Properties

Label 630.2.i.f.121.3
Level 630
Weight 2
Character 630.121
Analytic conductor 5.031
Analytic rank 0
Dimension 12
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 630.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: 12.0.91830304992969.1
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.3
Root \(1.04029 + 0.958022i\)
Character \(\chi\) = 630.121
Dual form 630.2.i.f.151.3

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-0.433986 + 1.67680i) q^{3} +1.00000 q^{4} +(-0.500000 - 0.866025i) q^{5} +(0.433986 - 1.67680i) q^{6} +(1.23855 - 2.33795i) q^{7} -1.00000 q^{8} +(-2.62331 - 1.45541i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(-0.433986 + 1.67680i) q^{3} +1.00000 q^{4} +(-0.500000 - 0.866025i) q^{5} +(0.433986 - 1.67680i) q^{6} +(1.23855 - 2.33795i) q^{7} -1.00000 q^{8} +(-2.62331 - 1.45541i) q^{9} +(0.500000 + 0.866025i) q^{10} +(-2.00721 + 3.47659i) q^{11} +(-0.433986 + 1.67680i) q^{12} +(-0.0260834 + 0.0451777i) q^{13} +(-1.23855 + 2.33795i) q^{14} +(1.66914 - 0.462557i) q^{15} +1.00000 q^{16} +(3.62512 + 6.27890i) q^{17} +(2.62331 + 1.45541i) q^{18} +(-0.0260834 + 0.0451777i) q^{19} +(-0.500000 - 0.866025i) q^{20} +(3.38275 + 3.09144i) q^{21} +(2.00721 - 3.47659i) q^{22} +(2.65121 + 4.59203i) q^{23} +(0.433986 - 1.67680i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(0.0260834 - 0.0451777i) q^{26} +(3.57892 - 3.76714i) q^{27} +(1.23855 - 2.33795i) q^{28} +(-0.446313 - 0.773036i) q^{29} +(-1.66914 + 0.462557i) q^{30} -0.776310 q^{31} -1.00000 q^{32} +(-4.95845 - 4.87448i) q^{33} +(-3.62512 - 6.27890i) q^{34} +(-2.64400 + 0.0963576i) q^{35} +(-2.62331 - 1.45541i) q^{36} +(-3.30724 + 5.72831i) q^{37} +(0.0260834 - 0.0451777i) q^{38} +(-0.0644341 - 0.0633430i) q^{39} +(0.500000 + 0.866025i) q^{40} +(-6.15690 + 10.6641i) q^{41} +(-3.38275 - 3.09144i) q^{42} +(6.24713 + 10.8203i) q^{43} +(-2.00721 + 3.47659i) q^{44} +(0.0512311 + 2.99956i) q^{45} +(-2.65121 - 4.59203i) q^{46} +8.49425 q^{47} +(-0.433986 + 1.67680i) q^{48} +(-3.93199 - 5.79133i) q^{49} +(0.500000 - 0.866025i) q^{50} +(-12.1017 + 3.35365i) q^{51} +(-0.0260834 + 0.0451777i) q^{52} +(-3.85257 - 6.67285i) q^{53} +(-3.57892 + 3.76714i) q^{54} +4.01442 q^{55} +(-1.23855 + 2.33795i) q^{56} +(-0.0644341 - 0.0633430i) q^{57} +(0.446313 + 0.773036i) q^{58} -11.7196 q^{59} +(1.66914 - 0.462557i) q^{60} -6.00985 q^{61} +0.776310 q^{62} +(-6.65178 + 4.33056i) q^{63} +1.00000 q^{64} +0.0521667 q^{65} +(4.95845 + 4.87448i) q^{66} +7.03474 q^{67} +(3.62512 + 6.27890i) q^{68} +(-8.85049 + 2.45267i) q^{69} +(2.64400 - 0.0963576i) q^{70} +2.59733 q^{71} +(2.62331 + 1.45541i) q^{72} +(-0.00136380 - 0.00236218i) q^{73} +(3.30724 - 5.72831i) q^{74} +(-1.23516 - 1.21424i) q^{75} +(-0.0260834 + 0.0451777i) q^{76} +(5.64206 + 8.99869i) q^{77} +(0.0644341 + 0.0633430i) q^{78} +8.10742 q^{79} +(-0.500000 - 0.866025i) q^{80} +(4.76354 + 7.63601i) q^{81} +(6.15690 - 10.6641i) q^{82} +(-0.719302 - 1.24587i) q^{83} +(3.38275 + 3.09144i) q^{84} +(3.62512 - 6.27890i) q^{85} +(-6.24713 - 10.8203i) q^{86} +(1.48992 - 0.412890i) q^{87} +(2.00721 - 3.47659i) q^{88} +(-0.125893 + 0.218052i) q^{89} +(-0.0512311 - 2.99956i) q^{90} +(0.0733175 + 0.116936i) q^{91} +(2.65121 + 4.59203i) q^{92} +(0.336907 - 1.30172i) q^{93} -8.49425 q^{94} +0.0521667 q^{95} +(0.433986 - 1.67680i) q^{96} +(0.0494422 + 0.0856364i) q^{97} +(3.93199 + 5.79133i) q^{98} +(10.3254 - 6.19887i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 12q^{2} + 2q^{3} + 12q^{4} - 6q^{5} - 2q^{6} + 4q^{7} - 12q^{8} - 4q^{9} + O(q^{10}) \) \( 12q - 12q^{2} + 2q^{3} + 12q^{4} - 6q^{5} - 2q^{6} + 4q^{7} - 12q^{8} - 4q^{9} + 6q^{10} - 7q^{11} + 2q^{12} - 2q^{13} - 4q^{14} - q^{15} + 12q^{16} + q^{17} + 4q^{18} - 2q^{19} - 6q^{20} + 29q^{21} + 7q^{22} - 9q^{23} - 2q^{24} - 6q^{25} + 2q^{26} + 11q^{27} + 4q^{28} + 3q^{29} + q^{30} + 18q^{31} - 12q^{32} + 27q^{33} - q^{34} - 8q^{35} - 4q^{36} + 6q^{37} + 2q^{38} + 10q^{39} + 6q^{40} - 11q^{41} - 29q^{42} + 23q^{43} - 7q^{44} + 5q^{45} + 9q^{46} - 2q^{47} + 2q^{48} + 24q^{49} + 6q^{50} - 15q^{51} - 2q^{52} - 4q^{53} - 11q^{54} + 14q^{55} - 4q^{56} + 10q^{57} - 3q^{58} - 22q^{59} - q^{60} + 50q^{61} - 18q^{62} - q^{63} + 12q^{64} + 4q^{65} - 27q^{66} + 4q^{67} + q^{68} - 12q^{69} + 8q^{70} + 22q^{71} + 4q^{72} + 24q^{73} - 6q^{74} - q^{75} - 2q^{76} - 11q^{77} - 10q^{78} + 2q^{79} - 6q^{80} + 20q^{81} + 11q^{82} + 4q^{83} + 29q^{84} + q^{85} - 23q^{86} + 7q^{88} + 2q^{89} - 5q^{90} - 8q^{91} - 9q^{92} + 40q^{93} + 2q^{94} + 4q^{95} - 2q^{96} - 36q^{97} - 24q^{98} + 15q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −0.433986 + 1.67680i −0.250562 + 0.968101i
\(4\) 1.00000 0.500000
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0.433986 1.67680i 0.177174 0.684551i
\(7\) 1.23855 2.33795i 0.468128 0.883661i
\(8\) −1.00000 −0.353553
\(9\) −2.62331 1.45541i −0.874438 0.485138i
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) −2.00721 + 3.47659i −0.605197 + 1.04823i 0.386823 + 0.922154i \(0.373572\pi\)
−0.992020 + 0.126078i \(0.959761\pi\)
\(12\) −0.433986 + 1.67680i −0.125281 + 0.484050i
\(13\) −0.0260834 + 0.0451777i −0.00723422 + 0.0125300i −0.869620 0.493722i \(-0.835636\pi\)
0.862386 + 0.506252i \(0.168969\pi\)
\(14\) −1.23855 + 2.33795i −0.331016 + 0.624843i
\(15\) 1.66914 0.462557i 0.430971 0.119432i
\(16\) 1.00000 0.250000
\(17\) 3.62512 + 6.27890i 0.879222 + 1.52286i 0.852196 + 0.523222i \(0.175270\pi\)
0.0270255 + 0.999635i \(0.491396\pi\)
\(18\) 2.62331 + 1.45541i 0.618321 + 0.343044i
\(19\) −0.0260834 + 0.0451777i −0.00598393 + 0.0103645i −0.869002 0.494809i \(-0.835238\pi\)
0.863018 + 0.505173i \(0.168571\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) 3.38275 + 3.09144i 0.738178 + 0.674606i
\(22\) 2.00721 3.47659i 0.427939 0.741212i
\(23\) 2.65121 + 4.59203i 0.552815 + 0.957504i 0.998070 + 0.0620999i \(0.0197797\pi\)
−0.445255 + 0.895404i \(0.646887\pi\)
\(24\) 0.433986 1.67680i 0.0885870 0.342275i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0.0260834 0.0451777i 0.00511537 0.00886008i
\(27\) 3.57892 3.76714i 0.688763 0.724987i
