5425i 0.304807 + 0.527942i
\(479\) 14.7920 + 25.6205i 0.675865 + 1.17063i 0.976215 + 0.216804i \(0.0695632\pi\)
−0.300350 + 0.953829i \(0.597104\pi\)
\(480\) −0.149112 + 1.72562i −0.00680600 + 0.0787634i
\(481\) −8.06933 + 13.9765i −0.367930 + 0.637273i
\(482\) 0.245101 + 0.424527i 0.0111640 + 0.0193367i
\(483\) 0.716440 + 4.28913i 0.0325991 + 0.195162i
\(484\) −4.49999 + 7.79422i −0.204545 + 0.354283i
\(485\) −2.85868 4.95139i −0.129806 0.224831i
\(486\) −9.00935 12.7213i −0.408673 0.577050i
\(487\) 19.1240 33.1238i 0.866592 1.50098i 0.00113426 0.999999i \(-0.499639\pi\)
0.865458 0.500982i \(-0.167028\pi\)
\(488\) −12.0183 −0.544043
\(489\) 24.0474 + 16.7998i 1.08746 + 0.759715i
\(490\) 0.141315 6.99857i 0.00638396 0.316163i
\(491\) −15.8531 27.4583i −0.715439 1.23918i −0.962790 0.270250i \(-0.912894\pi\)
0.247351 0.968926i \(-0.420440\pi\)
\(492\) −2.75539 1.92495i −0.124223 0.0867836i
\(493\) −5.62015 9.73438i −0.253119 0.438414i
\(494\) 1.36969 2.37238i 0.0616255 0.106738i
\(495\) 8.60189 10.2960i 0.386626 0.462770i
\(496\) 3.00713 0.135024
\(497\) 35.5933 9.15312i 1.59658 0.410574i
\(498\) 0.479557 5.54974i 0.0214895 0.248690i
\(499\) −11.9392 + 20.6793i −0.534472 + 0.925733i 0.464717 + 0.885459i \(0.346156\pi\)
−0.999189 + 0.0402733i \(0.987177\pi\)
\(500\) 1.00000 0.0447214
\(501\) −27.8400 19.4494i −1.24380 0.868936i
\(502\) 21.2007 0.946235
\(503\) −26.8666 −1.19792 −0.598962 0.800777i \(-0.704420\pi\)
−0.598962 + 0.800777i \(0.704420\pi\)
\(504\) 3.41155 7.16668i 0.151962 0.319229i
\(505\) −9.26749 −0.412398
\(506\) −4.24375 −0.188658
\(507\) −1.52998 + 17.7059i −0.0679488 + 0.786347i
\(508\) −19.3979 −0.860644
\(509\) 14.3070 24.7804i 0.634145 1.09837i −0.352550 0.935793i \(-0.614685\pi\)
0.986695 0.162579i \(-0.0519813\pi\)
\(510\) 3.84243 + 2.68438i 0.170146 + 0.118866i
\(511\) −0.236067 + 0.846731i −0.0104430 + 0.0374572i
\(512\) −1.00000 −0.0441942
\(513\) −8.29997 + 2.25255i −0.366453 + 0.0994524i
\(514\) 10.3554 17.9361i 0.456758 0.791127i
\(515\) 9.52418 + 16.4964i 0.419686 + 0.726917i
\(516\) −0.747816 + 8.65421i −0.0329208 + 0.380980i
\(517\) −2.26990 3.93159i −0.0998302 0.172911i
\(518\) 18.0570 + 18.4253i 0.793380 + 0.809562i
\(519\) −11.7140 + 5.47759i −0.514187 + 0.240439i
\(520\) 1.65511 0.0725814
\(521\) −15.1514 + 26.2430i −0.663795 + 1.14973i 0.315815 + 0.948821i \(0.397722\pi\)
−0.979610 + 0.200906i \(0.935611\pi\)
\(522\) 4.28686 + 11.7001i 0.187631 + 0.512099i
\(523\) 17.0208 + 29.4809i 0.744268 + 1.28911i 0.950536 + 0.310615i \(0.100535\pi\)
−0.206267 + 0.978496i \(0.566132\pi\)
\(524\) 1.77033 3.06630i 0.0773372 0.133952i
\(525\) −4.29189 1.60613i −0.187314 0.0700973i
\(526\) 5.79295 + 10.0337i 0.252584 + 0.437489i
