Properties

Label 630.2.i.f.121.4
Level 630
Weight 2
Character 630.121
Analytic conductor 5.031
Analytic rank 0
Dimension 12
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 630.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: 12.0.91830304992969.1
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.4
Root \(1.36982 - 0.351572i\)
Character \(\chi\) = 630.121
Dual form 630.2.i.f.151.4

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +(0.478015 + 1.66478i) q^{3} +1.00000 q^{4} +(-0.500000 - 0.866025i) q^{5} +(-0.478015 - 1.66478i) q^{6} +(-2.56238 - 0.658939i) q^{7} -1.00000 q^{8} +(-2.54300 + 1.59158i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(0.478015 + 1.66478i) q^{3} +1.00000 q^{4} +(-0.500000 - 0.866025i) q^{5} +(-0.478015 - 1.66478i) q^{6} +(-2.56238 - 0.658939i) q^{7} -1.00000 q^{8} +(-2.54300 + 1.59158i) q^{9} +(0.500000 + 0.866025i) q^{10} +(1.11651 - 1.93384i) q^{11} +(0.478015 + 1.66478i) q^{12} +(0.263417 - 0.456251i) q^{13} +(2.56238 + 0.658939i) q^{14} +(1.20274 - 1.24636i) q^{15} +1.00000 q^{16} +(-2.56362 - 4.44032i) q^{17} +(2.54300 - 1.59158i) q^{18} +(0.263417 - 0.456251i) q^{19} +(-0.500000 - 0.866025i) q^{20} +(-0.127868 - 4.58079i) q^{21} +(-1.11651 + 1.93384i) q^{22} +(-3.82704 - 6.62863i) q^{23} +(-0.478015 - 1.66478i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(-0.263417 + 0.456251i) q^{26} +(-3.86524 - 3.47275i) q^{27} +(-2.56238 - 0.658939i) q^{28} +(1.08341 + 1.87651i) q^{29} +(-1.20274 + 1.24636i) q^{30} +0.275498 q^{31} -1.00000 q^{32} +(3.75314 + 0.934332i) q^{33} +(2.56362 + 4.44032i) q^{34} +(0.710533 + 2.54856i) q^{35} +(-2.54300 + 1.59158i) q^{36} +(-1.07390 + 1.86005i) q^{37} +(-0.263417 + 0.456251i) q^{38} +(0.885476 + 0.220436i) q^{39} +(0.500000 + 0.866025i) q^{40} +(5.55378 - 9.61944i) q^{41} +(0.127868 + 4.58079i) q^{42} +(1.51419 + 2.62265i) q^{43} +(1.11651 - 1.93384i) q^{44} +(2.64985 + 1.40651i) q^{45} +(3.82704 + 6.62863i) q^{46} -0.971625 q^{47} +(0.478015 + 1.66478i) q^{48} +(6.13160 + 3.37690i) q^{49} +(0.500000 - 0.866025i) q^{50} +(6.16672 - 6.39042i) q^{51} +(0.263417 - 0.456251i) q^{52} +(-5.80545 - 10.0553i) q^{53} +(3.86524 + 3.47275i) q^{54} -2.23301 q^{55} +(2.56238 + 0.658939i) q^{56} +(0.885476 + 0.220436i) q^{57} +(-1.08341 - 1.87651i) q^{58} -9.37789 q^{59} +(1.20274 - 1.24636i) q^{60} +2.10645 q^{61} -0.275498 q^{62} +(7.56490 - 2.40256i) q^{63} +1.00000 q^{64} -0.526833 q^{65} +(-3.75314 - 0.934332i) q^{66} +2.64711 q^{67} +(-2.56362 - 4.44032i) q^{68} +(9.20584 - 9.53977i) q^{69} +(-0.710533 - 2.54856i) q^{70} -0.00533612 q^{71} +(2.54300 - 1.59158i) q^{72} +(-2.19307 - 3.79852i) q^{73} +(1.07390 - 1.86005i) q^{74} +(-1.68075 - 0.418418i) q^{75} +(0.263417 - 0.456251i) q^{76} +(-4.13520 + 4.21954i) q^{77} +(-0.885476 - 0.220436i) q^{78} -12.0635 q^{79} +(-0.500000 - 0.866025i) q^{80} +(3.93372 - 8.09480i) q^{81} +(-5.55378 + 9.61944i) q^{82} +(7.55735 + 13.0897i) q^{83} +(-0.127868 - 4.58079i) q^{84} +(-2.56362 + 4.44032i) q^{85} +(-1.51419 - 2.62265i) q^{86} +(-2.60610 + 2.70064i) q^{87} +(-1.11651 + 1.93384i) q^{88} +(7.23714 - 12.5351i) q^{89} +(-2.64985 - 1.40651i) q^{90} +(-0.975615 + 0.995514i) q^{91} +(-3.82704 - 6.62863i) q^{92} +(0.131693 + 0.458645i) q^{93} +0.971625 q^{94} -0.526833 q^{95} +(-0.478015 - 1.66478i) q^{96} +(-2.85868 - 4.95139i) q^{97} +(-6.13160 - 3.37690i) q^{98} +(0.238598 + 6.69478i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 12q^{2} + 2q^{3} + 12q^{4} - 6q^{5} - 2q^{6} + 4q^{7} - 12q^{8} - 4q^{9} + O(q^{10}) \) \( 12q - 12q^{2} + 2q^{3} + 12q^{4} - 6q^{5} - 2q^{6} + 4q^{7} - 12q^{8} - 4q^{9} + 6q^{10} - 7q^{11} + 2q^{12} - 2q^{13} - 4q^{14} - q^{15} + 12q^{16} + q^{17} + 4q^{18} - 2q^{19} - 6q^{20} + 29q^{21} + 7q^{22} - 9q^{23} - 2q^{24} - 6q^{25} + 2q^{26} + 11q^{27} + 4q^{28} + 3q^{29} + q^{30} + 18q^{31} - 12q^{32} + 27q^{33} - q^{34} - 8q^{35} - 4q^{36} + 6q^{37} + 2q^{38} + 10q^{39} + 6q^{40} - 11q^{41} - 29q^{42} + 23q^{43} - 7q^{44} + 5q^{45} + 9q^{46} - 2q^{47} + 2q^{48} + 24q^{49} + 6q^{50} - 15q^{51} - 2q^{52} - 4q^{53} - 11q^{54} + 14q^{55} - 4q^{56} + 10q^{57} - 3q^{58} - 22q^{59} - q^{60} + 50q^{61} - 18q^{62} - q^{63} + 12q^{64} + 4q^{65} - 27q^{66} + 4q^{67} + q^{68} - 12q^{69} + 8q^{70} + 22q^{71} + 4q^{72} + 24q^{73} - 6q^{74} - q^{75} - 2q^{76} - 11q^{77} - 10q^{78} + 2q^{79} - 6q^{80} + 20q^{81} + 11q^{82} + 4q^{83} + 29q^{84} + q^{85} - 23q^{86} + 7q^{88} + 2q^{89} - 5q^{90} - 8q^{91} - 9q^{92} + 40q^{93} + 2q^{94} + 4q^{95} - 2q^{96} - 36q^{97} - 24q^{98} + 15q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.478015 + 1.66478i 0.275982 + 0.961163i
\(4\) 1.00000 0.500000
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −0.478015 1.66478i −0.195149 0.679645i
\(7\) −2.56238 0.658939i −0.968489 0.249055i
\(8\) −1.00000 −0.353553
\(9\) −2.54300 + 1.59158i −0.847668 + 0.530528i
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) 1.11651 1.93384i 0.336639 0.583076i −0.647159 0.762355i \(-0.724043\pi\)
0.983798 + 0.179279i \(0.0573764\pi\)
\(12\) 0.478015 + 1.66478i 0.137991 + 0.480581i
\(13\) 0.263417 0.456251i 0.0730586 0.126541i −0.827182 0.561934i \(-0.810057\pi\)
0.900240 + 0.435393i \(0.143391\pi\)
\(14\) 2.56238 + 0.658939i 0.684825 + 0.176109i
\(15\) 1.20274 1.24636i 0.310545 0.321810i
\(16\) 1.00000 0.250000
\(17\) −2.56362 4.44032i −0.621770 1.07694i −0.989156 0.146868i \(-0.953081\pi\)
0.367386 0.930068i \(-0.380253\pi\)
\(18\) 2.54300 1.59158i 0.599391 0.375140i
\(19\) 0.263417 0.456251i 0.0604319 0.104671i −0.834227 0.551422i \(-0.814086\pi\)
0.894659 + 0.446751i \(0.147419\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) −0.127868 4.58079i −0.0279032 0.999611i
\(22\) −1.11651 + 1.93384i −0.238040 + 0.412297i
\(23\) −3.82704 6.62863i −0.797993 1.38216i −0.920921 0.389749i \(-0.872562\pi\)
0.122929 0.992416i \(-0.460771\pi\)
\(24\) −0.478015 1.66478i −0.0975745 0.339822i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −0.263417 + 0.456251i −0.0516603 + 0.0894782i
\(27\) −3.86524 3.47275i −0.743865 0.668330i