\(28\) 1.23855 2.33795i 0.234064 0.441830i
\(29\) −0.446313 0.773036i −0.0828782 0.143549i 0.821607 0.570054i \(-0.193078\pi\)
−0.904485 + 0.426505i \(0.859745\pi\)
\(30\) −1.66914 + 0.462557i −0.304743 + 0.0844510i
\(31\) −0.776310 −0.139429 −0.0697147 0.997567i \(-0.522209\pi\)
−0.0697147 + 0.997567i \(0.522209\pi\)
\(32\) −1.00000 −0.176777
\(33\) −4.95845 4.87448i −0.863155 0.848539i
\(34\) −3.62512 6.27890i −0.621704 1.07682i
\(35\) −2.64400 + 0.0963576i −0.446917 + 0.0162874i
\(36\) −2.62331 1.45541i −0.437219 0.242569i
\(37\) −3.30724 + 5.72831i −0.543707 + 0.941728i 0.454980 + 0.890502i \(0.349646\pi\)
−0.998687 + 0.0512264i \(0.983687\pi\)
\(38\) 0.0260834 0.0451777i 0.00423128 0.00732879i
\(39\) −0.0644341 0.0633430i −0.0103177 0.0101430i
\(40\) 0.500000 + 0.866025i 0.0790569 + 0.136931i
\(41\) −6.15690 + 10.6641i −0.961546 + 1.66545i −0.242925 + 0.970045i \(0.578107\pi\)
−0.718621 + 0.695402i \(0.755227\pi\)
\(42\) −3.38275 3.09144i −0.521970 0.477019i
\(43\) 6.24713 + 10.8203i 0.952678 + 1.65009i 0.739595 + 0.673052i \(0.235017\pi\)
0.213083 + 0.977034i \(0.431650\pi\)
\(44\) −2.00721 + 3.47659i −0.302599 + 0.524116i
\(45\) 0.0512311 + 2.99956i 0.00763707 + 0.447148i
\(46\) −2.65121 4.59203i −0.390899 0.677057i
\(47\) 8.49425 1.23901 0.619507 0.784991i \(-0.287333\pi\)
0.619507 + 0.784991i \(0.287333\pi\)
\(48\) −0.433986 + 1.67680i −0.0626404 + 0.242025i
\(49\) −3.93199 5.79133i −0.561713 0.827332i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) −12.1017 + 3.35365i −1.69458 + 0.469606i
\(52\) −0.0260834 + 0.0451777i −0.00361711 + 0.00626502i
\(53\) −3.85257 6.67285i −0.529191 0.916586i −0.999420 0.0340419i \(-0.989162\pi\)
0.470229 0.882544i \(-0.344171\pi\)
\(54\) −3.57892 + 3.76714i −0.487029 + 0.512643i
\(55\) 4.01442 0.541305
\(56\) −1.23855 + 2.33795i −0.165508 + 0.312421i
\(57\) −0.0644341 0.0633430i −0.00853451 0.00838999i
\(58\) 0.446313 + 0.773036i 0.0586037 + 0.101505i
\(59\) −11.7196 −1.52576 −0.762879 0.646542i \(-0.776215\pi\)
−0.762879 + 0.646542i \(0.776215\pi\)
\(60\) 1.66914 0.462557i 0.215486 0.0597159i
\(61\) −6.00985 −0.769482 −0.384741 0.923025i \(-0.625709\pi\)
−0.384741 + 0.923025i \(0.625709\pi\)
\(62\) 0.776310 0.0985914
\(63\) −6.65178 + 4.33056i −0.838046 + 0.545600i
\(64\) 1.00000 0.125000
\(65\) 0.0521667 0.00647048
\(66\) 4.95845 + 4.87448i 0.610343 + 0.600007i
\(67\) 7.03474 0.859430 0.429715 0.902965i \(-0.358614\pi\)
0.429715 + 0.902965i \(0.358614\pi\)
\(68\) 3.62512 + 6.27890i 0.439611 + 0.761428i
\(69\) −8.85049 + 2.45267i −1.06547 + 0.295267i
\(70\) 2.64400 0.0963576i 0.316018 0.0115169i
\(71\) 2.59733 0.308246 0.154123 0.988052i \(-0.450745\pi\)
0.154123 + 0.988052i \(0.450745\pi\)
\(72\) 2.62331 + 1.45541i 0.309160 + 0.171522i
\(73\) −0.00136380 0.00236218i −0.000159621 0.000276472i 0.865946 0.500138i \(-0.166717\pi\)
−0.866105 + 0.499862i \(0.833384\pi\)
\(74\) 3.30724 5.72831i 0.384459 0.665902i
\(75\) −1.23516 1.21424i −0.142624 0.140209i
\(76\) −0.0260834 + 0.0451777i −0.00299197 + 0.00518224i
\(77\) 5.64206 + 8.99869i 0.642972 + 1.02550i
\(78\) 0.0644341 + 0.0633430i 0.00729573 + 0.00717219i
\(79\) 8.10742 0.912156 0.456078 0.889940i \(-0.349254\pi\)
0.456078 + 0.889940i \(0.349254\pi\)
\(80\) −0.500000 0.866025i −0.0559017 0.0968246i
\(81\) 4.76354 + 7.63601i 0.529282 + 0.848446i
\(82\) 6.15690 10.6641i 0.679916 1.17765i
\(83\) −0.719302 1.24587i −0.0789537 0.136752i 0.823845 0.566815i \(-0.191825\pi\)
−0.902799 + 0.430063i \(0.858491\pi\)
\(84\) 3.38275 + 3.09144i 0.369089 + 0.337303i
\(85\) 3.62512 6.27890i 0.393200 0.681042i
\(86\) −6.24713 10.8203i −0.673645 1.16679i
\(87\) 1.48992 0.412890i 0.159736 0.0442665i
\(88\) 2.00721 3.47659i 0.213969 0.370606i
\(89\) −0.125893 + 0.218052i −0.0133446 + 0.0231135i −0.872621 0.488399i \(-0.837581\pi\)
0.859276 + 0.511512i \(0.170915\pi\)
\(90\) −0.0512311 2.99956i −0.00540023 0.316182i
\(91\) 0.0733175 + 0.116936i 0.00768576 + 0.0122583i
\(92\) 2.65121 + 4.59203i 0.276408 + 0.478752i
\(93\) 0.336907 1.30172i 0.0349357 0.134982i
\(94\) −8.49425 −0.876115
\(95\) 0.0521667 0.00535219
\(96\) 0.433986 1.67680i 0.0442935 0.171138i
\(97\) 0.0494422 + 0.0856364i 0.00502010 + 0.00869506i 0.868525 0.495646i \(-0.165069\pi\)
−0.863504 + 0.504341i \(0.831735\pi\)
\(98\) 3.93199 + 5.79133i 0.397191 + 0.585012i
\(99\) 10.3254 6.19887i 1.03774 0.623010i
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) 1.86012 3.22181i 0.185088 0.320582i −0.758518 0.651652i \(-0.774076\pi\)
0.943606 + 0.331070i \(0.107410\pi\)
\(102\) 12.1017 3.35365i 1.19825 0.332061i
\(103\) −3.32906 5.76609i −0.328022 0.568150i 0.654098 0.756410i \(-0.273049\pi\)
−0.982119 + 0.188260i \(0.939715\pi\)
\(104\) 0.0260834 0.0451777i 0.00255768 0.00443004i
\(105\) 0.985884 4.47527i 0.0962124 0.436742i
\(106\) 3.85257 + 6.67285i 0.374195 + 0.648124i
\(107\) −2.19941 + 3.80948i −0.212625 + 0.368277i −0.952535 0.304429i \(-0.901534\pi\)
0.739910 + 0.672705i \(0.234868\pi\)
\(108\) 3.57892 3.76714i 0.344381 0.362493i
\(109\) 6.29094 + 10.8962i 0.602562 + 1.04367i 0.992432 + 0.122798i \(0.0391869\pi\)
−0.389869 + 0.920870i \(0.627480\pi\)
\(110\) −4.01442 −0.382760
\(111\) −8.16993 8.03158i −0.775455 0.762324i
\(112\) 1.23855 2.33795i 0.117032 0.220915i
\(113\) −7.70375 + 13.3433i −0.724708 + 1.25523i 0.234386 + 0.972144i \(0.424692\pi\)
−0.959094 + 0.283087i \(0.908641\pi\)
\(114\) 0.0644341 + 0.0633430i 0.00603481 + 0.00593262i
\(115\) 2.65121 4.59203i 0.247226 0.428209i
\(116\) −0.446313 0.773036i −0.0414391 0.0717746i
\(117\) 0.134177 0.0805532i 0.0124047 0.00744714i
\(118\) 11.7196 1.07887
\(119\) 19.1696 0.698616i 1.75728 0.0640421i
\(120\) −1.66914 + 0.462557i −0.152371 + 0.0422255i
\(121\) −2.55780 4.43024i −0.232527 0.402749i
\(122\) 6.00985 0.544106
\(123\) −15.2095 14.9519i −1.37139 1.34817i
\(124\) −0.776310 −0.0697147
\(125\) 1.00000 0.0894427
\(126\) 6.65178 4.33056i 0.592588 0.385797i
\(127\) 9.93721 0.881785 0.440892 0.897560i \(-0.354662\pi\)
0.440892 + 0.897560i \(0.354662\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −20.8547 + 5.77930i −1.83615 + 0.508839i