\(527\) 4.06892 7.04757i 0.177245 0.306997i
\(528\) 6.34987 + 4.43611i 0.276343 + 0.193057i
\(529\) 11.0498 + 19.1388i 0.480425 + 0.832120i
\(530\) −6.65730 11.5308i −0.289175 0.500865i
\(531\) 17.0080 20.3576i 0.738083 0.883445i
\(532\) −3.06501 3.12753i −0.132885 0.135595i
\(533\) −1.60594 + 2.78157i −0.0695610 + 0.120483i
\(534\) −8.13991 5.68666i −0.352248 0.246086i
\(535\) −2.74616 −0.118727
\(536\) −0.773956 −0.0334298
\(537\) 0.818217 9.46894i 0.0353087 0.408615i
\(538\) −4.15928 + 7.20408i −0.179319 + 0.310590i
\(539\) −26.7894 16.1966i −1.15390 0.697637i
\(540\) −3.68601 3.66242i −0.158621 0.157606i
\(541\) −3.17697 5.50267i −0.136589 0.236578i 0.789615 0.613603i \(-0.210281\pi\)
−0.926203 + 0.377025i \(0.876947\pi\)
\(542\) 6.60231 + 11.4355i 0.283594 + 0.491198i
\(543\) −21.4131 + 10.0130i −0.918923 + 0.429698i
\(544\) −1.35309 + 2.34362i −0.0580132 + 0.100482i
\(545\) −4.00622 6.93898i −0.171608 0.297233i
\(546\) −7.10355 2.65832i −0.304004 0.113766i
\(547\) −8.53992 + 14.7916i −0.365141 + 0.632442i −0.988799 0.149255i \(-0.952312\pi\)
0.623658 + 0.781697i \(0.285646\pi\)
\(548\) −8.90949 15.4317i −0.380595 0.659209i
\(549\) 23.1165 27.6692i 0.986589 1.18089i
\(550\) 2.23607 3.87298i 0.0953462 0.165145i
\(551\) 6.87461 0.292868
\(552\) −0.141497 + 1.63750i −0.00602252 + 0.0696965i
\(553\) −25.4318 + 6.54002i −1.08147 + 0.278110i
\(554\) 3.17767 + 5.50389i 0.135006 + 0.233838i
\(555\) 15.2989 7.15393i 0.649402 0.303667i
\(556\) −6.41271 11.1071i −0.271960 0.471048i
\(557\) −8.97738 + 15.5493i −0.380384 + 0.658844i −0.991117 0.132992i \(-0.957541\pi\)
0.610733 + 0.791837i \(0.290875\pi\)
\(558\) −5.78404 + 6.92318i −0.244858 + 0.293082i
\(559\) 8.30059 0.351078
\(560\) 0.710533 2.54856i 0.0300255 0.107696i
\(561\) 18.9885 8.87923i 0.801695 0.374881i
\(562\) 2.01375 3.48791i 0.0849448 0.147129i
\(563\) 32.7771 1.38139 0.690695 0.723146i \(-0.257305\pi\)
0.690695 + 0.723146i \(0.257305\pi\)
\(564\) −1.59273 + 0.744777i −0.0670660 + 0.0313608i
\(565\) 4.95941 0.208644
\(566\) −16.6101 −0.698176
\(567\) 9.93762 + 21.6389i 0.417341 + 0.908750i
\(568\) 13.8907 0.582841
\(569\) −39.2617 −1.64593 −0.822967 0.568089i \(-0.807683\pi\)
−0.822967 + 0.568089i \(0.807683\pi\)
\(570\) −2.59685 + 1.21431i −0.108770 + 0.0508620i
\(571\) 12.6940 0.531229 0.265615 0.964079i \(-0.414425\pi\)
0.265615 + 0.964079i \(0.414425\pi\)
\(572\) 3.70094 6.41021i 0.154744 0.268024i
\(573\) −38.7816 + 18.1347i −1.62012 + 0.757588i
\(574\) 3.59367 + 3.66697i 0.149997 + 0.153056i
\(575\) 0.948932 0.0395732
\(576\) 1.92344 2.30225i 0.0801434 0.0959273i
\(577\) −20.9847 + 36.3465i −0.873603 + 1.51312i −0.0153586 + 0.999882i \(0.504889\pi\)