\(28\) −2.56238 0.658939i −0.484245 0.124528i
\(29\) 1.08341 + 1.87651i 0.201183 + 0.348460i 0.948910 0.315547i \(-0.102188\pi\)
−0.747727 + 0.664007i \(0.768855\pi\)
\(30\) −1.20274 + 1.24636i −0.219589 + 0.227554i
\(31\) 0.275498 0.0494810 0.0247405 0.999694i \(-0.492124\pi\)
0.0247405 + 0.999694i \(0.492124\pi\)
\(32\) −1.00000 −0.176777
\(33\) 3.75314 + 0.934332i 0.653337 + 0.162646i
\(34\) 2.56362 + 4.44032i 0.439658 + 0.761509i
\(35\) 0.710533 + 2.54856i 0.120102 + 0.430785i
\(36\) −2.54300 + 1.59158i −0.423834 + 0.265264i
\(37\) −1.07390 + 1.86005i −0.176548 + 0.305791i −0.940696 0.339251i \(-0.889827\pi\)
0.764148 + 0.645041i \(0.223160\pi\)
\(38\) −0.263417 + 0.456251i −0.0427318 + 0.0740137i
\(39\) 0.885476 + 0.220436i 0.141790 + 0.0352981i
\(40\) 0.500000 + 0.866025i 0.0790569 + 0.136931i
\(41\) 5.55378 9.61944i 0.867355 1.50230i 0.00266595 0.999996i \(-0.499151\pi\)
0.864689 0.502307i \(-0.167515\pi\)
\(42\) 0.127868 + 4.58079i 0.0197305 + 0.706831i
\(43\) 1.51419 + 2.62265i 0.230911 + 0.399950i 0.958077 0.286512i \(-0.0924959\pi\)
−0.727165 + 0.686463i \(0.759163\pi\)
\(44\) 1.11651 1.93384i 0.168320 0.291538i
\(45\) 2.64985 + 1.40651i 0.395017 + 0.209671i
\(46\) 3.82704 + 6.62863i 0.564266 + 0.977338i
\(47\) −0.971625 −0.141726 −0.0708630 0.997486i \(-0.522575\pi\)
−0.0708630 + 0.997486i \(0.522575\pi\)
\(48\) 0.478015 + 1.66478i 0.0689956 + 0.240291i
\(49\) 6.13160 + 3.37690i 0.875943 + 0.482415i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 6.16672 6.39042i 0.863514 0.894837i
\(52\) 0.263417 0.456251i 0.0365293 0.0632706i
\(53\) −5.80545 10.0553i −0.797440 1.38121i −0.921278 0.388905i \(-0.872854\pi\)
0.123838 0.992302i \(-0.460480\pi\)
\(54\) 3.86524 + 3.47275i 0.525992 + 0.472581i
\(55\) −2.23301 −0.301099
\(56\) 2.56238 + 0.658939i 0.342413 + 0.0880544i
\(57\) 0.885476 + 0.220436i 0.117284 + 0.0291975i
\(58\) −1.08341 1.87651i −0.142258 0.246398i
\(59\) −9.37789 −1.22090 −0.610449 0.792056i \(-0.709011\pi\)
−0.610449 + 0.792056i \(0.709011\pi\)
\(60\) 1.20274 1.24636i 0.155273 0.160905i
\(61\) 2.10645 0.269704 0.134852 0.990866i \(-0.456944\pi\)
0.134852 + 0.990866i \(0.456944\pi\)
\(62\) −0.275498 −0.0349883
\(63\) 7.56490 2.40256i 0.953088 0.302694i
\(64\) 1.00000 0.125000
\(65\) −0.526833 −0.0653456
\(66\) −3.75314 0.934332i −0.461979 0.115008i
\(67\) 2.64711 0.323396 0.161698 0.986840i \(-0.448303\pi\)
0.161698 + 0.986840i \(0.448303\pi\)
\(68\) −2.56362 4.44032i −0.310885 0.538468i
\(69\) 9.20584 9.53977i 1.10825 1.14845i
\(70\) −0.710533 2.54856i −0.0849250 0.304611i
\(71\) −0.00533612 −0.000633281 −0.000316641 1.00000i \(-0.500101\pi\)
−0.000316641 1.00000i \(0.500101\pi\)
\(72\) 2.54300 1.59158i 0.299696 0.187570i
\(73\) −2.19307 3.79852i −0.256680 0.444583i 0.708670 0.705540i \(-0.249295\pi\)
−0.965350 + 0.260957i \(0.915962\pi\)
\(74\) 1.07390 1.86005i 0.124838 0.216227i
\(75\) −1.68075 0.418418i −0.194076 0.0483147i
\(76\) 0.263417 0.456251i 0.0302160 0.0523356i
\(77\) −4.13520 + 4.21954i −0.471250 + 0.480861i
\(78\) −0.885476 0.220436i −0.100260 0.0249595i
\(79\) −12.0635 −1.35725 −0.678626 0.734484i \(-0.737424\pi\)
−0.678626 + 0.734484i \(0.737424\pi\)
\(80\) −0.500000 0.866025i −0.0559017 0.0968246i
\(81\) 3.93372 8.09480i 0.437080 0.899422i
\(82\) −5.55378 + 9.61944i −0.613313 + 1.06229i
\(83\) 7.55735 + 13.0897i 0.829527 + 1.43678i 0.898410 + 0.439158i \(0.144723\pi\)
−0.0688830 + 0.997625i \(0.521944\pi\)
\(84\) −0.127868 4.58079i −0.0139516 0.499805i
\(85\) −2.56362 + 4.44032i −0.278064 + 0.481621i
\(86\) −1.51419 2.62265i −0.163279 0.282808i
\(87\) −2.60610 + 2.70064i −0.279404 + 0.289539i
\(88\) −1.11651 + 1.93384i −0.119020 + 0.206149i
\(89\) 7.23714 12.5351i 0.767135 1.32872i −0.171975 0.985101i \(-0.555015\pi\)
0.939110 0.343616i \(-0.111652\pi\)
\(90\) −2.64985 1.40651i −0.279319 0.148259i
\(91\) −0.975615 + 0.995514i −0.102272 + 0.104358i
\(92\) −3.82704 6.62863i −0.398996 0.691082i
\(93\) 0.131693 + 0.458645i 0.0136559 + 0.0475593i
\(94\) 0.971625 0.100215
\(95\) −0.526833 −0.0540520
\(96\) −0.478015 1.66478i −0.0487872 0.169911i
\(97\) −2.85868 4.95139i −0.290255 0.502737i 0.683615 0.729843i \(-0.260407\pi\)
−0.973870 + 0.227106i \(0.927074\pi\)
\(98\) −6.13160 3.37690i −0.619385 0.341119i
\(99\) 0.238598 + 6.69478i 0.0239800 + 0.672851i
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −1.87970 + 3.25574i −0.187037 + 0.323958i −0.944261 0.329197i \(-0.893222\pi\)
0.757224 + 0.653156i \(0.226555\pi\)
\(102\) −6.16672 + 6.39042i −0.610597 + 0.632746i
\(103\) −7.98356 13.8279i −0.786643 1.36251i −0.928012 0.372549i \(-0.878484\pi\)
0.141369 0.989957i \(-0.454850\pi\)
\(104\) −0.263417 + 0.456251i −0.0258301 + 0.0447391i
\(105\) −3.90315 + 2.40113i −0.380908 + 0.234327i
\(106\) 5.80545 + 10.0553i 0.563875 + 0.976661i
\(107\) −7.12712 + 12.3445i −0.689005 + 1.19339i 0.283155 + 0.959074i \(0.408619\pi\)
−0.972160 + 0.234317i \(0.924715\pi\)
\(108\) −3.86524 3.47275i −0.371932 0.334165i
\(109\) 3.63550 + 6.29687i 0.348218 + 0.603131i 0.985933 0.167141i \(-0.0534537\pi\)
−0.637715 + 0.770272i \(0.720120\pi\)
\(110\) 2.23301 0.212909
\(111\) −3.60992 0.898679i −0.342639 0.0852988i
\(112\) −2.56238 0.658939i −0.242122 0.0622638i
\(113\) −2.28801 + 3.96294i −0.215238 + 0.372802i −0.953346 0.301880i \(-0.902386\pi\)
0.738108 + 0.674682i \(0.235719\pi\)
\(114\) −0.885476 0.220436i −0.0829324 0.0206458i
\(115\) −3.82704 + 6.62863i −0.356873 + 0.618123i
\(116\) 1.08341 + 1.87651i 0.100592 + 0.174230i
\(117\) 0.0562924 + 1.57950i 0.00520423 + 0.146025i
\(118\) 9.37789 0.863305
\(119\) 3.64308 + 13.0671i 0.333960 + 1.19786i
\(120\) −1.20274 + 1.24636i −0.109794 + 0.113777i
\(121\) 3.00683 + 5.20798i 0.273348 + 0.473453i
\(122\) −2.10645 −0.190709
\(123\) 18.6691 + 4.64760i 1.68333 + 0.419060i
\(124\) 0.275498 0.0247405
\(125\) 1.00000 0.0894427
\(126\) −7.56490 + 2.40256i −0.673935 + 0.214037i
\(127\) −5.62615 −0.499240 −0.249620 0.968344i \(-0.580306\pi\)
−0.249620 + 0.968344i \(0.580306\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −3.64234 + 3.77446i −0.320690 + 0.332323i