\(130\) −0.0521667 −0.00457532
\(131\) −9.92774 17.1953i −0.867390 1.50236i −0.864654 0.502368i \(-0.832462\pi\)
−0.00273648 0.999996i \(-0.500871\pi\)
\(132\) −4.95845 4.87448i −0.431577 0.424269i
\(133\) 0.0733175 + 0.116936i 0.00635743 + 0.0101397i
\(134\) −7.03474 −0.607709
\(135\) −5.05190 1.21586i −0.434798 0.104645i
\(136\) −3.62512 6.27890i −0.310852 0.538411i
\(137\) 9.11260 15.7835i 0.778542 1.34847i −0.154240 0.988033i \(-0.549293\pi\)
0.932782 0.360441i \(-0.117374\pi\)
\(138\) 8.85049 2.45267i 0.753404 0.208785i
\(139\) −1.97097 + 3.41382i −0.167176 + 0.289557i −0.937426 0.348185i \(-0.886798\pi\)
0.770250 + 0.637742i \(0.220131\pi\)
\(140\) −2.64400 + 0.0963576i −0.223458 + 0.00814370i
\(141\) −3.68638 + 14.2432i −0.310449 + 1.19949i
\(142\) −2.59733 −0.217963
\(143\) −0.104710 0.181362i −0.00875626 0.0151663i
\(144\) −2.62331 1.45541i −0.218609 0.121284i
\(145\) −0.446313 + 0.773036i −0.0370643 + 0.0641972i
\(146\) 0.00136380 + 0.00236218i 0.000112869 + 0.000195495i
\(147\) 11.4173 4.07980i 0.941685 0.336496i
\(148\) −3.30724 + 5.72831i −0.271853 + 0.470864i
\(149\) 6.56021 + 11.3626i 0.537434 + 0.930862i 0.999041 + 0.0437781i \(0.0139395\pi\)
−0.461608 + 0.887084i \(0.652727\pi\)
\(150\) 1.23516 + 1.21424i 0.100850 + 0.0991425i
\(151\) 10.4132 18.0362i 0.847414 1.46776i −0.0360949 0.999348i \(-0.511492\pi\)
0.883509 0.468415i \(-0.155175\pi\)
\(152\) 0.0260834 0.0451777i 0.00211564 0.00366439i
\(153\) −0.371438 21.7476i −0.0300290 1.75819i
\(154\) −5.64206 8.99869i −0.454650 0.725135i
\(155\) 0.388155 + 0.672304i 0.0311773 + 0.0540007i
\(156\) −0.0644341 0.0633430i −0.00515886 0.00507150i
\(157\) −5.80353 −0.463172 −0.231586 0.972814i \(-0.574392\pi\)
−0.231586 + 0.972814i \(0.574392\pi\)
\(158\) −8.10742 −0.644992
\(159\) 12.8610 3.56407i 1.01994 0.282649i
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) 14.0196 0.510928i 1.10490 0.0402668i
\(162\) −4.76354 7.63601i −0.374259 0.599942i
\(163\) −2.37914 + 4.12080i −0.186349 + 0.322766i −0.944030 0.329859i \(-0.892999\pi\)
0.757681 + 0.652625i \(0.226332\pi\)
\(164\) −6.15690 + 10.6641i −0.480773 + 0.832723i
\(165\) −1.74220 + 6.73138i −0.135630 + 0.524037i
\(166\) 0.719302 + 1.24587i 0.0558287 + 0.0966981i
\(167\) 10.2392 17.7348i 0.792334 1.37236i −0.132184 0.991225i \(-0.542199\pi\)
0.924518 0.381138i \(-0.124468\pi\)
\(168\) −3.38275 3.09144i −0.260985 0.238509i
\(169\) 6.49864 + 11.2560i 0.499895 + 0.865844i
\(170\) −3.62512 + 6.27890i −0.278034 + 0.481570i
\(171\) 0.134177 0.0805532i 0.0102608 0.00616005i
\(172\) 6.24713 + 10.8203i 0.476339 + 0.825043i
\(173\) −15.6520 −1.19000 −0.594999 0.803726i \(-0.702848\pi\)
−0.594999 + 0.803726i \(0.702848\pi\)
\(174\) −1.48992 + 0.412890i −0.112951 + 0.0313011i
\(175\) 1.40545 + 2.24159i 0.106242 + 0.169448i
\(176\) −2.00721 + 3.47659i −0.151299 + 0.262058i
\(177\) 5.08612 19.6514i 0.382296 1.47709i
\(178\) 0.125893 0.218052i 0.00943605 0.0163437i
\(179\) −6.25434 10.8328i −0.467471 0.809684i 0.531838 0.846846i \(-0.321501\pi\)
−0.999309 + 0.0371623i \(0.988168\pi\)
\(180\) 0.0512311 + 2.99956i 0.00381854 + 0.223574i
\(181\) 7.33900 0.545504 0.272752 0.962084i \(-0.412066\pi\)
0.272752 + 0.962084i \(0.412066\pi\)
\(182\) −0.0733175 0.116936i −0.00543465 0.00866790i
\(183\) 2.60819 10.0773i 0.192803 0.744936i
\(184\) −2.65121 4.59203i −0.195450 0.338529i
\(185\) 6.61448 0.486306
\(186\) −0.336907 + 1.30172i −0.0247032 + 0.0954464i
\(187\) −29.1056 −2.12841
\(188\) 8.49425 0.619507
\(189\) −4.37471 13.0331i −0.318213 0.948019i
\(190\) −0.0521667 −0.00378457
\(191\) 15.6330 1.13117 0.565584 0.824691i \(-0.308651\pi\)
0.565584 + 0.824691i \(0.308651\pi\)
\(192\) −0.433986 + 1.67680i −0.0313202 + 0.121013i
\(193\) 1.78709 0.128638 0.0643189 0.997929i \(-0.479513\pi\)
0.0643189 + 0.997929i \(0.479513\pi\)
\(194\) −0.0494422 0.0856364i −0.00354974 0.00614834i
\(195\) −0.0226396 + 0.0874731i −0.00162126 + 0.00626408i
\(196\) −3.93199 5.79133i −0.280856 0.413666i
\(197\) 4.22803 0.301234 0.150617 0.988592i \(-0.451874\pi\)
0.150617 + 0.988592i \(0.451874\pi\)
\(198\) −10.3254 + 6.19887i −0.733796 + 0.440534i
\(199\) 1.70163 + 2.94730i 0.120625 + 0.208929i 0.920014 0.391885i \(-0.128177\pi\)
−0.799389 + 0.600813i \(0.794843\pi\)
\(200\) 0.500000 0.866025i 0.0353553 0.0612372i
\(201\) −3.05297 + 11.7958i −0.215340 + 0.832014i
\(202\) −1.86012 + 3.22181i −0.130877 + 0.226686i
\(203\) −2.36010 + 0.0860112i −0.165646 + 0.00603681i
\(204\) −12.1017 + 3.35365i −0.847289 + 0.234803i
\(205\) 12.3138 0.860033
\(206\) 3.32906 + 5.76609i 0.231946 + 0.401743i
\(207\) −0.271648 15.9049i −0.0188809 1.10547i
\(208\) −0.0260834 + 0.0451777i −0.00180856 + 0.00313251i
\(209\) −0.104710 0.181362i −0.00724292 0.0125451i
\(210\) −0.985884 + 4.47527i −0.0680325 + 0.308823i
\(211\) −5.51544 + 9.55302i −0.379698 + 0.657657i −0.991018 0.133727i \(-0.957306\pi\)
0.611320 + 0.791384i \(0.290639\pi\)
\(212\) −3.85257 6.67285i −0.264596 0.458293i
\(213\) −1.12720 + 4.35520i −0.0772347 + 0.298413i
\(214\) 2.19941 3.80948i 0.150348 0.260411i
\(215\) 6.24713 10.8203i 0.426050 0.737941i
\(216\) −3.57892 + 3.76714i −0.243514 + 0.256321i
\(217\) −0.961498 + 1.81497i −0.0652707 + 0.123208i
\(218\) −6.29094 10.8962i −0.426076 0.737985i
\(219\) 0.00455277 0.00126167i 0.000307648 8.52561e-5i
\(220\) 4.01442 0.270652
\(221\) −0.378222 −0.0254419
\(222\) 8.16993 + 8.03158i 0.548330 + 0.539044i
\(223\) 8.65546 + 14.9917i 0.579612 + 1.00392i 0.995524 + 0.0945127i \(0.0301293\pi\)
−0.415911 + 0.909405i \(0.636537\pi\)
\(224\) −1.23855 + 2.33795i −0.0827541 + 0.156211i
\(225\) 2.57208 1.54415i 0.171472 0.102943i
\(226\) 7.70375 13.3433i 0.512446 0.887582i
\(227\) 8.71099 15.0879i 0.578168 1.00142i −0.417521 0.908667i \(-0.637101\pi\)
0.995689 0.0927498i \(-0.0295657\pi\)
\(228\) −0.0644341 0.0633430i −0.00426725 0.00419499i
\(229\) −11.1989 19.3971i −0.740047 1.28180i −0.952473 0.304622i \(-0.901470\pi\)
0.212427 0.977177i \(-0.431863\pi\)
\(230\) −2.65121 + 4.59203i −0.174815 + 0.302789i
\(231\) −17.5376 + 5.55530i −1.15389 + 0.365512i