−0.858244 + 0.513242i \(0.828444\pi\)
\(578\) −4.83830 8.38018i −0.201247 0.348570i
\(579\) −23.5935 + 11.0326i −0.980512 + 0.458498i
\(580\) 2.07678 + 3.59710i 0.0862338 + 0.149361i
\(581\) −2.28513 + 8.19637i −0.0948034 + 0.340043i
\(582\) −0.852529 + 9.86601i −0.0353384 + 0.408959i
\(583\) −59.5447 −2.46609
\(584\) −0.166120 + 0.287728i −0.00687409 + 0.0119063i
\(585\) −3.18351 + 3.81048i −0.131622 + 0.157544i
\(586\) −2.98560 5.17121i −0.123334 0.213621i
\(587\) −0.372630 + 0.645414i −0.0153801 + 0.0266391i −0.873613 0.486621i \(-0.838229\pi\)
0.858233 + 0.513260i \(0.171562\pi\)
\(588\) −7.14285 + 9.79692i −0.294566 + 0.404018i
\(589\) 2.48857 + 4.31032i 0.102540 + 0.177604i
\(590\) 4.42123 7.65780i 0.182019 0.315267i
\(591\) −34.3760 + 16.0746i −1.41404 + 0.661220i
\(592\) 4.87541 + 8.44445i 0.200378 + 0.347065i
\(593\) 0.925847 + 1.60361i 0.0380200 + 0.0658525i 0.884409 0.466712i \(-0.154562\pi\)
−0.846389 + 0.532565i \(0.821228\pi\)
\(594\) −22.4267 + 6.08642i −0.920177 + 0.249729i
\(595\) −5.01143 5.11364i −0.205449 0.209639i
\(596\) −4.96565 + 8.60076i −0.203401 + 0.352301i
\(597\) 3.62767 41.9817i 0.148471 1.71820i
\(598\) 1.57059 0.0642261
\(599\) −25.0670 −1.02421 −0.512105 0.858923i \(-0.671134\pi\)
−0.512105 + 0.858923i \(0.671134\pi\)
\(600\) −1.41988 0.991945i −0.0579662 0.0404960i
\(601\) −12.2717 + 21.2553i −0.500574 + 0.867020i 0.499425 + 0.866357i \(0.333544\pi\)
−1.00000 0.000663296i \(0.999789\pi\)
\(602\) 3.56342 12.7813i 0.145234 0.520929i
\(603\) 1.48866 1.78184i 0.0606229 0.0725623i
\(604\) −4.03641 6.99127i −0.164239 0.284471i
\(605\) −4.49999 7.79422i −0.182951 0.316880i
\(606\) 13.1587 + 9.19284i 0.534535 + 0.373433i
\(607\) 17.4884 30.2908i 0.709832 1.22946i −0.255087 0.966918i \(-0.582104\pi\)
0.964919 0.262547i \(-0.0845625\pi\)
\(608\) −0.827555 1.43337i −0.0335618 0.0581307i
\(609\) −3.13593 18.7739i −0.127074 0.760758i
\(610\) 6.00916 10.4082i 0.243304 0.421414i
\(611\) 0.840077 + 1.45506i 0.0339859 + 0.0588653i
\(612\) −2.79302 7.62297i −0.112901 0.308140i
\(613\) −15.5565 + 26.9447i −0.628322 + 1.08829i 0.359566 + 0.933120i \(0.382925\pi\)
−0.987888 + 0.155167i \(0.950409\pi\)
\(614\) −19.3496 −0.780887
\(615\) 3.04475 1.42376i 0.122776 0.0574115i
\(616\) −8.28172 8.45063i −0.333680 0.340485i
\(617\) −23.1494 40.0959i −0.931959 1.61420i −0.779969 0.625818i \(-0.784765\pi\)
−0.151990 0.988382i \(-0.548568\pi\)
\(618\) 2.84034 32.8703i 0.114255 1.32224i
\(619\) 4.25026 + 7.36167i 0.170832 + 0.295891i 0.938711 0.344705i \(-0.112021\pi\)
−0.767879 + 0.640595i \(0.778688\pi\)
\(620\) −1.50357 + 2.60425i −0.0603847 + 0.104589i
\(621\) −3.49777 3.47539i −0.140361 0.139463i
\(622\) −20.5760 −0.825023