\(130\) 0.526833 0.0462063
\(131\) −4.12218 7.13982i −0.360156 0.623809i 0.627830 0.778350i \(-0.283943\pi\)
−0.987986 + 0.154541i \(0.950610\pi\)
\(132\) 3.75314 + 0.934332i 0.326669 + 0.0813231i
\(133\) −0.975615 + 0.995514i −0.0845966 + 0.0863220i
\(134\) −2.64711 −0.228675
\(135\) −1.07487 + 5.08376i −0.0925099 + 0.437541i
\(136\) 2.56362 + 4.44032i 0.219829 + 0.380755i
\(137\) −2.02361 + 3.50500i −0.172889 + 0.299452i −0.939429 0.342745i \(-0.888643\pi\)
0.766540 + 0.642197i \(0.221977\pi\)
\(138\) −9.20584 + 9.53977i −0.783653 + 0.812079i
\(139\) 1.79315 3.10583i 0.152093 0.263433i −0.779904 0.625899i \(-0.784732\pi\)
0.931997 + 0.362467i \(0.118065\pi\)
\(140\) 0.710533 + 2.54856i 0.0600510 + 0.215392i
\(141\) −0.464452 1.61754i −0.0391139 0.136222i
\(142\) 0.00533612 0.000447798
\(143\) −0.588212 1.01881i −0.0491888 0.0851975i
\(144\) −2.54300 + 1.59158i −0.211917 + 0.132632i
\(145\) 1.08341 1.87651i 0.0899720 0.155836i
\(146\) 2.19307 + 3.79852i 0.181500 + 0.314368i
\(147\) −2.69081 + 11.8220i −0.221934 + 0.975062i
\(148\) −1.07390 + 1.86005i −0.0882741 + 0.152895i
\(149\) −5.72149 9.90991i −0.468723 0.811852i 0.530638 0.847599i \(-0.321952\pi\)
−0.999361 + 0.0357467i \(0.988619\pi\)
\(150\) 1.68075 + 0.418418i 0.137233 + 0.0341637i
\(151\) −5.65073 + 9.78735i −0.459850 + 0.796484i −0.998953 0.0457565i \(-0.985430\pi\)
0.539103 + 0.842240i \(0.318763\pi\)
\(152\) −0.263417 + 0.456251i −0.0213659 + 0.0370068i
\(153\) 13.5864 + 7.21154i 1.09840 + 0.583018i
\(154\) 4.13520 4.21954i 0.333224 0.340020i
\(155\) −0.137749 0.238589i −0.0110643 0.0191639i
\(156\) 0.885476 + 0.220436i 0.0708948 + 0.0176490i
\(157\) 13.8155 1.10260 0.551300 0.834307i \(-0.314132\pi\)
0.551300 + 0.834307i \(0.314132\pi\)
\(158\) 12.0635 0.959722
\(159\) 13.9649 14.4714i 1.10749 1.14766i
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) 5.43848 + 19.5069i 0.428612 + 1.53736i
\(162\) −3.93372 + 8.09480i −0.309063 + 0.635988i
\(163\) −1.39055 + 2.40850i −0.108916 + 0.188649i −0.915332 0.402701i \(-0.868071\pi\)
0.806415 + 0.591350i \(0.201405\pi\)
\(164\) 5.55378 9.61944i 0.433678 0.751152i
\(165\) −1.06741 3.71748i −0.0830981 0.289405i
\(166\) −7.55735 13.0897i −0.586564 1.01596i
\(167\) −12.1068 + 20.9696i −0.936854 + 1.62268i −0.165559 + 0.986200i \(0.552943\pi\)
−0.771295 + 0.636478i \(0.780391\pi\)
\(168\) 0.127868 + 4.58079i 0.00986526 + 0.353416i
\(169\) 6.36122 + 11.0180i 0.489325 + 0.847536i
\(170\) 2.56362 4.44032i 0.196621 0.340557i
\(171\) 0.0562924 + 1.57950i 0.00430479 + 0.120787i
\(172\) 1.51419 + 2.62265i 0.115456 + 0.199975i
\(173\) 16.1579 1.22846 0.614230 0.789127i \(-0.289467\pi\)
0.614230 + 0.789127i \(0.289467\pi\)
\(174\) 2.60610 2.70064i 0.197568 0.204735i
\(175\) 1.85185 1.88962i 0.139987 0.142842i
\(176\) 1.11651 1.93384i 0.0841598 0.145769i
\(177\) −4.48278 15.6122i −0.336946 1.17348i
\(178\) −7.23714 + 12.5351i −0.542447 + 0.939545i
\(179\) 1.60232 + 2.77530i 0.119763 + 0.207435i 0.919674 0.392684i \(-0.128453\pi\)
−0.799911 + 0.600119i \(0.795120\pi\)
\(180\) 2.64985 + 1.40651i 0.197508 + 0.104835i
\(181\) −12.5197 −0.930580 −0.465290 0.885158i \(-0.654050\pi\)
−0.465290 + 0.885158i \(0.654050\pi\)
\(182\) 0.975615 0.995514i 0.0723174 0.0737924i
\(183\) 1.00692 + 3.50679i 0.0744334 + 0.259229i
\(184\) 3.82704 + 6.62863i 0.282133 + 0.488669i
\(185\) 2.14780 0.157910
\(186\) −0.131693 0.458645i −0.00965616 0.0336295i
\(187\) −11.4492 −0.837248
\(188\) −0.971625 −0.0708630
\(189\) 7.61588 + 11.4455i 0.553974 + 0.832534i
\(190\) 0.526833 0.0382205
\(191\) 7.44740 0.538875 0.269437 0.963018i \(-0.413162\pi\)
0.269437 + 0.963018i \(0.413162\pi\)
\(192\) 0.478015 + 1.66478i 0.0344978 + 0.120145i
\(193\) 14.6540 1.05482 0.527409 0.849612i \(-0.323164\pi\)
0.527409 + 0.849612i \(0.323164\pi\)
\(194\) 2.85868 + 4.95139i 0.205242 + 0.355489i
\(195\) −0.251834 0.877063i −0.0180342 0.0628078i
\(196\) 6.13160 + 3.37690i 0.437971 + 0.241207i
\(197\) −25.8629 −1.84266 −0.921328 0.388787i \(-0.872894\pi\)
−0.921328 + 0.388787i \(0.872894\pi\)
\(198\) −0.238598 6.69478i −0.0169564 0.475778i
\(199\) −13.4274 23.2570i −0.951844 1.64864i −0.741430 0.671031i \(-0.765852\pi\)
−0.210415 0.977612i \(-0.567481\pi\)
\(200\) 0.500000 0.866025i 0.0353553 0.0612372i
\(201\) 1.26536 + 4.40686i 0.0892516 + 0.310836i
\(202\) 1.87970 3.25574i 0.132255 0.229073i
\(203\) −1.53959 5.52224i −0.108058 0.387585i
\(204\) 6.16672 6.39042i 0.431757 0.447419i
\(205\) −11.1076 −0.775786
\(206\) 7.98356 + 13.8279i 0.556241 + 0.963437i
\(207\) 20.2822 + 10.7656i 1.40971 + 0.748258i
\(208\) 0.263417 0.456251i 0.0182647 0.0316353i
\(209\) −0.588212 1.01881i −0.0406875 0.0704728i
\(210\) 3.90315 2.40113i 0.269343 0.165694i
\(211\) −6.94801 + 12.0343i −0.478321 + 0.828476i −0.999691 0.0248548i \(-0.992088\pi\)
0.521370 + 0.853330i \(0.325421\pi\)
\(212\) −5.80545 10.0553i −0.398720 0.690604i
\(213\) −0.00255075 0.00888349i −0.000174774 0.000608687i
\(214\) 7.12712 12.3445i 0.487200 0.843855i
\(215\) 1.51419 2.62265i 0.103267 0.178863i
\(216\) 3.86524 + 3.47275i 0.262996 + 0.236290i
\(217\) −0.705932 0.181537i −0.0479218 0.0123235i
\(218\) −3.63550 6.29687i −0.246227 0.426478i
\(219\) 5.27538 5.46674i 0.356477 0.369408i
\(220\) −2.23301 −0.150550
\(221\) −2.70120 −0.181703
\(222\) 3.60992 + 0.898679i 0.242282 + 0.0603154i
\(223\) 8.66935 + 15.0158i 0.580543 + 1.00553i 0.995415 + 0.0956497i \(0.0304929\pi\)
−0.414872 + 0.909880i \(0.636174\pi\)
\(224\) 2.56238 + 0.658939i 0.171206 + 0.0440272i
\(225\) −0.106850 2.99810i −0.00712337 0.199873i
\(226\) 2.28801 3.96294i 0.152196 0.263611i
\(227\) −11.4437 + 19.8210i −0.759543 + 1.31557i 0.183542 + 0.983012i \(0.441244\pi\)
−0.943084 + 0.332554i \(0.892090\pi\)
\(228\) 0.885476 + 0.220436i 0.0586421 + 0.0145988i
\(229\) −7.16344 12.4074i −0.473374 0.819907i 0.526162 0.850385i \(-0.323631\pi\)
−0.999535 + 0.0304772i \(0.990297\pi\)
\(230\) 3.82704 6.62863i 0.252347 0.437079i
\(231\) −9.00130 4.86720i −0.592242 0.320238i