\(232\) 0.446313 + 0.773036i 0.0293019 + 0.0507523i
\(233\) −11.4226 + 19.7845i −0.748319 + 1.29613i 0.200309 + 0.979733i \(0.435806\pi\)
−0.948628 + 0.316394i \(0.897528\pi\)
\(234\) −0.134177 + 0.0805532i −0.00877143 + 0.00526592i
\(235\) −4.24713 7.35624i −0.277052 0.479868i
\(236\) −11.7196 −0.762879
\(237\) −3.51850 + 13.5945i −0.228551 + 0.883059i
\(238\) −19.1696 + 0.698616i −1.24258 + 0.0452846i
\(239\) −6.64051 + 11.5017i −0.429539 + 0.743983i −0.996832 0.0795324i \(-0.974657\pi\)
0.567293 + 0.823516i \(0.307991\pi\)
\(240\) 1.66914 0.462557i 0.107743 0.0298579i
\(241\) 9.30588 16.1183i 0.599444 1.03827i −0.393459 0.919342i \(-0.628722\pi\)
0.992903 0.118926i \(-0.0379451\pi\)
\(242\) 2.55780 + 4.43024i 0.164422 + 0.284786i
\(243\) −14.8714 + 4.67358i −0.953999 + 0.299810i
\(244\) −6.00985 −0.384741
\(245\) −3.04944 + 6.30087i −0.194822 + 0.402548i
\(246\) 15.2095 + 14.9519i 0.969722 + 0.953301i
\(247\) −0.00136068 0.00235677i −8.65782e−5 0.000149958i
\(248\) 0.776310 0.0492957
\(249\) 2.40124 0.665437i 0.152172 0.0421703i
\(250\) −1.00000 −0.0632456
\(251\) 21.3384 1.34687 0.673435 0.739247i \(-0.264818\pi\)
0.673435 + 0.739247i \(0.264818\pi\)
\(252\) −6.65178 + 4.33056i −0.419023 + 0.272800i
\(253\) −21.2861 −1.33825
\(254\) −9.93721 −0.623516
\(255\) 8.95520 + 8.80356i 0.560797 + 0.551300i
\(256\) 1.00000 0.0625000
\(257\) 6.13746 + 10.6304i 0.382844 + 0.663106i 0.991468 0.130354i \(-0.0416113\pi\)
−0.608623 + 0.793459i \(0.708278\pi\)
\(258\) 20.8547 5.77930i 1.29836 0.359804i
\(259\) 9.29630 + 14.8269i 0.577644 + 0.921302i
\(260\) 0.0521667 0.00323524
\(261\) 0.0457301 + 2.67749i 0.00283063 + 0.165732i
\(262\) 9.92774 + 17.1953i 0.613338 + 1.06233i
\(263\) 13.0292 22.5673i 0.803417 1.39156i −0.113937 0.993488i \(-0.536346\pi\)
0.917354 0.398071i \(-0.130320\pi\)
\(264\) 4.95845 + 4.87448i 0.305171 + 0.300004i
\(265\) −3.85257 + 6.67285i −0.236662 + 0.409910i
\(266\) −0.0733175 0.116936i −0.00449538 0.00716983i
\(267\) −0.310994 0.305728i −0.0190326 0.0187103i
\(268\) 7.03474 0.429715
\(269\) 4.51132 + 7.81384i 0.275060 + 0.476418i 0.970150 0.242504i \(-0.0779689\pi\)
−0.695090 + 0.718923i \(0.744636\pi\)
\(270\) 5.05190 + 1.21586i 0.307449 + 0.0739951i
\(271\) −5.26269 + 9.11525i −0.319686 + 0.553712i −0.980422 0.196906i \(-0.936911\pi\)
0.660737 + 0.750618i \(0.270244\pi\)
\(272\) 3.62512 + 6.27890i 0.219805 + 0.380714i
\(273\) −0.227898 + 0.0721901i −0.0137930 + 0.00436914i
\(274\) −9.11260 + 15.7835i −0.550512 + 0.953515i
\(275\) −2.00721 3.47659i −0.121039 0.209646i
\(276\) −8.85049 + 2.45267i −0.532737 + 0.147633i
\(277\) −8.49664 + 14.7166i −0.510514 + 0.884235i 0.489412 + 0.872053i \(0.337211\pi\)
−0.999926 + 0.0121828i \(0.996122\pi\)
\(278\) 1.97097 3.41382i 0.118211 0.204748i
\(279\) 2.03650 + 1.12985i 0.121922 + 0.0676425i
\(280\) 2.64400 0.0963576i 0.158009 0.00575847i
\(281\) −13.4909 23.3669i −0.804800 1.39395i −0.916426 0.400203i \(-0.868939\pi\)
0.111627 0.993750i \(-0.464394\pi\)
\(282\) 3.68638 14.2432i 0.219521 0.848168i
\(283\) 7.94938 0.472541 0.236271 0.971687i \(-0.424075\pi\)
0.236271 + 0.971687i \(0.424075\pi\)
\(284\) 2.59733 0.154123
\(285\) −0.0226396 + 0.0874731i −0.00134105 + 0.00518146i
\(286\) 0.104710 + 0.181362i 0.00619161 + 0.0107242i
\(287\) 17.3064 + 27.6025i 1.02156 + 1.62932i
\(288\) 2.62331 + 1.45541i 0.154580 + 0.0857611i
\(289\) −17.7831 + 30.8012i −1.04606 + 1.81183i
\(290\) 0.446313 0.773036i 0.0262084 0.0453943i
\(291\) −0.165052 + 0.0457397i −0.00967554 + 0.00268131i
\(292\) −0.00136380 0.00236218i −7.98106e−5 0.000138236i
\(293\) 1.70776 2.95793i 0.0997686 0.172804i −0.811820 0.583907i \(-0.801523\pi\)
0.911589 + 0.411103i \(0.134856\pi\)
\(294\) −11.4173 + 4.07980i −0.665872 + 0.237939i
\(295\) 5.85978 + 10.1494i 0.341170 + 0.590923i
\(296\) 3.30724 5.72831i 0.192229 0.332951i
\(297\) 5.91317 + 20.0039i 0.343117 + 1.16074i
\(298\) −6.56021 11.3626i −0.380023 0.658219i
\(299\) −0.276610 −0.0159967
\(300\) −1.23516 1.21424i −0.0713119 0.0701043i
\(301\) 33.0348 1.20392i 1.90409 0.0693926i
\(302\) −10.4132 + 18.0362i −0.599212 + 1.03787i
\(303\) 4.59507 + 4.51726i 0.263980 + 0.259510i
\(304\) −0.0260834 + 0.0451777i −0.00149598 + 0.00259112i
\(305\) 3.00492 + 5.20468i 0.172061 + 0.298019i
\(306\) 0.371438 + 21.7476i 0.0212337 + 1.24323i
\(307\) −24.2329 −1.38305 −0.691523 0.722355i \(-0.743060\pi\)
−0.691523 + 0.722355i \(0.743060\pi\)
\(308\) 5.64206 + 8.99869i 0.321486 + 0.512748i
\(309\) 11.1133 3.07976i 0.632216 0.175201i
\(310\) −0.388155 0.672304i −0.0220457 0.0381843i
\(311\) −25.8296 −1.46466 −0.732330 0.680950i \(-0.761567\pi\)
−0.732330 + 0.680950i \(0.761567\pi\)
\(312\) 0.0644341 + 0.0633430i 0.00364786 + 0.00358609i
\(313\) −13.5148 −0.763904 −0.381952 0.924182i \(-0.624748\pi\)
−0.381952 + 0.924182i \(0.624748\pi\)
\(314\) 5.80353 0.327512
\(315\) 7.07627 + 3.59533i 0.398703 + 0.202574i
\(316\) 8.10742 0.456078
\(317\) −6.68124 −0.375256 −0.187628 0.982240i \(-0.560080\pi\)
−0.187628 + 0.982240i \(0.560080\pi\)
\(318\) −12.8610 + 3.56407i −0.721209 + 0.199863i
\(319\) 3.58338 0.200631
\(320\) −0.500000 0.866025i −0.0279508 0.0484123i
\(321\) −5.43323 5.34123i −0.303253 0.298118i
\(322\) −14.0196 + 0.510928i −0.781280 + 0.0284729i
\(323\) −0.378222 −0.0210448
\(324\) 4.76354 + 7.63601i 0.264641 + 0.424223i
\(325\) −0.0260834 0.0451777i −0.00144684 0.00250601i
\(326\) 2.37914 4.12080i 0.131769 0.228230i
\(327\) −21.0010 + 5.81983i −1.16136 + 0.321838i
\(328\) 6.15690 10.6641i 0.339958 0.588824i
\(329\) 10.5206 19.8591i 0.580017 1.09487i
\(330\) 1.74220 6.73138i 0.0959051 0.370550i
\(331\) 2.46098 0.135267 0.0676337 0.997710i \(-0.478455\pi\)
0.0676337 + 0.997710i \(0.478455\pi\)
\(332\) −0.719302 1.24587i −0.0394768 0.0683759i
\(333\) 17.0130 10.2137i 0.932306 0.559710i
\(334\) −10.2392 + 17.7348i −0.560265 + 0.970408i
\(335\) −3.51737 6.09226i −0.192174 0.332856i
\(336\) 3.38275 + 3.09144i 0.184544 + 0.168652i
\(337\) 14.0750 24.3787i 0.766716 1.32799i −0.172618 0.984989i \(-0.555223\pi\)
0.939335 0.343002i \(-0.111444\pi\)