\(623\) 10.6163 + 10.8329i 0.425335 + 0.434010i
\(624\) −2.35005 1.64178i −0.0940773 0.0657237i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 8.26984 0.330529
\(627\) −1.10371 + 12.7728i −0.0440779 + 0.510098i
\(628\) −19.8019 −0.790181
\(629\) 26.3874 1.05214
\(630\) 4.50076 + 6.53783i 0.179314 + 0.260473i
\(631\) 35.8244 1.42615 0.713074 0.701089i \(-0.247303\pi\)
0.713074 + 0.701089i \(0.247303\pi\)
\(632\) −9.92508 −0.394798
\(633\) −26.7830 18.7110i −1.06453 0.743694i
\(634\) −29.4641 −1.17017
\(635\) 9.69896 16.7991i 0.384892 0.666652i
\(636\) −1.98537 + 22.9759i −0.0787249 + 0.911056i
\(637\) 9.91458 + 5.99426i 0.392830 + 0.237501i
\(638\) 18.5753 0.735404
\(639\) −26.7180 + 31.9799i −1.05695 + 1.26511i
\(640\) 0.500000 0.866025i 0.0197642 0.0342327i
\(641\) −16.4884 28.5587i −0.651251 1.12800i −0.982820 0.184569i \(-0.940911\pi\)
0.331569 0.943431i \(-0.392422\pi\)
\(642\) 3.89921 + 2.72404i 0.153889 + 0.107509i
\(643\) 2.96963 + 5.14355i 0.117111 + 0.202842i 0.918622 0.395139i \(-0.129303\pi\)
−0.801511 + 0.597980i \(0.795970\pi\)
\(644\) 0.674248 2.41841i 0.0265691 0.0952986i
\(645\) −7.12086 4.97473i −0.280384 0.195880i
\(646\) −4.47902 −0.176225
\(647\) 5.04853 8.74431i 0.198478 0.343774i −0.749557 0.661940i \(-0.769733\pi\)
0.948035 + 0.318165i \(0.103067\pi\)
\(648\) 1.60075 + 8.85650i 0.0628834 + 0.347916i
\(649\) −19.7724 34.2467i −0.776133 1.34430i
\(650\) −0.827555 + 1.43337i −0.0324594 + 0.0562213i
\(651\) 10.6359 8.76225i 0.416854 0.343420i
\(652\) −8.46813 14.6672i −0.331638 0.574413i
\(653\) −0.0509954 + 0.0883267i −0.00199561 + 0.00345649i −0.867021 0.498271i \(-0.833969\pi\)
0.865026 + 0.501727i \(0.167302\pi\)
\(654\) −1.19475 + 13.8264i −0.0467185 + 0.540657i
\(655\) 1.77033 + 3.06630i 0.0691725 + 0.119810i
\(656\) 0.970293 + 1.68060i 0.0378836 + 0.0656163i
\(657\) −0.342901 0.935878i −0.0133779 0.0365121i
\(658\) 2.60115 0.668909i 0.101404 0.0260768i
\(659\) −1.37572 + 2.38282i −0.0535904 + 0.0928214i −0.891576 0.452871i \(-0.850400\pi\)
0.837986 + 0.545692i \(0.183733\pi\)
\(660\) −7.01672 + 3.28109i −0.273126 + 0.127716i
\(661\) 4.22458 0.164317 0.0821587 0.996619i \(-0.473819\pi\)
0.0821587 + 0.996619i \(0.473819\pi\)
\(662\) −2.90680 −0.112976
\(663\) −7.02753 + 3.28615i −0.272927 + 0.127623i
\(664\) −1.60804 + 2.78521i −0.0624041 + 0.108087i
\(665\) 4.24102 1.09062i 0.164460 0.0422923i
\(666\) −28.8188 5.01798i −1.11671 0.194443i
\(667\) 1.97073 + 3.41340i 0.0763069 + 0.132167i
\(668\) 9.80368 + 16.9805i 0.379316 + 0.656994i
\(669\) −2.81082 + 32.5286i −0.108673 + 1.25763i
\(670\) 0.386978 0.670266i 0.0149503 0.0258946i
\(671\) −26.8738 46.5467i −1.03745 1.79692i
\(672\) −3.53690 + 2.91382i −0.136439 + 0.112403i