\(232\) −1.08341 1.87651i −0.0711291 0.123199i
\(233\) −10.0050 + 17.3291i −0.655448 + 1.13527i 0.326333 + 0.945255i \(0.394187\pi\)
−0.981781 + 0.190015i \(0.939146\pi\)
\(234\) −0.0562924 1.57950i −0.00367995 0.103255i
\(235\) 0.485812 + 0.841452i 0.0316909 + 0.0548903i
\(236\) −9.37789 −0.610449
\(237\) −5.76655 20.0831i −0.374577 1.30454i
\(238\) −3.64308 13.0671i −0.236146 0.847013i
\(239\) −6.36973 + 11.0327i −0.412023 + 0.713645i −0.995111 0.0987640i \(-0.968511\pi\)
0.583088 + 0.812409i \(0.301844\pi\)
\(240\) 1.20274 1.24636i 0.0776363 0.0804525i
\(241\) 6.93512 12.0120i 0.446731 0.773760i −0.551440 0.834214i \(-0.685922\pi\)
0.998171 + 0.0604542i \(0.0192549\pi\)
\(242\) −3.00683 5.20798i −0.193286 0.334782i
\(243\) 15.3565 + 2.67936i 0.985118 + 0.171881i
\(244\) 2.10645 0.134852
\(245\) −0.141315 6.99857i −0.00902829 0.447122i
\(246\) −18.6691 4.64760i −1.19030 0.296320i
\(247\) −0.138777 0.240368i −0.00883015 0.0152943i
\(248\) −0.275498 −0.0174942
\(249\) −18.1790 + 18.8384i −1.15205 + 1.19384i
\(250\) −1.00000 −0.0632456
\(251\) 16.0713 1.01441 0.507206 0.861825i \(-0.330678\pi\)
0.507206 + 0.861825i \(0.330678\pi\)
\(252\) 7.56490 2.40256i 0.476544 0.151347i
\(253\) −17.0916 −1.07454
\(254\) 5.62615 0.353016
\(255\) −8.61763 2.14533i −0.539657 0.134346i
\(256\) 1.00000 0.0625000
\(257\) −4.64364 8.04303i −0.289662 0.501710i 0.684067 0.729420i \(-0.260210\pi\)
−0.973729 + 0.227709i \(0.926876\pi\)
\(258\) 3.64234 3.77446i 0.226762 0.234988i
\(259\) 3.97740 4.05853i 0.247144 0.252185i
\(260\) −0.526833 −0.0326728
\(261\) −5.74173 3.04765i −0.355404 0.188645i
\(262\) 4.12218 + 7.13982i 0.254669 + 0.441100i
\(263\) 14.2793 24.7324i 0.880498 1.52507i 0.0297091 0.999559i \(-0.490542\pi\)
0.850789 0.525508i \(-0.176125\pi\)
\(264\) −3.75314 0.934332i −0.230990 0.0575041i
\(265\) −5.80545 + 10.0553i −0.356626 + 0.617695i
\(266\) 0.975615 0.995514i 0.0598188 0.0610389i
\(267\) 24.3277 + 6.05630i 1.48883 + 0.370639i
\(268\) 2.64711 0.161698
\(269\) −5.70674 9.88437i −0.347946 0.602660i 0.637938 0.770087i \(-0.279787\pi\)
−0.985884 + 0.167427i \(0.946454\pi\)
\(270\) 1.07487 5.08376i 0.0654144 0.309388i
\(271\) 5.25046 9.09407i 0.318943 0.552425i −0.661325 0.750100i \(-0.730005\pi\)
0.980268 + 0.197674i \(0.0633388\pi\)
\(272\) −2.56362 4.44032i −0.155442 0.269234i
\(273\) −2.12367 1.14832i −0.128531 0.0694993i
\(274\) 2.02361 3.50500i 0.122251 0.211745i
\(275\) 1.11651 + 1.93384i 0.0673278 + 0.116615i
\(276\) 9.20584 9.53977i 0.554126 0.574227i
\(277\) 14.8161 25.6623i 0.890214 1.54190i 0.0505950 0.998719i \(-0.483888\pi\)
0.839619 0.543176i \(-0.182778\pi\)
\(278\) −1.79315 + 3.10583i −0.107546 + 0.186275i
\(279\) −0.700593 + 0.438479i −0.0419434 + 0.0262510i
\(280\) −0.710533 2.54856i −0.0424625 0.152305i
\(281\) −5.70650 9.88395i −0.340421 0.589627i 0.644090 0.764950i \(-0.277236\pi\)
−0.984511 + 0.175323i \(0.943903\pi\)
\(282\) 0.464452 + 1.61754i 0.0276577 + 0.0963233i
\(283\) 10.2884 0.611581 0.305791 0.952099i \(-0.401079\pi\)
0.305791 + 0.952099i \(0.401079\pi\)
\(284\) −0.00533612 −0.000316641
\(285\) −0.251834 0.877063i −0.0149174 0.0519527i
\(286\) 0.588212 + 1.01881i 0.0347817 + 0.0602437i
\(287\) −20.5695 + 20.9891i −1.21418 + 1.23895i
\(288\) 2.54300 1.59158i 0.149848 0.0937850i
\(289\) −4.64432 + 8.04420i −0.273195 + 0.473188i
\(290\) −1.08341 + 1.87651i −0.0636198 + 0.110193i
\(291\) 6.87649 7.12593i 0.403107 0.417729i
\(292\) −2.19307 3.79852i −0.128340 0.222291i
\(293\) 3.97898 6.89179i 0.232454 0.402623i −0.726076 0.687615i \(-0.758658\pi\)
0.958530 + 0.284992i \(0.0919911\pi\)
\(294\) 2.69081 11.8220i 0.156931 0.689473i
\(295\) 4.68895 + 8.12149i 0.273001 + 0.472852i
\(296\) 1.07390 1.86005i 0.0624192 0.108113i
\(297\) −11.0313 + 3.59742i −0.640101 + 0.208744i
\(298\) 5.72149 + 9.90991i 0.331437 + 0.574066i
\(299\) −4.03242 −0.233201
\(300\) −1.68075 0.418418i −0.0970382 0.0241574i
\(301\) −2.15176 7.71799i −0.124025 0.444857i
\(302\) 5.65073 9.78735i 0.325163 0.563199i
\(303\) −6.31863 1.57300i −0.362996 0.0903666i
\(304\) 0.263417 0.456251i 0.0151080 0.0261678i
\(305\) −1.05323 1.82424i −0.0603076 0.104456i
\(306\) −13.5864 7.21154i −0.776685 0.412256i
\(307\) 0.923980 0.0527343 0.0263672 0.999652i \(-0.491606\pi\)
0.0263672 + 0.999652i \(0.491606\pi\)
\(308\) −4.13520 + 4.21954i −0.235625 + 0.240431i
\(309\) 19.2042 19.9008i 1.09249 1.13212i
\(310\) 0.137749 + 0.238589i 0.00782363 + 0.0135509i
\(311\) 15.8576 0.899203 0.449602 0.893229i \(-0.351566\pi\)
0.449602 + 0.893229i \(0.351566\pi\)
\(312\) −0.885476 0.220436i −0.0501302 0.0124798i
\(313\) −33.0817 −1.86989 −0.934945 0.354791i \(-0.884552\pi\)
−0.934945 + 0.354791i \(0.884552\pi\)
\(314\) −13.8155 −0.779656
\(315\) −5.86313 5.35011i −0.330350 0.301445i
\(316\) −12.0635 −0.678626
\(317\) 28.3359 1.59150 0.795750 0.605625i \(-0.207077\pi\)
0.795750 + 0.605625i \(0.207077\pi\)
\(318\) −13.9649 + 14.4714i −0.783110 + 0.811517i
\(319\) 4.83852 0.270905
\(320\) −0.500000 0.866025i −0.0279508 0.0484123i
\(321\) −23.9578 5.96423i −1.33720 0.332891i
\(322\) −5.43848 19.5069i −0.303074 1.08707i
\(323\) −2.70120 −0.150299
\(324\) 3.93372 8.09480i 0.218540 0.449711i
\(325\) 0.263417 + 0.456251i 0.0146117 + 0.0253083i
\(326\) 1.39055 2.40850i 0.0770155 0.133395i
\(327\) −8.74510 + 9.06232i −0.483605 + 0.501147i
\(328\) −5.55378 + 9.61944i −0.306656 + 0.531144i
\(329\) 2.48967 + 0.640241i 0.137260 + 0.0352976i
\(330\) 1.06741 + 3.71748i 0.0587592 + 0.204640i
\(331\) 27.1791 1.49390 0.746949 0.664881i \(-0.231518\pi\)
0.746949 + 0.664881i \(0.231518\pi\)
\(332\) 7.55735 + 13.0897i 0.414763 + 0.718391i
\(333\) −0.229494 6.43932i −0.0125762 0.352873i
\(334\) 12.1068 20.9696i 0.662456 1.14741i
\(335\) −1.32356 2.29246i −0.0723135 0.125251i
\(336\) −0.127868 4.58079i −0.00697580 0.249903i
\(337\) 13.5294 23.4336i 0.736993 1.27651i −0.216851 0.976205i \(-0.569579\pi\)
0.953844 0.300304i \(-0.0970881\pi\)
\(338\) −6.36122 11.0180i −0.346005 0.599298i
\(339\) −7.69114 1.91469i −0.417726 0.103991i
\(340\) −2.56362 + 4.44032i −0.139032 + 0.240810i