\(338\) −6.49864 11.2560i −0.353479 0.612244i
\(339\) −19.0307 18.7084i −1.03361 1.01610i
\(340\) 3.62512 6.27890i 0.196600 0.340521i
\(341\) 1.55822 2.69891i 0.0843822 0.146154i
\(342\) −0.134177 + 0.0805532i −0.00725546 + 0.00435582i
\(343\) −18.4098 + 2.01993i −0.994035 + 0.109066i
\(344\) −6.24713 10.8203i −0.336822 0.583394i
\(345\) 6.54932 + 6.43842i 0.352604 + 0.346633i
\(346\) 15.6520 0.841456
\(347\) 18.4836 0.992253 0.496126 0.868250i \(-0.334755\pi\)
0.496126 + 0.868250i \(0.334755\pi\)
\(348\) 1.48992 0.412890i 0.0798681 0.0221332i
\(349\) −9.92399 17.1888i −0.531219 0.920098i −0.999336 0.0364316i \(-0.988401\pi\)
0.468117 0.883666i \(-0.344932\pi\)
\(350\) −1.40545 2.24159i −0.0751243 0.119818i
\(351\) 0.0768406 + 0.259947i 0.00410145 + 0.0138749i
\(352\) 2.00721 3.47659i 0.106985 0.185303i
\(353\) −0.000179492 0 0.000310890i −9.55340e−6 0 1.65470e-5i −0.866030 0.499992i \(-0.833336\pi\)
0.866021 + 0.500008i \(0.166670\pi\)
\(354\) −5.08612 + 19.6514i −0.270324 + 1.04446i
\(355\) −1.29866 2.24935i −0.0689259 0.119383i
\(356\) −0.125893 + 0.218052i −0.00667229 + 0.0115568i
\(357\) −7.14790 + 32.4468i −0.378307 + 1.71727i
\(358\) 6.25434 + 10.8328i 0.330552 + 0.572533i
\(359\) 3.97435 6.88377i 0.209758 0.363312i −0.741880 0.670532i \(-0.766066\pi\)
0.951638 + 0.307221i \(0.0993990\pi\)
\(360\) −0.0512311 2.99956i −0.00270011 0.158091i
\(361\) 9.49864 + 16.4521i 0.499928 + 0.865901i
\(362\) −7.33900 −0.385729
\(363\) 8.53867 2.36626i 0.448164 0.124196i
\(364\) 0.0733175 + 0.116936i 0.00384288 + 0.00612913i
\(365\) −0.00136380 + 0.00236218i −7.13848e−5 + 0.000123642i
\(366\) −2.60819 + 10.0773i −0.136332 + 0.526749i
\(367\) −2.17976 + 3.77545i −0.113783 + 0.197077i −0.917292 0.398214i \(-0.869630\pi\)
0.803510 + 0.595291i \(0.202963\pi\)
\(368\) 2.65121 + 4.59203i 0.138204 + 0.239376i
\(369\) 31.6721 19.0143i 1.64878 0.989847i
\(370\) −6.61448 −0.343870
\(371\) −20.3724 + 0.742449i −1.05768 + 0.0385460i
\(372\) 0.336907 1.30172i 0.0174678 0.0674908i
\(373\) 4.67454 + 8.09655i 0.242039 + 0.419223i 0.961295 0.275522i \(-0.0888506\pi\)
−0.719256 + 0.694745i \(0.755517\pi\)
\(374\) 29.1056 1.50501
\(375\) −0.433986 + 1.67680i −0.0224109 + 0.0865896i
\(376\) −8.49425 −0.438058
\(377\) 0.0465653 0.00239824
\(378\) 4.37471 + 13.0331i 0.225011 + 0.670351i
\(379\) 9.01414 0.463025 0.231513 0.972832i \(-0.425633\pi\)
0.231513 + 0.972832i \(0.425633\pi\)
\(380\) 0.0521667 0.00267610
\(381\) −4.31261 + 16.6627i −0.220941 + 0.853656i
\(382\) −15.6330 −0.799856
\(383\) 1.61016 + 2.78887i 0.0822751 + 0.142505i 0.904227 0.427052i \(-0.140448\pi\)
−0.821952 + 0.569557i \(0.807115\pi\)
\(384\) 0.433986 1.67680i 0.0221467 0.0855688i
\(385\) 4.97206 9.38551i 0.253400 0.478330i
\(386\) −1.78709 −0.0909607
\(387\) −0.640094 37.4773i −0.0325378 1.90508i
\(388\) 0.0494422 + 0.0856364i 0.00251005 + 0.00434753i
\(389\) −8.52286 + 14.7620i −0.432126 + 0.748464i −0.997056 0.0766746i \(-0.975570\pi\)
0.564930 + 0.825139i \(0.308903\pi\)
\(390\) 0.0226396 0.0874731i 0.00114640 0.00442937i
\(391\) −19.2219 + 33.2933i −0.972094 + 1.68372i
\(392\) 3.93199 + 5.79133i 0.198595 + 0.292506i
\(393\) 33.1416 9.18429i 1.67177 0.463286i
\(394\) −4.22803 −0.213005
\(395\) −4.05371 7.02123i −0.203964 0.353277i
\(396\) 10.3254 6.19887i 0.518872 0.311505i
\(397\) −10.7813 + 18.6738i −0.541098 + 0.937209i 0.457743 + 0.889084i \(0.348658\pi\)
−0.998841 + 0.0481250i \(0.984675\pi\)
\(398\) −1.70163 2.94730i −0.0852948 0.147735i
\(399\) −0.227898 + 0.0721901i −0.0114091 + 0.00361402i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) −11.6882 20.2445i −0.583680 1.01096i −0.995039 0.0994903i \(-0.968279\pi\)
0.411358 0.911474i \(-0.365055\pi\)
\(402\) 3.05297 11.7958i 0.152269 0.588323i
\(403\) 0.0202488 0.0350719i 0.00100866 0.00174705i
\(404\) 1.86012 3.22181i 0.0925442 0.160291i
\(405\) 4.23121 7.94335i 0.210251 0.394708i
\(406\) 2.36010 0.0860112i 0.117130 0.00426867i
\(407\) −13.2767 22.9959i −0.658100 1.13986i
\(408\) 12.1017 3.35365i 0.599124 0.166031i
\(409\) 13.6519 0.675043 0.337522 0.941318i \(-0.390411\pi\)
0.337522 + 0.941318i \(0.390411\pi\)
\(410\) −12.3138 −0.608135
\(411\) 22.5110 + 22.1298i 1.11039 + 1.09158i
\(412\) −3.32906 5.76609i −0.164011 0.284075i
\(413\) −14.5153 + 27.3997i −0.714250 + 1.34825i
\(414\) 0.271648 + 15.9049i 0.0133508 + 0.781685i
\(415\) −0.719302 + 1.24587i −0.0353092 + 0.0611572i
\(416\) 0.0260834 0.0451777i 0.00127884 0.00221502i
\(417\) −4.86893 4.78648i −0.238432 0.234395i
\(418\) 0.104710 + 0.181362i 0.00512152 + 0.00887073i
\(419\) −2.12414 + 3.67912i −0.103771 + 0.179737i −0.913235 0.407432i \(-0.866424\pi\)
0.809464 + 0.587169i \(0.199758\pi\)
\(420\) 0.985884 4.47527i 0.0481062 0.218371i
\(421\) −4.72417 8.18249i −0.230242 0.398790i 0.727637 0.685962i \(-0.240618\pi\)
−0.957879 + 0.287172i \(0.907285\pi\)
\(422\) 5.51544 9.55302i 0.268487 0.465034i
\(423\) −22.2831 12.3627i −1.08344 0.601093i
\(424\) 3.85257 + 6.67285i 0.187097 + 0.324062i
\(425\) −7.25025 −0.351689
\(426\) 1.12720 4.35520i 0.0546132 0.211010i
\(427\) −7.44349 + 14.0507i −0.360216 + 0.679961i
\(428\) −2.19941 + 3.80948i −0.106312 + 0.184138i
\(429\) 0.349551 0.0968684i 0.0168765 0.00467685i
\(430\) −6.24713 + 10.8203i −0.301263 + 0.521803i
\(431\) −16.0575 27.8124i −0.773463 1.33968i −0.935654 0.352918i \(-0.885189\pi\)
0.162191 0.986759i \(-0.448144\pi\)
\(432\) 3.57892 3.76714i 0.172191 0.181247i
\(433\) 12.0619 0.579658 0.289829 0.957079i \(-0.406402\pi\)
0.289829 + 0.957079i \(0.406402\pi\)
\(434\) 0.961498 1.81497i 0.0461534 0.0871214i
\(435\) −1.10253 1.08386i −0.0528624 0.0519673i
\(436\) 6.29094 + 10.8962i 0.301281 + 0.521834i
\(437\) −0.276610 −0.0132320
\(438\) −0.00455277 + 0.00126167i −0.000217540 + 6.02851e-5i
\(439\) −31.3849 −1.49792 −0.748960 0.662615i \(-0.769446\pi\)
−0.748960 + 0.662615i \(0.769446\pi\)
\(440\) −4.01442 −0.191380
\(441\) 1.88606 + 20.9151i 0.0898123 + 0.995959i
\(442\) 0.378222 0.0179902
\(443\) 10.9378 0.519672 0.259836 0.965653i \(-0.416332\pi\)
0.259836 + 0.965653i \(0.416332\pi\)
\(444\) −8.16993 8.03158i −0.387728 0.381162i