\(673\) 16.8678 29.2159i 0.650207 1.12619i −0.332865 0.942974i \(-0.608016\pi\)
0.983072 0.183217i \(-0.0586512\pi\)
\(674\) 7.13923 + 12.3655i 0.274993 + 0.476302i
\(675\) 5.01476 1.36097i 0.193018 0.0523836i
\(676\) 5.13031 8.88595i 0.197319 0.341767i
\(677\) −34.6497 −1.33170 −0.665848 0.746087i \(-0.731930\pi\)
−0.665848 + 0.746087i \(0.731930\pi\)
\(678\) −7.04175 4.91947i −0.270437 0.188931i
\(679\) 4.06238 14.5710i 0.155900 0.559185i
\(680\) −1.35309 2.34362i −0.0518886 0.0898737i
\(681\) −5.96782 4.16920i −0.228687 0.159764i
\(682\) 6.72415 + 11.6466i 0.257481 + 0.445970i
\(683\) 4.89745 8.48264i 0.187396 0.324579i −0.756985 0.653432i \(-0.773329\pi\)
0.944381 + 0.328853i \(0.106662\pi\)
\(684\) 4.89173 + 0.851755i 0.187040 + 0.0325677i
\(685\) 17.8190 0.680829
\(686\) 13.4863 12.6933i 0.514910 0.484631i
\(687\) −3.41178 + 39.4833i −0.130167 + 1.50638i
\(688\) 2.50757 4.34323i 0.0956000 0.165584i
\(689\) 22.0371 0.839548
\(690\) −1.34736 0.941288i −0.0512933 0.0358342i
\(691\) 5.52600 0.210219 0.105109 0.994461i \(-0.466481\pi\)
0.105109 + 0.994461i \(0.466481\pi\)
\(692\) 7.46596 0.283813
\(693\) 35.3849 2.81233i 1.34416 0.106832i
\(694\) −18.2254 −0.691825
\(695\) 12.8254 0.486496
\(696\) 0.619347 7.16748i 0.0234763 0.271683i
\(697\) 5.25157 0.198917
\(698\) −3.76675 + 6.52420i −0.142574 + 0.246945i
\(699\) 34.0536 + 23.7903i 1.28802 + 0.899832i
\(700\) 1.85185 + 1.88962i 0.0699933 + 0.0714209i
\(701\) 25.3205 0.956342 0.478171 0.878267i \(-0.341300\pi\)
0.478171 + 0.878267i \(0.341300\pi\)
\(702\) 8.29997 2.25255i 0.313262 0.0850170i
\(703\) −8.06933 + 13.9765i −0.304341 + 0.527134i
\(704\) −2.23607 3.87298i −0.0842750 0.145969i
\(705\) 0.151368 1.75173i 0.00570086 0.0659740i
\(706\) 2.78377 + 4.82163i 0.104769 + 0.181464i
\(707\) −17.1620 17.5120i −0.645443 0.658607i
\(708\) −13.8737 + 6.48750i −0.521406 + 0.243815i
\(709\) 32.1097 1.20591 0.602953 0.797776i \(-0.293990\pi\)
0.602953 + 0.797776i \(0.293990\pi\)
\(710\) −6.94535 + 12.0297i −0.260654 + 0.451467i
\(711\) 19.0903 22.8501i 0.715942 0.856944i
\(712\) 2.86642 + 4.96478i 0.107424 + 0.186063i
\(713\) −1.42678 + 2.47126i −0.0534334 + 0.0925494i
\(714\) 2.04315 + 12.2318i 0.0764631 + 0.457764i
\(715\) 3.70094 + 6.41021i 0.138407 + 0.239728i
\(716\) −2.74363 + 4.75211i −0.102534 + 0.177595i
\(717\) 18.9243 + 13.2208i 0.706740 + 0.493739i
\(718\) −10.7999 18.7059i −0.403047 0.698098i
\(719\) −2.59986 4.50309i −0.0969584 0.167937i 0.813466 0.581613i \(-0.197578\pi\)
−0.910424 + 0.413676i \(0.864245\pi\)
\(720\) 1.03209 + 2.81688i 0.0384637 + 0.104979i
\(721\) −13.5345 + 48.5459i −0.504051 + 1.80794i
\(722\) −8.13031 + 14.0821i −0.302579 + 0.524082i