\(341\) 0.307596 0.532771i 0.0166572 0.0288512i
\(342\) −0.0562924 1.57950i −0.00304394 0.0854094i
\(343\) −13.4863 12.6933i −0.728193 0.685372i
\(344\) −1.51419 2.62265i −0.0816395 0.141404i
\(345\) −12.8646 3.20260i −0.692607 0.172422i
\(346\) −16.1579 −0.868652
\(347\) 22.7656 1.22212 0.611061 0.791583i \(-0.290743\pi\)
0.611061 + 0.791583i \(0.290743\pi\)
\(348\) −2.60610 + 2.70064i −0.139702 + 0.144769i
\(349\) −15.7736 27.3207i −0.844341 1.46244i −0.886192 0.463317i \(-0.846659\pi\)
0.0418517 0.999124i \(-0.486674\pi\)
\(350\) −1.85185 + 1.88962i −0.0989855 + 0.101004i
\(351\) −2.60261 + 0.848739i −0.138917 + 0.0453023i
\(352\) −1.11651 + 1.93384i −0.0595100 + 0.103074i
\(353\) 11.6980 20.2615i 0.622622 1.07841i −0.366374 0.930468i \(-0.619401\pi\)
0.988996 0.147945i \(-0.0472657\pi\)
\(354\) 4.48278 + 15.6122i 0.238257 + 0.829777i
\(355\) 0.00266806 + 0.00462122i 0.000141606 + 0.000245269i
\(356\) 7.23714 12.5351i 0.383568 0.664359i
\(357\) −20.0124 + 12.3112i −1.05917 + 0.651578i
\(358\) −1.60232 2.77530i −0.0846851 0.146679i
\(359\) −13.0864 + 22.6664i −0.690676 + 1.19629i 0.280941 + 0.959725i \(0.409353\pi\)
−0.971617 + 0.236561i \(0.923980\pi\)
\(360\) −2.64985 1.40651i −0.139660 0.0741297i
\(361\) 9.36122 + 16.2141i 0.492696 + 0.853374i
\(362\) 12.5197 0.658020
\(363\) −7.23285 + 7.49521i −0.379626 + 0.393397i
\(364\) −0.975615 + 0.995514i −0.0511361 + 0.0521791i
\(365\) −2.19307 + 3.79852i −0.114791 + 0.198823i
\(366\) −1.00692 3.50679i −0.0526324 0.183303i
\(367\) 15.3517 26.5900i 0.801354 1.38799i −0.117371 0.993088i \(-0.537447\pi\)
0.918725 0.394898i \(-0.129220\pi\)
\(368\) −3.82704 6.62863i −0.199498 0.345541i
\(369\) 1.18685 + 33.3016i 0.0617849 + 1.73361i
\(370\) −2.14780 −0.111659
\(371\) 8.24993 + 29.5911i 0.428315 + 1.53629i
\(372\) 0.131693 + 0.458645i 0.00682794 + 0.0237796i
\(373\) 7.19286 + 12.4584i 0.372432 + 0.645071i 0.989939 0.141494i \(-0.0451907\pi\)
−0.617507 + 0.786565i \(0.711857\pi\)
\(374\) 11.4492 0.592024
\(375\) 0.478015 + 1.66478i 0.0246846 + 0.0859690i
\(376\) 0.971625 0.0501077
\(377\) 1.14155 0.0587927
\(378\) −7.61588 11.4455i −0.391719 0.588690i
\(379\) −2.90593 −0.149268 −0.0746338 0.997211i \(-0.523779\pi\)
−0.0746338 + 0.997211i \(0.523779\pi\)
\(380\) −0.526833 −0.0270260
\(381\) −2.68939 9.36632i −0.137782 0.479851i
\(382\) −7.44740 −0.381042
\(383\) −6.18254 10.7085i −0.315913 0.547178i 0.663718 0.747983i \(-0.268978\pi\)
−0.979631 + 0.200805i \(0.935644\pi\)
\(384\) −0.478015 1.66478i −0.0243936 0.0849556i
\(385\) 5.72183 + 1.47142i 0.291611 + 0.0749904i
\(386\) −14.6540 −0.745869
\(387\) −8.02475 4.25945i −0.407921 0.216520i
\(388\) −2.85868 4.95139i −0.145128 0.251369i
\(389\) 3.54720 6.14393i 0.179850 0.311510i −0.761979 0.647602i \(-0.775772\pi\)
0.941829 + 0.336092i \(0.109105\pi\)
\(390\) 0.251834 + 0.877063i 0.0127521 + 0.0444118i
\(391\) −19.6222 + 33.9866i −0.992336 + 1.71878i
\(392\) −6.13160 3.37690i −0.309693 0.170559i
\(393\) 9.91579 10.2755i 0.500185 0.518329i
\(394\) 25.8629 1.30295
\(395\) 6.03176 + 10.4473i 0.303491 + 0.525661i
\(396\) 0.238598 + 6.69478i 0.0119900 + 0.336426i
\(397\) 16.2398 28.1281i 0.815050 1.41171i −0.0942422 0.995549i \(-0.530043\pi\)
0.909292 0.416158i \(-0.136624\pi\)
\(398\) 13.4274 + 23.2570i 0.673056 + 1.16577i
\(399\) −2.12367 1.14832i −0.106317 0.0574877i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 11.6659 + 20.2060i 0.582568 + 1.00904i 0.995174 + 0.0981281i \(0.0312855\pi\)
−0.412605 + 0.910910i \(0.635381\pi\)
\(402\) −1.26536 4.40686i −0.0631104 0.219794i
\(403\) 0.0725709 0.125696i 0.00361501 0.00626139i
\(404\) −1.87970 + 3.25574i −0.0935187 + 0.161979i
\(405\) −8.97717 + 0.640696i −0.446079 + 0.0318364i
\(406\) 1.53959 + 5.52224i 0.0764087 + 0.274064i
\(407\) 2.39803 + 4.15352i 0.118866 + 0.205882i
\(408\) −6.16672 + 6.39042i −0.305298 + 0.316373i
\(409\) 15.0197 0.742674 0.371337 0.928498i \(-0.378899\pi\)
0.371337 + 0.928498i \(0.378899\pi\)
\(410\) 11.1076 0.548564
\(411\) −6.80237 1.69343i −0.335536 0.0835307i
\(412\) −7.98356 13.8279i −0.393322 0.681253i
\(413\) 24.0297 + 6.17946i 1.18243 + 0.304071i
\(414\) −20.2822 10.7656i −0.996815 0.529098i
\(415\) 7.55735 13.0897i 0.370976 0.642549i
\(416\) −0.263417 + 0.456251i −0.0129151 + 0.0223695i
\(417\) 6.02768 + 1.50057i 0.295177 + 0.0734833i
\(418\) 0.588212 + 1.01881i 0.0287704 + 0.0498318i
\(419\) 13.3107 23.0548i 0.650270 1.12630i −0.332788 0.943002i \(-0.607989\pi\)
0.983057 0.183298i \(-0.0586774\pi\)
\(420\) −3.90315 + 2.40113i −0.190454 + 0.117163i
\(421\) 7.36383 + 12.7545i 0.358891 + 0.621617i 0.987776 0.155881i \(-0.0498216\pi\)
−0.628885 + 0.777498i \(0.716488\pi\)
\(422\) 6.94801 12.0343i 0.338224 0.585821i
\(423\) 2.47084 1.54642i 0.120137 0.0751896i
\(424\) 5.80545 + 10.0553i 0.281938 + 0.488330i
\(425\) 5.12724 0.248708
\(426\) 0.00255075 + 0.00888349i 0.000123584 + 0.000430406i
\(427\) −5.39753 1.38802i −0.261205 0.0671711i
\(428\) −7.12712 + 12.3445i −0.344502 + 0.596696i
\(429\) 1.41493 1.46625i 0.0683134 0.0707914i
\(430\) −1.51419 + 2.62265i −0.0730206 + 0.126475i
\(431\) 10.1685 + 17.6124i 0.489800 + 0.848358i 0.999931 0.0117385i \(-0.00373657\pi\)
−0.510131 + 0.860096i \(0.670403\pi\)
\(432\) −3.86524 3.47275i −0.185966 0.167083i
\(433\) 3.86021 0.185510 0.0927549 0.995689i \(-0.470433\pi\)
0.0927549 + 0.995689i \(0.470433\pi\)
\(434\) 0.705932 + 0.181537i 0.0338858 + 0.00871403i
\(435\) 3.64187 + 0.906633i 0.174614 + 0.0434697i
\(436\) 3.63550 + 6.29687i 0.174109 + 0.301565i
\(437\) −4.03242 −0.192897
\(438\) −5.27538 + 5.46674i −0.252068 + 0.261211i
\(439\) −21.8678 −1.04369 −0.521846 0.853040i \(-0.674756\pi\)
−0.521846 + 0.853040i \(0.674756\pi\)
\(440\) 2.23301 0.106455
\(441\) −20.9673 + 1.17148i −0.998443 + 0.0557846i
\(442\) 2.70120 0.128483
\(443\) 13.4669 0.639830 0.319915 0.947446i \(-0.396346\pi\)
0.319915 + 0.947446i \(0.396346\pi\)
\(444\) −3.60992 0.898679i −0.171319 0.0426494i
\(445\) −14.4743 −0.686147
\(446\) −8.66935 15.0158i −0.410506 0.711017i