\(445\) 0.251785 0.0119358
\(446\) −8.65546 14.9917i −0.409848 0.709877i
\(447\) −21.8999 + 6.06895i −1.03583 + 0.287051i
\(448\) 1.23855 2.33795i 0.0585160 0.110458i
\(449\) 6.91798 0.326480 0.163240 0.986586i \(-0.447806\pi\)
0.163240 + 0.986586i \(0.447806\pi\)
\(450\) −2.57208 + 1.54415i −0.121249 + 0.0727919i
\(451\) −24.7164 42.8101i −1.16385 2.01585i
\(452\) −7.70375 + 13.3433i −0.362354 + 0.627615i
\(453\) 25.7239 + 25.2883i 1.20861 + 1.18815i
\(454\) −8.71099 + 15.0879i −0.408827 + 0.708109i
\(455\) 0.0646111 0.121963i 0.00302901 0.00571771i
\(456\) 0.0644341 + 0.0633430i 0.00301740 + 0.00296631i
\(457\) −13.0857 −0.612125 −0.306062 0.952011i \(-0.599012\pi\)
−0.306062 + 0.952011i \(0.599012\pi\)
\(458\) 11.1989 + 19.3971i 0.523292 + 0.906369i
\(459\) 36.6275 + 8.81531i 1.70963 + 0.411463i
\(460\) 2.65121 4.59203i 0.123613 0.214104i
\(461\) −12.8473 22.2521i −0.598356 1.03638i −0.993064 0.117576i \(-0.962487\pi\)
0.394708 0.918807i \(-0.370846\pi\)
\(462\) 17.5376 5.55530i 0.815921 0.258456i
\(463\) 3.20488 5.55101i 0.148943 0.257977i −0.781894 0.623412i \(-0.785746\pi\)
0.930837 + 0.365434i \(0.119079\pi\)
\(464\) −0.446313 0.773036i −0.0207196 0.0358873i
\(465\) −1.29577 + 0.359088i −0.0600900 + 0.0166523i
\(466\) 11.4226 19.7845i 0.529142 0.916500i
\(467\) 13.9086 24.0905i 0.643616 1.11477i −0.341004 0.940062i \(-0.610767\pi\)
0.984619 0.174713i \(-0.0558997\pi\)
\(468\) 0.134177 0.0805532i 0.00620234 0.00372357i
\(469\) 8.71287 16.4468i 0.402323 0.759444i
\(470\) 4.24713 + 7.35624i 0.195905 + 0.339318i
\(471\) 2.51865 9.73136i 0.116053 0.448397i
\(472\) 11.7196 0.539437
\(473\) −50.1572 −2.30623
\(474\) 3.51850 13.5945i 0.161610 0.624417i
\(475\) −0.0260834 0.0451777i −0.00119679 0.00207289i
\(476\) 19.1696 0.698616i 0.878639 0.0320210i
\(477\) 0.394743 + 23.1121i 0.0180740 + 1.05823i
\(478\) 6.64051 11.5017i 0.303730 0.526076i
\(479\) −12.4861 + 21.6265i −0.570503 + 0.988140i 0.426011 + 0.904718i \(0.359918\pi\)
−0.996514 + 0.0834222i \(0.973415\pi\)
\(480\) −1.66914 + 0.462557i −0.0761856 + 0.0211127i
\(481\) −0.172528 0.298827i −0.00786659 0.0136253i
\(482\) −9.30588 + 16.1183i −0.423871 + 0.734166i
\(483\) −5.22757 + 23.7297i −0.237863 + 1.07974i
\(484\) −2.55780 4.43024i −0.116264 0.201374i
\(485\) 0.0494422 0.0856364i 0.00224506 0.00388855i
\(486\) 14.8714 4.67358i 0.674579 0.211998i
\(487\) −12.7183 22.0287i −0.576320 0.998215i −0.995897 0.0904954i \(-0.971155\pi\)
0.419577 0.907720i \(-0.362178\pi\)
\(488\) 6.00985 0.272053
\(489\) −5.87724 5.77771i −0.265778 0.261277i
\(490\) 3.04944 6.30087i 0.137760 0.284644i
\(491\) −10.3563 + 17.9377i −0.467374 + 0.809516i −0.999305 0.0372720i \(-0.988133\pi\)
0.531931 + 0.846788i \(0.321467\pi\)
\(492\) −15.2095 14.9519i −0.685697 0.674085i
\(493\) 3.23588 5.60471i 0.145737 0.252423i
\(494\) 0.00136068 + 0.00235677i 6.12200e−5 + 0.000106036i
\(495\) −10.5311 5.84265i −0.473337 0.262607i
\(496\) −0.776310 −0.0348573
\(497\) 3.21692 6.07242i 0.144299 0.272385i
\(498\) −2.40124 + 0.665437i −0.107602 + 0.0298189i
\(499\) −1.04430 1.80878i −0.0467493 0.0809721i 0.841704 0.539939i \(-0.181553\pi\)
−0.888453 + 0.458967i \(0.848220\pi\)
\(500\) 1.00000 0.0447214
\(501\) 25.2941 + 24.8658i 1.13006 + 1.11092i
\(502\) −21.3384 −0.952381
\(503\) 33.5825 1.49737 0.748684 0.662926i \(-0.230686\pi\)
0.748684 + 0.662926i \(0.230686\pi\)
\(504\) 6.65178 4.33056i 0.296294 0.192899i
\(505\) −3.72023 −0.165548
\(506\) 21.2861 0.946284
\(507\) −21.6943 + 6.01198i −0.963479 + 0.267002i
\(508\) 9.93721 0.440892
\(509\) −7.77464 13.4661i −0.344605 0.596873i 0.640677 0.767811i \(-0.278654\pi\)
−0.985282 + 0.170937i \(0.945320\pi\)
\(510\) −8.95520 8.80356i −0.396543 0.389828i
\(511\) −0.00721178 0.000262826i −0.000319031 1.16267e-5i
\(512\) −1.00000 −0.0441942
\(513\) 0.0768406 + 0.259947i 0.00339259 + 0.0114769i
\(514\) −6.13746 10.6304i −0.270712 0.468886i
\(515\) −3.32906 + 5.76609i −0.146696 + 0.254084i
\(516\) −20.8547 + 5.77930i −0.918077 + 0.254420i
\(517\) −17.0498 + 29.5311i −0.749848 + 1.29877i
\(518\) −9.29630 14.8269i −0.408456 0.651459i
\(519\) 6.79274 26.2452i 0.298168 1.15204i
\(520\) −0.0521667 −0.00228766
\(521\) −11.1434 19.3010i −0.488202 0.845591i 0.511706 0.859161i \(-0.329014\pi\)
−0.999908 + 0.0135700i \(0.995680\pi\)
\(522\) −0.0457301 2.67749i −0.00200155 0.117190i
\(523\) −17.5176 + 30.3414i −0.765992 + 1.32674i 0.173729 + 0.984794i \(0.444418\pi\)
−0.939721 + 0.341943i \(0.888915\pi\)
\(524\) −9.92774 17.1953i −0.433695 0.751182i
\(525\) −4.36864 + 1.38383i −0.190663 + 0.0603955i
\(526\) −13.0292 + 22.5673i −0.568102 + 0.983981i
\(527\) −2.81422 4.87437i −0.122589 0.212331i
\(528\) −4.95845 4.87448i −0.215789 0.212135i
\(529\) −2.55781 + 4.43025i −0.111209 + 0.192620i
\(530\) 3.85257 6.67285i 0.167345 0.289850i
\(531\) 30.7441 + 17.0568i 1.33418 + 0.740203i
\(532\) 0.0733175 + 0.116936i 0.00317872 + 0.00506983i
\(533\) −0.321185 0.556309i −0.0139121 0.0240964i
\(534\) 0.310994 + 0.305728i 0.0134580 + 0.0132302i
\(535\) 4.39881 0.190177
\(536\) −7.03474 −0.303854
\(537\) 20.8788 5.78598i 0.900986 0.249683i
\(538\) −4.51132 7.81384i −0.194497 0.336879i
\(539\) 28.0264 2.04550i 1.20718 0.0881060i
\(540\) −5.05190 1.21586i −0.217399 0.0523224i
\(541\) 19.6525 34.0391i 0.844927 1.46346i −0.0407575 0.999169i \(-0.512977\pi\)
0.885685 0.464287i \(-0.153690\pi\)
\(542\) 5.26269 9.11525i 0.226052 0.391534i
\(543\) −3.18502 + 12.3060i −0.136682 + 0.528102i
\(544\) −3.62512 6.27890i −0.155426 0.269206i
\(545\) 6.29094 10.8962i 0.269474 0.466743i
\(546\) 0.227898 0.0721901i 0.00975311 0.00308945i
\(547\) −9.05904 15.6907i −0.387337 0.670887i 0.604754 0.796413i \(-0.293272\pi\)
−0.992090 + 0.125526i \(0.959938\pi\)
\(548\) 9.11260 15.7835i 0.389271 0.674237i
\(549\) 15.7657 + 8.74681i 0.672864 + 0.373305i
\(550\) 2.00721 + 3.47659i 0.0855878 + 0.148242i
\(551\) 0.0465653 0.00198375
\(552\) 8.85049 2.45267i 0.376702 0.104393i
\(553\) 10.0414 18.9547i 0.427006 0.806036i
\(554\) 8.49664 14.7166i 0.360988 0.625249i
\(555\) −2.87059 + 11.0912i −0.121850 + 0.470793i