\(723\) 0.696025 + 0.486253i 0.0258855 + 0.0180840i
\(724\) 13.6477 0.507213
\(725\) −4.15357 −0.154260
\(726\) −1.34201 + 15.5306i −0.0498065 + 0.576393i
\(727\) −16.5059 + 28.5891i −0.612171 + 1.06031i 0.378703 + 0.925518i \(0.376370\pi\)
−0.990874 + 0.134793i \(0.956963\pi\)
\(728\) 3.06501 + 3.12753i 0.113597 + 0.115914i
\(729\) −23.4689 13.3496i −0.869217 0.494430i
\(730\) −0.166120 0.287728i −0.00614837 0.0106493i
\(731\) −6.78592 11.7536i −0.250986 0.434721i
\(732\) −18.8566 + 8.81754i −0.696959 + 0.325906i
\(733\) 25.1301 43.5267i 0.928202 1.60769i 0.141874 0.989885i \(-0.454687\pi\)
0.786328 0.617809i \(-0.211979\pi\)
\(734\) 10.2270 + 17.7136i 0.377484 + 0.653822i
\(735\) −4.91296 11.0844i −0.181217 0.408852i
\(736\) 0.474466 0.821799i 0.0174890 0.0302919i
\(737\) −1.73062 2.99752i −0.0637482 0.110415i
\(738\) −5.73546 0.998667i −0.211125 0.0367614i
\(739\) 1.09204 1.89147i 0.0401713 0.0695787i −0.845241 0.534386i \(-0.820543\pi\)
0.885412 + 0.464807i \(0.153876\pi\)
\(740\) −9.75081 −0.358447
\(741\) 0.408476 4.72715i 0.0150057 0.173656i
\(742\) 9.46047 33.9330i 0.347305 1.24572i
\(743\) 16.1375 + 27.9509i 0.592026 + 1.02542i 0.993959 + 0.109750i \(0.0350050\pi\)
−0.401933 + 0.915669i \(0.631662\pi\)
\(744\) 4.71815 2.20626i 0.172976 0.0808854i
\(745\) −4.96565 8.60076i −0.181927 0.315108i
\(746\) −1.10865 + 1.92024i −0.0405905 + 0.0703049i
\(747\) −3.31929 9.05931i −0.121446 0.331463i
\(748\) −12.1024 −0.442507
\(749\) −5.08548 5.18920i −0.185819 0.189609i
\(750\) 1.56899 0.733675i 0.0572913 0.0267900i
\(751\) 19.6397 34.0169i 0.716663 1.24130i −0.245652 0.969358i \(-0.579002\pi\)
0.962315 0.271938i \(-0.0876646\pi\)
\(752\) 1.01513 0.0370180
\(753\) 33.2637 15.5544i 1.21220 0.566836i
\(754\) −6.87461 −0.250359
\(755\) 8.07283 0.293800
\(756\) 0.0946515 13.7474i 0.00344244 0.499988i
\(757\) −11.5097 −0.418328 −0.209164 0.977881i \(-0.567074\pi\)
−0.209164 + 0.977881i \(0.567074\pi\)
\(758\) −5.04110 −0.183101
\(759\) −6.65839 + 3.11354i −0.241684 + 0.113014i
\(760\) 1.65511 0.0600372
\(761\) −5.05470 + 8.75501i −0.183233 + 0.317369i −0.942980 0.332850i \(-0.891990\pi\)
0.759747 + 0.650219i \(0.225323\pi\)
\(762\) −30.4351 + 14.2318i −1.10255 + 0.515563i
\(763\) 5.69311 20.4202i 0.206104 0.739260i
\(764\) 24.7176 0.894251
\(765\) 7.99819 + 1.39266i 0.289175 + 0.0503516i
\(766\) 13.1820 22.8319i 0.476286 0.824952i
\(767\) 7.31763 + 12.6745i 0.264224 + 0.457650i
\(768\) −1.56899 + 0.733675i −0.0566159 + 0.0264742i
\(769\) 18.6256 + 32.2605i 0.671657 + 1.16334i 0.977434 + 0.211241i \(0.0677504\pi\)
−0.305777 + 0.952103i \(0.598916\pi\)
\(770\) 11.4593 2.94686i 0.412965 0.106198i
\(771\) 3.08823 35.7390i 0.111220 1.28711i
\(772\) 15.0374 </