\(447\) 13.7629 14.2621i 0.650962 0.674576i
\(448\) −2.56238 0.658939i −0.121061 0.0311319i
\(449\) 1.08899 0.0513928 0.0256964 0.999670i \(-0.491820\pi\)
0.0256964 + 0.999670i \(0.491820\pi\)
\(450\) 0.106850 + 2.99810i 0.00503698 + 0.141332i
\(451\) −12.4017 21.4803i −0.583971 1.01147i
\(452\) −2.28801 + 3.96294i −0.107619 + 0.186401i
\(453\) −18.9950 4.72873i −0.892461 0.222175i
\(454\) 11.4437 19.8210i 0.537078 0.930246i
\(455\) 1.34995 + 0.347151i 0.0632865 + 0.0162747i
\(456\) −0.885476 0.220436i −0.0414662 0.0103229i
\(457\) 30.3204 1.41833 0.709165 0.705043i \(-0.249072\pi\)
0.709165 + 0.705043i \(0.249072\pi\)
\(458\) 7.16344 + 12.4074i 0.334726 + 0.579762i
\(459\) −5.51111 + 26.0657i −0.257237 + 1.21664i
\(460\) −3.82704 + 6.62863i −0.178437 + 0.309061i
\(461\) −2.92909 5.07333i −0.136421 0.236289i 0.789718 0.613470i \(-0.210227\pi\)
−0.926140 + 0.377181i \(0.876893\pi\)
\(462\) 9.00130 + 4.86720i 0.418779 + 0.226443i
\(463\) 1.17566 2.03631i 0.0546376 0.0946352i −0.837413 0.546571i \(-0.815933\pi\)
0.892051 + 0.451936i \(0.149266\pi\)
\(464\) 1.08341 + 1.87651i 0.0502959 + 0.0871150i
\(465\) 0.331352 0.343372i 0.0153661 0.0159235i
\(466\) 10.0050 17.3291i 0.463472 0.802757i
\(467\) 5.59867 9.69718i 0.259076 0.448732i −0.706919 0.707295i \(-0.749915\pi\)
0.965995 + 0.258562i \(0.0832488\pi\)
\(468\) 0.0562924 + 1.57950i 0.00260212 + 0.0730123i
\(469\) −6.78291 1.74428i −0.313206 0.0805435i
\(470\) −0.485812 0.841452i −0.0224089 0.0388133i
\(471\) 6.60404 + 22.9999i 0.304298 + 1.05978i
\(472\) 9.37789 0.431653
\(473\) 6.76240 0.310935
\(474\) 5.76655 + 20.0831i 0.264866 + 0.922449i
\(475\) 0.263417 + 0.456251i 0.0120864 + 0.0209342i
\(476\) 3.64308 + 13.0671i 0.166980 + 0.598928i
\(477\) 30.7672 + 16.3309i 1.40873 + 0.747740i
\(478\) 6.36973 11.0327i 0.291344 0.504623i
\(479\) −17.6971 + 30.6523i −0.808601 + 1.40054i 0.105232 + 0.994448i \(0.466442\pi\)
−0.913833 + 0.406091i \(0.866892\pi\)
\(480\) −1.20274 + 1.24636i −0.0548972 + 0.0568885i
\(481\) 0.565767 + 0.979937i 0.0257968 + 0.0446813i
\(482\) −6.93512 + 12.0120i −0.315886 + 0.547131i
\(483\) −29.8750 + 18.3785i −1.35936 + 0.836249i
\(484\) 3.00683 + 5.20798i 0.136674 + 0.236726i
\(485\) −2.85868 + 4.95139i −0.129806 + 0.224831i
\(486\) −15.3565 2.67936i −0.696583 0.121538i
\(487\) 0.757797 + 1.31254i 0.0343391 + 0.0594770i 0.882684 0.469967i \(-0.155734\pi\)
−0.848345 + 0.529444i \(0.822401\pi\)
\(488\) −2.10645 −0.0953546
\(489\) −4.67434 1.16366i −0.211381 0.0526226i
\(490\) 0.141315 + 6.99857i 0.00638396 + 0.316163i
\(491\) 18.0909 31.3344i 0.816433 1.41410i −0.0918616 0.995772i \(-0.529282\pi\)
0.908294 0.418331i \(-0.137385\pi\)
\(492\) 18.6691 + 4.64760i 0.841666 + 0.209530i
\(493\) 5.55489 9.62135i 0.250180 0.433324i
\(494\) 0.138777 + 0.240368i 0.00624386 + 0.0108147i
\(495\) 5.67855 3.55402i 0.255232 0.159741i
\(496\) 0.275498 0.0123702
\(497\) 0.0136732 + 0.00351618i 0.000613326 + 0.000157722i
\(498\) 18.1790 18.8384i 0.814620 0.844170i
\(499\) −0.469827 0.813763i −0.0210323 0.0364291i 0.855318 0.518104i \(-0.173362\pi\)
−0.876350 + 0.481675i \(0.840029\pi\)
\(500\) 1.00000 0.0447214
\(501\) −40.6971 10.1314i −1.81821 0.452638i
\(502\) −16.0713 −0.717298
\(503\) −10.4278 −0.464951 −0.232475 0.972602i \(-0.574683\pi\)
−0.232475 + 0.972602i \(0.574683\pi\)
\(504\) −7.56490 + 2.40256i −0.336967 + 0.107019i
\(505\) 3.75941 0.167291
\(506\) 17.0916 0.759816
\(507\) −15.3017 + 15.8568i −0.679575 + 0.704226i
\(508\) −5.62615 −0.249620
\(509\) 13.2110 + 22.8820i 0.585565 + 1.01423i 0.994805 + 0.101802i \(0.0324607\pi\)
−0.409239 + 0.912427i \(0.634206\pi\)
\(510\) 8.61763 + 2.14533i 0.381595 + 0.0949968i
\(511\) 3.11651 + 11.1784i 0.137866 + 0.494501i
\(512\) −1.00000 −0.0441942
\(513\) −2.60261 + 0.848739i −0.114908 + 0.0374727i
\(514\) 4.64364 + 8.04303i 0.204822 + 0.354763i
\(515\) −7.98356 + 13.8279i −0.351798 + 0.609331i
\(516\) −3.64234 + 3.77446i −0.160345 + 0.166161i
\(517\) −1.08482 + 1.87897i −0.0477105 + 0.0826371i
\(518\) −3.97740 + 4.05853i −0.174757 + 0.178321i
\(519\) 7.72371 + 26.8993i 0.339033 + 1.18075i
\(520\) 0.526833 0.0231032
\(521\) −1.50358 2.60427i −0.0658730 0.114095i 0.831208 0.555962i \(-0.187650\pi\)
−0.897081 + 0.441866i \(0.854317\pi\)
\(522\) 5.74173 + 3.04765i 0.251309 + 0.133392i
\(523\) 18.7242 32.4313i 0.818752 1.41812i −0.0878504 0.996134i \(-0.528000\pi\)
0.906602 0.421986i \(-0.138667\pi\)
\(524\) −4.12218 7.13982i −0.180078 0.311905i
\(525\) 4.03102 + 2.17966i 0.175928 + 0.0951281i
\(526\) −14.2793 + 24.7324i −0.622606 + 1.07839i
\(527\) −0.706274 1.22330i −0.0307658 0.0532879i
\(528\) 3.75314 + 0.934332i 0.163334 + 0.0406616i
\(529\) −17.7925 + 30.8174i −0.773585 + 1.33989i
\(530\) 5.80545 10.0553i 0.252173 0.436776i
\(531\) 23.8480 14.9257i 1.03492 0.647720i
\(532\) −0.975615 + 0.995514i −0.0422983 + 0.0431610i
\(533\) −2.92592 5.06784i −0.126736 0.219512i
\(534\) −24.3277 6.05630i −1.05276 0.262082i
\(535\) 14.2542 0.616265
\(536\) −2.64711 −0.114338
\(537\) −3.85433 + 3.99415i −0.166327 + 0.172360i
\(538\) 5.70674 + 9.88437i 0.246035 + 0.426145i
\(539\) 13.3764 8.08723i 0.576161 0.348342i
\(540\) −1.07487 + 5.08376i −0.0462550 + 0.218770i
\(541\) −5.62522 + 9.74317i −0.241847 + 0.418892i −0.961240 0.275711i \(-0.911087\pi\)
0.719393 + 0.694603i \(0.244420\pi\)
\(542\) −5.25046 + 9.09407i −0.225527 + 0.390624i
\(543\) −5.98460 20.8425i −0.256824 0.894439i
\(544\) 2.56362 + 4.44032i 0.109914 + 0.190377i
\(545\) 3.63550 6.29687i 0.155728 0.269728i
\(546\) 2.12367 + 1.14832i 0.0908848 + 0.0491434i
\(547\) 10.8197 + 18.7402i 0.462616 + 0.801274i 0.999090 0.0426423i \(-0.0135776\pi\)
−0.536474 + 0.843917i \(0.680244\pi\)
\(548\) −2.02361 + 3.50500i −0.0864443 + 0.149726i
\(549\) −5.35671 + 3.35259i −0.228619 + 0.143085i
\(550\) −1.11651 1.93384i −0.0476080 0.0824594i
\(551\) 1.14155 0.0486316
\(552\) −9.20584 + 9.53977i −0.391826 + 0.406040i
\(553\) 30.9113 + 7.94911i 1.31448 + 0.338031i
\(554\) −14.8161 + 25.6623i −0.629476 + 1.09028i
\(555\) 1.02668 + 3.57562i 0.0435803 + 0.151777i