\(556\) −1.97097 + 3.41382i −0.0835879 + 0.144778i
\(557\) −6.59903 11.4299i −0.279610 0.484299i 0.691678 0.722206i \(-0.256872\pi\)
−0.971288 + 0.237907i \(0.923539\pi\)
\(558\) −2.03650 1.12985i −0.0862120 0.0478304i
\(559\) −0.651784 −0.0275675
\(560\) −2.64400 + 0.0963576i −0.111729 + 0.00407185i
\(561\) 12.6314 48.8042i 0.533298 2.06052i
\(562\) 13.4909 + 23.3669i 0.569079 + 0.985674i
\(563\) 5.76183 0.242832 0.121416 0.992602i \(-0.461256\pi\)
0.121416 + 0.992602i \(0.461256\pi\)
\(564\) −3.68638 + 14.2432i −0.155225 + 0.599745i
\(565\) 15.4075 0.648198
\(566\) −7.94938 −0.334137
\(567\) 23.7525 1.67932i 0.997510 0.0705249i
\(568\) −2.59733 −0.108981
\(569\) 16.6305 0.697185 0.348592 0.937274i \(-0.386660\pi\)
0.348592 + 0.937274i \(0.386660\pi\)
\(570\) 0.0226396 0.0874731i 0.000948269 0.00366385i
\(571\) 22.9197 0.959161 0.479580 0.877498i \(-0.340789\pi\)
0.479580 + 0.877498i \(0.340789\pi\)
\(572\) −0.104710 0.181362i −0.00437813 0.00758314i
\(573\) −6.78452 + 26.2135i −0.283427 + 1.09508i
\(574\) −17.3064 27.6025i −0.722354 1.15211i
\(575\) −5.30242 −0.221126
\(576\) −2.62331 1.45541i −0.109305 0.0606422i
\(577\) −19.0433 32.9840i −0.792783 1.37314i −0.924237 0.381819i \(-0.875298\pi\)
0.131454 0.991322i \(-0.458035\pi\)
\(578\) 17.7831 30.8012i 0.739678 1.28116i
\(579\) −0.775573 + 2.99660i −0.0322317 + 0.124534i
\(580\) −0.446313 + 0.773036i −0.0185321 + 0.0320986i
\(581\) −3.80366 + 0.138620i −0.157803 + 0.00575094i
\(582\) 0.165052 0.0457397i 0.00684164 0.00189597i
\(583\) 30.9317 1.28106
\(584\) 0.00136380 + 0.00236218i 5.64346e−5 + 9.77476e-5i
\(585\) −0.136850 0.0759242i −0.00565803 0.00313908i
\(586\) −1.70776 + 2.95793i −0.0705470 + 0.122191i
\(587\) 11.9252 + 20.6550i 0.492205 + 0.852523i 0.999960 0.00897801i \(-0.00285783\pi\)
−0.507755 + 0.861501i \(0.669524\pi\)
\(588\) 11.4173 4.07980i 0.470842 0.168248i
\(589\) 0.0202488 0.0350719i 0.000834336 0.00144511i
\(590\) −5.85978 10.1494i −0.241243 0.417846i
\(591\) −1.83490 + 7.08955i −0.0754778 + 0.291625i
\(592\) −3.30724 + 5.72831i −0.135927 + 0.235432i
\(593\) 4.11155 7.12141i 0.168841 0.292441i −0.769172 0.639042i \(-0.779331\pi\)
0.938013 + 0.346601i \(0.112664\pi\)
\(594\) −5.91317 20.0039i −0.242620 0.820769i
\(595\) −10.1898 16.2521i −0.417742 0.666270i
\(596\) 6.56021 + 11.3626i 0.268717 + 0.465431i
\(597\) −5.68051 + 1.57420i −0.232488 + 0.0644276i
\(598\) 0.276610 0.0113114
\(599\) 48.7569 1.99215 0.996076 0.0884966i \(-0.0282062\pi\)
0.996076 + 0.0884966i \(0.0282062\pi\)
\(600\) 1.23516 + 1.21424i 0.0504251 + 0.0495712i
\(601\) 2.22205 + 3.84871i 0.0906394 + 0.156992i 0.907780 0.419446i \(-0.137776\pi\)
−0.817141 + 0.576438i \(0.804442\pi\)
\(602\) −33.0348 + 1.20392i −1.34640 + 0.0490679i
\(603\) −18.4543 10.2385i −0.751518 0.416942i
\(604\) 10.4132 18.0362i 0.423707 0.733882i
\(605\) −2.55780 + 4.43024i −0.103989 + 0.180115i
\(606\) −4.59507 4.51726i −0.186662 0.183501i
\(607\) −0.853546 1.47839i −0.0346444 0.0600058i 0.848183 0.529703i \(-0.177697\pi\)
−0.882828 + 0.469697i \(0.844363\pi\)
\(608\) 0.0260834 0.0451777i 0.00105782 0.00183220i
\(609\) 0.880025 3.99474i 0.0356604 0.161875i
\(610\) −3.00492 5.20468i −0.121666 0.210731i
\(611\) −0.221559 + 0.383751i −0.00896330 + 0.0155249i
\(612\) −0.371438 21.7476i −0.0150145 0.879094i
\(613\) 16.6421 + 28.8250i 0.672168 + 1.16423i 0.977288 + 0.211916i \(0.0679702\pi\)
−0.305120 + 0.952314i \(0.598696\pi\)
\(614\) 24.2329 0.977961
\(615\) −5.34401 + 20.6478i −0.215491 + 0.832598i
\(616\) −5.64206 8.99869i −0.227325 0.362567i
\(617\) −10.2173 + 17.6968i −0.411332 + 0.712448i −0.995036 0.0995186i \(-0.968270\pi\)
0.583704 + 0.811967i \(0.301603\pi\)
\(618\) −11.1133 + 3.07976i −0.447044 + 0.123886i
\(619\) −2.80998 + 4.86704i −0.112943 + 0.195623i −0.916956 0.398989i \(-0.869361\pi\)
0.804013 + 0.594612i \(0.202694\pi\)
\(620\) 0.388155 + 0.672304i 0.0155887 + 0.0270004i
\(621\) 26.7873 + 6.44701i 1.07494 + 0.258710i
\(622\) 25.8296 1.03567
\(623\) 0.353870 + 0.564399i 0.0141775 + 0.0226122i
\(624\) −0.0644341 0.0633430i −0.00257943 0.00253575i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 13.5148 0.540162
\(627\) 0.349551 0.0968684i 0.0139597 0.00386855i
\(628\) −5.80353 −0.231586
\(629\) −47.9566 −1.91216
\(630\) −7.07627 3.59533i −0.281925 0.143241i
\(631\) 9.48152 0.377453 0.188727 0.982030i \(-0.439564\pi\)
0.188727 + 0.982030i \(0.439564\pi\)
\(632\) −8.10742 −0.322496
\(633\) −13.6249 13.3942i −0.541540 0.532370i
\(634\) 6.68124 0.265346
\(635\) −4.96860 8.60587i −0.197173 0.341514i
\(636\) 12.8610 3.56407i 0.509971 0.141325i
\(637\) 0.364198 0.0265809i 0.0144301 0.00105317i
\(638\) −3.58338 −0.141867
\(639\) −6.81361 3.78019i −0.269542 0.149542i
\(640\) 0.500000 + 0.866025i 0.0197642 + 0.0342327i
\(641\) −18.7899 + 32.5451i −0.742158 + 1.28545i 0.209354 + 0.977840i \(0.432864\pi\)
−0.951511 + 0.307615i \(0.900469\pi\)
\(642\) 5.43323 + 5.34123i 0.214432 + 0.210801i
\(643\) 19.0222 32.9474i 0.750162 1.29932i −0.197582 0.980286i \(-0.563309\pi\)
0.947744 0.319032i \(-0.103358\pi\)
\(644\) 14.0196 0.510928i 0.552448 0.0201334i
\(645\) 15.4324 + 15.1710i 0.607649 + 0.597359i
\(646\) 0.378222 0.0148809
\(647\) 22.7234 + 39.3582i 0.893351 + 1.54733i 0.835832 + 0.548985i \(0.184986\pi\)
0.0575186 + 0.998344i \(0.481681\pi\)
\(648\) −4.76354 7.63601i −0.187130 0.299971i
\(649\) 23.5237 40.7442i 0.923384 1.59935i
\(650\) 0.0260834 + 0.0451777i 0.00102307 + 0.00177202i
\(651\) −2.62606 2.39991i −0.102924 0.0940599i
\(652\) −2.37914 + 4.12080i −0.0931744 + 0.161383i
\(653\) 12.8083 + 22.1847i 0.501229 + 0.868154i 0.999999 + 0.00141993i \(0.000451979\pi\)
−0.498770 + 0.866734i \(0.666215\pi\)
\(654\) 21.0010 5.81983i 0.821202 0.227574i
\(655\) −9.92774 + 17.1953i −0.387909 + 0.671878i
\(656\) −6.15690 + 10.6641i −0.240387 + 0.416362i
\(657\) 0.000139738 0.00818163i 5.45171e−6 0.000319196i
\(658\) −10.5206 + 19.8591i −0.410134 + 0.774189i
\(659\) 2.30206 + 3.98728i 0.0896754 + 0.155322i 0.907374 0.420324i \(-0.138084\pi\)
−0.817699 + 0.575647i \(0.804750\pi\)
\(660\) −1.74220 + 6.73138i −0.0678151 + 0.262019i