\(556\) 1.79315 3.10583i 0.0760465 0.131716i
\(557\) −9.39566 16.2738i −0.398107 0.689542i 0.595385 0.803440i \(-0.296999\pi\)
−0.993492 + 0.113899i \(0.963666\pi\)
\(558\) 0.700593 0.438479i 0.0296585 0.0185623i
\(559\) 1.59545 0.0674803
\(560\) 0.710533 + 2.54856i 0.0300255 + 0.107696i
\(561\) −5.47289 19.0604i −0.231066 0.804732i
\(562\) 5.70650 + 9.88395i 0.240714 + 0.416929i
\(563\) −3.30213 −0.139168 −0.0695842 0.997576i \(-0.522167\pi\)
−0.0695842 + 0.997576i \(0.522167\pi\)
\(564\) −0.464452 1.61754i −0.0195569 0.0681109i
\(565\) 4.57601 0.192514
\(566\) −10.2884 −0.432453
\(567\) −15.4137 + 18.1499i −0.647314 + 0.762224i
\(568\) 0.00533612 0.000223899
\(569\) −44.7468 −1.87589 −0.937943 0.346790i \(-0.887272\pi\)
−0.937943 + 0.346790i \(0.887272\pi\)
\(570\) 0.251834 + 0.877063i 0.0105482 + 0.0367361i
\(571\) −28.1036 −1.17610 −0.588049 0.808825i \(-0.700104\pi\)
−0.588049 + 0.808825i \(0.700104\pi\)
\(572\) −0.588212 1.01881i −0.0245944 0.0425987i
\(573\) 3.55997 + 12.3983i 0.148720 + 0.517946i
\(574\) 20.5695 20.9891i 0.858556 0.876067i
\(575\) 7.65408 0.319197
\(576\) −2.54300 + 1.59158i −0.105958 + 0.0663160i
\(577\) 14.2335 + 24.6531i 0.592548 + 1.02632i 0.993888 + 0.110394i \(0.0352113\pi\)
−0.401340 + 0.915929i \(0.631455\pi\)
\(578\) 4.64432 8.04420i 0.193178 0.334594i
\(579\) 7.00484 + 24.3957i 0.291111 + 1.01385i
\(580\) 1.08341 1.87651i 0.0449860 0.0779180i
\(581\) −10.7395 38.5207i −0.445549 1.59811i
\(582\) −6.87649 + 7.12593i −0.285040 + 0.295379i
\(583\) −25.9273 −1.07380
\(584\) 2.19307 + 3.79852i 0.0907501 + 0.157184i
\(585\) 1.33974 0.838499i 0.0553914 0.0346677i
\(586\) −3.97898 + 6.89179i −0.164370 + 0.284697i
\(587\) −4.98838 8.64012i −0.205892 0.356616i 0.744524 0.667595i \(-0.232676\pi\)
−0.950417 + 0.310979i \(0.899343\pi\)
\(588\) −2.69081 + 11.8220i −0.110967 + 0.487531i
\(589\) 0.0725709 0.125696i 0.00299023 0.00517923i
\(590\) −4.68895 8.12149i −0.193041 0.334357i
\(591\) −12.3629 43.0561i −0.508540 1.77109i
\(592\) −1.07390 + 1.86005i −0.0441371 + 0.0764476i
\(593\) −0.170172 + 0.294747i −0.00698813 + 0.0121038i −0.869498 0.493936i \(-0.835558\pi\)
0.862510 + 0.506040i \(0.168891\pi\)
\(594\) 11.0313 3.59742i 0.452620 0.147604i
\(595\) 9.49488 9.68854i 0.389252 0.397191i
\(596\) −5.72149 9.90991i −0.234361 0.405926i
\(597\) 32.2993 33.4709i 1.32192 1.36987i
\(598\) 4.03242 0.164898
\(599\) −12.9631 −0.529658 −0.264829 0.964295i \(-0.585316\pi\)
−0.264829 + 0.964295i \(0.585316\pi\)
\(600\) 1.68075 + 0.418418i 0.0686164 + 0.0170818i
\(601\) 14.1545 + 24.5163i 0.577374 + 1.00004i 0.995779 + 0.0917804i \(0.0292558\pi\)
−0.418406 + 0.908260i \(0.637411\pi\)
\(602\) 2.15176 + 7.71799i 0.0876993 + 0.314562i
\(603\) −6.73161 + 4.21310i −0.274132 + 0.171571i
\(604\) −5.65073 + 9.78735i −0.229925 + 0.398242i
\(605\) 3.00683 5.20798i 0.122245 0.211735i
\(606\) 6.31863 + 1.57300i 0.256677 + 0.0638989i
\(607\) 2.93624 + 5.08572i 0.119178 + 0.206423i 0.919442 0.393225i \(-0.128641\pi\)
−0.800264 + 0.599648i \(0.795307\pi\)
\(608\) −0.263417 + 0.456251i −0.0106830 + 0.0185034i
\(609\) 8.45739 5.20280i 0.342711 0.210828i
\(610\) 1.05323 + 1.82424i 0.0426439 + 0.0738614i
\(611\) −0.255942 + 0.443305i −0.0103543 + 0.0179342i
\(612\) 13.5864 + 7.21154i 0.549199 + 0.291509i
\(613\) −14.6200 25.3225i −0.590494 1.02277i −0.994166 0.107862i \(-0.965599\pi\)
0.403671 0.914904i \(-0.367734\pi\)
\(614\) −0.923980 −0.0372888
\(615\) −5.30959 18.4917i −0.214103 0.745657i
\(616\) 4.13520 4.21954i 0.166612 0.170010i
\(617\) −7.37990 + 12.7824i −0.297103 + 0.514598i −0.975472 0.220124i \(-0.929354\pi\)
0.678369 + 0.734722i \(0.262687\pi\)
\(618\) −19.2042 + 19.9008i −0.772507 + 0.800530i
\(619\) 10.7637 18.6433i 0.432630 0.749337i −0.564469 0.825454i \(-0.690919\pi\)
0.997099 + 0.0761173i \(0.0242523\pi\)
\(620\) −0.137749 0.238589i −0.00553214 0.00958195i
\(621\) −8.22712 + 38.9115i −0.330143 + 1.56147i
\(622\) −15.8576 −0.635833
\(623\) −26.8042 + 27.3509i −1.07389 + 1.09579i
\(624\) 0.885476 + 0.220436i 0.0354474 + 0.00882452i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 33.0817 1.32221
\(627\) 1.41493 1.46625i 0.0565068 0.0585566i
\(628\) 13.8155 0.551300
\(629\) 11.0123 0.439090
\(630\) 5.86313 + 5.35011i 0.233593 + 0.213154i
\(631\) 31.5811 1.25722 0.628612 0.777719i \(-0.283623\pi\)
0.628612 + 0.777719i \(0.283623\pi\)
\(632\) 12.0635 0.479861
\(633\) −23.3558 5.81434i −0.928308 0.231099i
\(634\) −28.3359 −1.12536
\(635\) 2.81308 + 4.87239i 0.111634 + 0.193355i
\(636\) 13.9649 14.4714i 0.553743 0.573829i
\(637\) 3.15588 1.90802i 0.125041 0.0755983i
\(638\) −4.83852 −0.191559
\(639\) 0.0135698 0.00849289i 0.000536812 0.000335973i
\(640\) 0.500000 + 0.866025i 0.0197642 + 0.0342327i
\(641\) −1.29659 + 2.24577i −0.0512124 + 0.0887024i −0.890495 0.454993i \(-0.849642\pi\)
0.839283 + 0.543695i \(0.182975\pi\)
\(642\) 23.9578 + 5.96423i 0.945541 + 0.235389i
\(643\) −15.3508 + 26.5883i −0.605375 + 1.04854i 0.386618 + 0.922240i \(0.373643\pi\)
−0.991992 + 0.126299i \(0.959690\pi\)
\(644\) 5.43848 + 19.5069i 0.214306 + 0.768678i
\(645\) 5.08995 + 1.26713i 0.200416 + 0.0498930i
\(646\) 2.70120 0.106277
\(647\) −13.4313 23.2637i −0.528039 0.914590i −0.999466 0.0326847i \(-0.989594\pi\)
0.471427 0.881905i \(-0.343739\pi\)
\(648\) −3.93372 + 8.09480i −0.154531 + 0.317994i
\(649\) −10.4705 + 18.1354i −0.411002 + 0.711876i
\(650\) −0.263417 0.456251i −0.0103321 0.0178956i
\(651\) −0.0352276 1.26200i −0.00138068 0.0494617i
\(652\) −1.39055 + 2.40850i −0.0544582 + 0.0943243i
\(653\) −6.57540 11.3889i −0.257315 0.445683i 0.708206 0.706005i \(-0.249505\pi\)
−0.965522 + 0.260322i \(0.916171\pi\)
\(654\) 8.74510 9.06232i 0.341960 0.354365i
\(655\) −4.12218 + 7.13982i −0.161067 + 0.278976i
\(656\) 5.55378 9.61944i 0.216839 0.375576i
\(657\) 11.6227 + 6.16918i 0.453443 + 0.240683i
\(658\) −2.48967 0.640241i −0.0970576 0.0249592i
\(659\) −15.2153 26.3536i −0.592702 1.02659i −0.993867 0.110584i \(-0.964728\pi\)
0.401165 0.916006i \(-0.368605\pi\)
\(660\) −1.06741 3.71748i −0.0415490 0.144703i
\(661\) 4.33819 0.168736 0.0843680 0.996435i \(-0.473113\pi\)
0.0843680 + 0.996435i \(0.473113\pi\)
\(662\) −27.1791 −1.05635
\(663\) −1.29122 4.49692i −0.0501467 0.174646i
\(664\) −7.55735 13.0897i −0.293282 0.507979i
\(665\) 1.34995 + 0.347151i 0.0523487 + 0.0134619i
\(666\) 0.229494 + 6.43932i 0.00889270 + 0.249519i
\(667\) 8.29247 14.3630i 0.321086 0.556137i
\(668\) −12.1068 + 20.9696i −0.468427 + 0.811339i
\(669\) −20.8539 + 21.6103i −0.806258 + 0.835504i
\(670\) 1.32356 + 2.29246i 0.0511334 + 0.0885656i
\(671\) 2.35187 4.07355i 0.0907928 0.157258i
\(672\) 0.127868 + 4.58079i 0.00493263 + 0.176708i
\(673\) −3.10175 5.37239i −0.119564 0.207090i 0.800031 0.599958i \(-0.204816\pi\)
−0.919595 + 0.392868i \(0.871483\pi\)
\(674\) −13.5294 + 23.4336i −0.521132 + 0.902628i
\(675\) 4.94010 1.61102i 0.190145 0.0620082i
\(676\) 6.36122 + 11.0180i 0.244662 + 0.423768i
\(677\) 31.0089 1.19177 0.595885 0.803070i \(-0.296801\pi\)
0.595885 + 0.803070i \(0.296801\pi\)
\(678\) 7.69114 + 1.91469i 0.295377 + 0.0735331i
\(679\) 4.06238 + 14.5710i 0.155900 + 0.559185i
\(680\) 2.56362 4.44032i 0.0983104 0.170279i
\(681\) −38.4679 9.57646i −1.47409 0.366971i
\(682\) −0.307596 + 0.532771i −0.0117784 + 0.0204009i
\(683\) −7.70020 13.3371i −0.294640 0.510331i 0.680261 0.732970i \(-0.261866\pi\)
−0.974901 + 0.222638i \(0.928533\pi\)
\(684\) 0.0562924 + 1.57950i 0.00215239 + 0.0603936i
\(685\) 4.04722 0.154636
\(686\) 13.4863 + 12.6933i 0.514910 + 0.484631i
\(687\) 17.2315 17.8565i 0.657422 0.681269i
\(688\) 1.51419 + 2.62265i 0.0577279 + 0.0999876i
\(689\) −6.11701 −0.233040
\(690\) 12.8646 + 3.20260i 0.489747 + 0.121921i
\(691\) −36.4864 −1.38801 −0.694003 0.719972i \(-0.744155\pi\)
−0.694003 + 0.719972i \(0.744155\pi\)
\(692\) 16.1579 0.614230
\(693\) 3.80007 17.3118i 0.144353 0.657621i
\(694\) −22.7656 −0.864171
\(695\) −3.58630 −0.136036
\(696\) 2.60610 2.70064i 0.0987841 0.102367i
\(697\) −56.9512 −2.15718
\(698\) 15.7736 + 27.3207i 0.597039 + 1.03410i
\(699\) −33.6318 8.37253i −1.27207 0.316678i
\(700\) 1.85185 1.88962i 0.0699933 0.0714209i
\(701\) 27.1020 1.02363 0.511813 0.859097i \(-0.328974\pi\)
0.511813 + 0.859097i \(0.328974\pi\)
\(702\) 2.60261 0.848739i 0.0982292 0.0320336i
\(703\) 0.565767 + 0.979937i 0.0213383 + 0.0369590i
\(704\) 1.11651 1.93384i 0.0420799 0.0728845i
\(705\) −1.16861 + 1.21100i −0.0440123 + 0.0456089i
\(706\) −11.6980 + 20.2615i −0.440260 + 0.762553i
\(707\) 6.96185 7.10384i 0.261827 0.267167i
\(708\) −4.48278 15.6122i −0.168473 0.586741i
\(709\) −20.2676 −0.761166 −0.380583 0.924747i \(-0.624277\pi\)
−0.380583 + 0.924747i \(0.624277\pi\)
\(710\) −0.00266806 0.00462122i −0.000100131 0.000173431i
\(711\) 30.6775 19.2001i 1.15050 0.720060i
\(712\) −7.23714 + 12.5351i −0.271223 + 0.469773i
\(713\) −1.05434 1.82618i −0.0394855 0.0683908i
\(714\) 20.0124 12.3112i 0.748945 0.460735i
\(715\) −0.588212 + 1.01881i −0.0219979 + 0.0381015i
\(716\) 1.60232 + 2.77530i 0.0598814 + 0.103718i
\(717\) −21.4119 5.33041i −0.799640 0.199068i
\(718\) 13.0864 22.6664i 0.488382 0.845902i
\(719\) 1.26005 2.18247i 0.0469919 0.0813924i −0.841573 0.540144i \(-0.818370\pi\)
0.888565 + 0.458751i \(0.151703\pi\)
\(720\) 2.64985 + 1.40651i 0.0987542 + 0.0524176i
\(721\) 11.3452 + 40.6931i 0.422516 + 1.51549i
\(722\) −9.36122 16.2141i −0.348389 0.603427i
\(723\) 23.3124 + 5.80356i 0.866999 + 0.215837i
\(724\) −12.5197 −0.465290
\(725\) −2.16681 −0.0804734
\(726\) 7.23285 7.49521i 0.268436 0.278174i
\(727\) −5.36316 9.28926i −0.198908 0.344520i 0.749266 0.662269i \(-0.230406\pi\)
−0.948175 + 0.317749i \(0.897073\pi\)
\(728\) 0.975615 0.995514i 0.0361587 0.0368962i
\(729\) 2.88008 + 26.8460i 0.106670 + 0.994295i
\(730\) 2.19307 3.79852i 0.0811693 0.140589i
\(731\) 7.76361 13.4470i 0.287148 0.497354i
\(732\) 1.00692 + 3.50679i 0.0372167 + 0.129615i
\(733\) 7.75728 + 13.4360i 0.286522 + 0.496270i 0.972977 0.230902i \(-0.0741676\pi\)
−0.686455 + 0.727172i \(0.740834\pi\)
\(734\) −15.3517 + 26.5900i −0.566643 + 0.981454i
\(735\) 11.5836 3.58068i 0.427266 0.132076i
\(736\) 3.82704 + 6.62863i 0.141067 + 0.244334i
\(737\) 2.95551 5.11910i 0.108868 0.188564i
\(738\) −1.18685 33.3016i −0.0436885 1.22585i
\(739\) 10.7231 + 18.5730i 0.394457 + 0.683220i 0.993032 0.117847i \(-0.0375994\pi\)
−0.598575 + 0.801067i \(0.704266\pi\)
\(740\) 2.14780 0.0789548
\(741\) 0.333823 0.345933i 0.0122633 0.0127082i
\(742\) −8.24993 29.5911i −0.302865 1.08632i
\(743\) −13.9789 + 24.2122i −0.512836 + 0.888258i 0.487053 + 0.873372i \(0.338072\pi\)
−0.999889 + 0.0148858i \(0.995262\pi\)
\(744\) −0.131693 0.458645i −0.00482808 0.0168147i
\(745\) −5.72149 + 9.90991i −0.209619 + 0.363071i
\(746\) −7.19286 12.4584i −0.263349 0.456134i
\(747\) −40.0517 21.2590i −1.46542 0.777827i
\(748\) −11.4492 −0.418624
\(749\) 26.3967 26.9351i 0.964514 0.984186i
\(750\) −0.478015 1.66478i −0.0174547 0.0607893i
\(751\) −25.4471 44.0757i −0.928577 1.60834i −0.785704 0.618602i \(-0.787699\pi\)
−0.142873 0.989741i \(-0.545634\pi\)
\(752\) −0.971625 −0.0354315
\(753\) 7.68234 + 26.7552i 0.279960 + 0.975015i
\(754\) −1.14155 −0.0415727
\(755\) 11.3015 0.411302
\(756\) 7.61588 + 11.4455i 0.276987 + 0.416267i
\(757\) 53.4414 1.94236 0.971180 0.238348i \(-0.0766059\pi\)
0.971180 + 0.238348i \(0.0766059\pi\)
\(758\) 2.90593 0.105548
\(759\) −8.17007 28.4539i −0.296555 1.03281i
\(760\) 0.526833 0.0191103
\(761\) 15.1847 + 26.3006i 0.550444 + 0.953397i 0.998242 + 0.0592623i \(0.0188748\pi\)
−0.447799 + 0.894134i \(0.647792\pi\)
\(762\) 2.68939 + 9.36632i 0.0974263 + 0.339306i
\(763\) −5.16629 18.5306i −0.187032 0.670851i
\(764\) 7.44740 0.269437
\(765\) −0.547849 15.3720i −0.0198075 0.555775i
\(766\) 6.18254 + 10.7085i 0.223384 + 0.386913i
\(767\) −2.47029 + 4.27867i −0.0891971 + 0.154494i
\(768\) 0.478015 + 1.66478i 0.0172489 + 0.0600727i
\(769\) −0.418349 + 0.724602i −0.0150861 + 0.0261298i −0.873470 0.486878i \(-0.838136\pi\)
0.858384 + 0.513008i \(0.171469\pi\)
\(770\) −5.72183 1.47142i −0.206200 0.0530262i
\(771\) 11.1702 11.5753i 0.402283 0.416876i
\(772\)