\(661\) −14.4388 −0.561603 −0.280801 0.959766i \(-0.590600\pi\)
−0.280801 + 0.959766i \(0.590600\pi\)
\(662\) −2.46098 −0.0956485
\(663\) 0.164143 0.634202i 0.00637478 0.0246304i
\(664\) 0.719302 + 1.24587i 0.0279143 + 0.0483490i
\(665\) 0.0646111 0.121963i 0.00250551 0.00472952i
\(666\) −17.0130 + 10.2137i −0.659240 + 0.395774i
\(667\) 2.36654 4.09896i 0.0916326 0.158712i
\(668\) 10.2392 17.7348i 0.396167 0.686182i
\(669\) −28.8944 + 8.00729i −1.11712 + 0.309580i
\(670\) 3.51737 + 6.09226i 0.135888 + 0.235365i
\(671\) 12.0630 20.8938i 0.465688 0.806596i
\(672\) −3.38275 3.09144i −0.130493 0.119255i
\(673\) 1.06123 + 1.83811i 0.0409075 + 0.0708538i 0.885754 0.464155i \(-0.153642\pi\)
−0.844847 + 0.535008i \(0.820308\pi\)
\(674\) −14.0750 + 24.3787i −0.542150 + 0.939032i
\(675\) 1.47298 + 4.98300i 0.0566951 + 0.191796i
\(676\) 6.49864 + 11.2560i 0.249948 + 0.432922i
\(677\) 30.7706 1.18261 0.591305 0.806448i \(-0.298613\pi\)
0.591305 + 0.806448i \(0.298613\pi\)
\(678\) 19.0307 + 18.7084i 0.730870 + 0.718493i
\(679\) 0.261450 0.00952827i 0.0100335 0.000365661i
\(680\) −3.62512 + 6.27890i −0.139017 + 0.240785i
\(681\) 21.5189 + 21.1545i 0.824606 + 0.810642i
\(682\) −1.55822 + 2.69891i −0.0596672 + 0.103347i
\(683\) −9.27365 16.0624i −0.354846 0.614612i 0.632245 0.774768i \(-0.282133\pi\)
−0.987092 + 0.160156i \(0.948800\pi\)
\(684\) 0.134177 0.0805532i 0.00513039 0.00308003i
\(685\) −18.2252 −0.696349
\(686\) 18.4098 2.01993i 0.702889 0.0771213i
\(687\) 37.3853 10.3603i 1.42634 0.395270i
\(688\) 6.24713 + 10.8203i 0.238169 + 0.412522i
\(689\) 0.401952 0.0153131
\(690\) −6.54932 6.43842i −0.249328 0.245106i
\(691\) 36.8506 1.40186 0.700931 0.713229i \(-0.252768\pi\)
0.700931 + 0.713229i \(0.252768\pi\)
\(692\) −15.6520 −0.594999
\(693\) −1.70406 31.8179i −0.0647320 1.20866i
\(694\) −18.4836 −0.701629
\(695\) 3.94195 0.149527
\(696\) −1.48992 + 0.412890i −0.0564753 + 0.0156506i
\(697\) −89.2781 −3.38165
\(698\) 9.92399 + 17.1888i 0.375628 + 0.650607i
\(699\) −28.2174 27.7396i −1.06728 1.04921i
\(700\) 1.40545 + 2.24159i 0.0531209 + 0.0847241i
\(701\) −13.6738 −0.516453 −0.258226 0.966084i \(-0.583138\pi\)
−0.258226 + 0.966084i \(0.583138\pi\)
\(702\) −0.0768406 0.259947i −0.00290016 0.00981106i
\(703\) −0.172528 0.298827i −0.00650701 0.0112705i
\(704\) −2.00721 + 3.47659i −0.0756496 + 0.131029i
\(705\) 14.1781 3.92908i 0.533979 0.147978i
\(706\) 0.000179492 0 0.000310890i 6.75528e−6 0 1.17005e-5i
\(707\) −5.22858 8.33923i −0.196641 0.313629i
\(708\) 5.08612 19.6514i 0.191148 0.738543i
\(709\) −16.6361 −0.624782 −0.312391 0.949954i \(-0.601130\pi\)
−0.312391 + 0.949954i \(0.601130\pi\)
\(710\) 1.29866 + 2.24935i 0.0487380 + 0.0844167i
\(711\) −21.2683 11.7997i −0.797624 0.442522i
\(712\) 0.125893 0.218052i 0.00471802 0.00817186i
\(713\) −2.05816 3.56483i −0.0770786 0.133504i
\(714\) 7.14790 32.4468i 0.267504 1.21429i
\(715\) −0.104710 + 0.181362i −0.00391592 + 0.00678257i
\(716\) −6.25434 10.8328i −0.233736 0.404842i
\(717\) −16.4042 16.1264i −0.612625 0.602251i
\(718\) −3.97435 + 6.88377i −0.148321 + 0.256900i
\(719\) −0.910074 + 1.57629i −0.0339400 + 0.0587858i −0.882496 0.470319i \(-0.844139\pi\)
0.848556 + 0.529105i \(0.177472\pi\)
\(720\) 0.0512311 + 2.99956i 0.00190927 + 0.111787i
\(721\) −17.6040 + 0.641560i −0.655608 + 0.0238929i
\(722\) −9.49864 16.4521i −0.353503 0.612285i
\(723\) 22.9885 + 22.5992i 0.854950 + 0.840473i
\(724\) 7.33900 0.272752
\(725\) 0.892626 0.0331513
\(726\) −8.53867 + 2.36626i −0.316900 + 0.0878200i
\(727\) 8.03070 + 13.9096i 0.297842 + 0.515878i 0.975642 0.219369i \(-0.0703998\pi\)
−0.677800 + 0.735246i \(0.737066\pi\)
\(728\) −0.0733175 0.116936i −0.00271733 0.00433395i
\(729\) −1.38270 26.9646i −0.0512111 0.998688i
\(730\) 0.00136380 0.00236218i 5.04766e−5 8.74281e-5i
\(731\) −45.2932 + 78.4502i −1.67523 + 2.90158i
\(732\) 2.60819 10.0773i 0.0964014 0.372468i
\(733\) −15.3752 26.6306i −0.567895 0.983623i −0.996774 0.0802608i \(-0.974425\pi\)
0.428879 0.903362i \(-0.358909\pi\)
\(734\) 2.17976 3.77545i 0.0804564 0.139355i
\(735\) −9.24187 7.84779i −0.340892 0.289470i
\(736\) −2.65121 4.59203i −0.0977248 0.169264i
\(737\) −14.1202 + 24.4569i −0.520124 + 0.900882i
\(738\) −31.6721 + 19.0143i −1.16587 + 0.699927i
\(739\) 23.8595 + 41.3258i 0.877686 + 1.52020i 0.853874 + 0.520479i \(0.174247\pi\)
0.0238113 + 0.999716i \(0.492420\pi\)
\(740\) 6.61448 0.243153
\(741\) 0.00454235 0.00125879i 0.000166867 4.62427e-5i
\(742\) 20.3724 0.742449i 0.747893 0.0272562i
\(743\) 5.42220 9.39152i 0.198921 0.344542i −0.749258 0.662279i \(-0.769590\pi\)
0.948179 + 0.317737i \(0.102923\pi\)
\(744\) −0.336907 + 1.30172i −0.0123516 + 0.0477232i
\(745\) 6.56021 11.3626i 0.240348 0.416294i
\(746\) −4.67454 8.09655i −0.171147 0.296436i
\(747\) 0.0737012 + 4.31518i 0.00269659 + 0.157884i
\(748\) −29.1056 −1.06421
\(749\) 6.18230 + 9.86033i 0.225896 + 0.360289i
\(750\) 0.433986 1.67680i 0.0158469 0.0612281i
\(751\) 10.3966 + 18.0074i 0.379377 + 0.657100i 0.990972 0.134071i \(-0.0428051\pi\)
−0.611595 + 0.791171i \(0.709472\pi\)
\(752\) 8.49425 0.309753
\(753\) −9.26057 + 35.7803i −0.337474 + 1.30391i
\(754\) −0.0465653 −0.00169581
\(755\) −20.8264 −0.757950
\(756\) −4.37471 13.0331i −0.159107 0.474010i
\(757\) 12.5008 0.454349 0.227174 0.973854i \(-0.427051\pi\)
0.227174 + 0.973854i \(0.427051\pi\)
\(758\) −9.01414 −0.327408
\(759\) 9.23788 35.6926i 0.335314 1.29556i
\(760\) −0.0521667 −0.00189229
\(761\) 3.53371 + 6.12057i 0.128097 + 0.221870i 0.922939 0.384946i \(-0.125780\pi\)
−0.794842 + 0.606816i \(0.792446\pi\)
\(762\) 4.31261 16.6627i 0.156229 0.603626i
\(763\) 33.2664 1.21236i 1.20433 0.0438903i
\(764\) 15.6330 0.565584
\(765\) −18.6482 + 11.1955i −0.674228 + 0.404773i
\(766\) −1.61016 2.78887i −0.0581773 0.100766i
\(767\) 0.305686 0.529463i 0.0110377 0.0191178i
\(768\) −0.433986 + 1.67680i −0.0156601 + 0.0605063i
\(769\) 20.2432 35.0622i 0.729987 1.26437i −0.226901 0.973918i \(-0.572859\pi\)
0.956888 0.290457i \(-0.0938073\pi\)
\(770\) −4.97206 + 9.38551i −0.179181 + 0.338230i
\(771\) −20.4886 + 5.67785i