Properties

Label 630.2.d.c
Level 630
Weight 2
Character orbit 630.d
Analytic conductor 5.031
Analytic rank 0
Dimension 4
CM No
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 630.d (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{5})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} -\beta_{3} q^{5} + ( \beta_{1} - \beta_{3} ) q^{7} + q^{8} +O(q^{10})\) \( q + q^{2} + q^{4} -\beta_{3} q^{5} + ( \beta_{1} - \beta_{3} ) q^{7} + q^{8} -\beta_{3} q^{10} + 4 \beta_{1} q^{11} + 2 \beta_{3} q^{13} + ( \beta_{1} - \beta_{3} ) q^{14} + q^{16} + \beta_{2} q^{17} + \beta_{2} q^{19} -\beta_{3} q^{20} + 4 \beta_{1} q^{22} -4 q^{23} + 5 q^{25} + 2 \beta_{3} q^{26} + ( \beta_{1} - \beta_{3} ) q^{28} + 2 \beta_{1} q^{29} + 2 \beta_{2} q^{31} + q^{32} + \beta_{2} q^{34} + ( 5 - \beta_{2} ) q^{35} -7 \beta_{1} q^{37} + \beta_{2} q^{38} -\beta_{3} q^{40} -2 \beta_{3} q^{41} -\beta_{1} q^{43} + 4 \beta_{1} q^{44} -4 q^{46} -3 \beta_{2} q^{47} + ( 3 - 2 \beta_{2} ) q^{49} + 5 q^{50} + 2 \beta_{3} q^{52} -4 q^{53} -4 \beta_{2} q^{55} + ( \beta_{1} - \beta_{3} ) q^{56} + 2 \beta_{1} q^{58} -2 \beta_{3} q^{59} + 3 \beta_{2} q^{61} + 2 \beta_{2} q^{62} + q^{64} -10 q^{65} -5 \beta_{1} q^{67} + \beta_{2} q^{68} + ( 5 - \beta_{2} ) q^{70} + \beta_{1} q^{71} + 6 \beta_{3} q^{73} -7 \beta_{1} q^{74} + \beta_{2} q^{76} + ( -8 - 4 \beta_{2} ) q^{77} + 6 q^{79} -\beta_{3} q^{80} -2 \beta_{3} q^{82} + 4 \beta_{2} q^{83} -5 \beta_{1} q^{85} -\beta_{1} q^{86} + 4 \beta_{1} q^{88} + 2 \beta_{3} q^{89} + ( -10 + 2 \beta_{2} ) q^{91} -4 q^{92} -3 \beta_{2} q^{94} -5 \beta_{1} q^{95} + ( 3 - 2 \beta_{2} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 4q^{2} + 4q^{4} + 4q^{8} + O(q^{10}) \) \( 4q + 4q^{2} + 4q^{4} + 4q^{8} + 4q^{16} - 16q^{23} + 20q^{25} + 4q^{32} + 20q^{35} - 16q^{46} + 12q^{49} + 20q^{50} - 16q^{53} + 4q^{64} - 40q^{65} + 20q^{70} - 32q^{77} + 24q^{79} - 40q^{91} - 16q^{92} + 12q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 6 x^{2} + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{3} + 4 \nu \)\()/2\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 8 \nu \)\()/2\)
\(\beta_{3}\)\(=\)\( \nu^{2} + 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{2} - \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\(\beta_{3} - 3\)
\(\nu^{3}\)\(=\)\(-2 \beta_{2} + 4 \beta_{1}\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
629.1
0.874032i
0.874032i
2.28825i
2.28825i
1.00000 0 1.00000 −2.23607 0 −2.23607 1.41421i 1.00000 0 −2.23607
629.2 1.00000 0 1.00000 −2.23607 0 −2.23607 + 1.41421i 1.00000 0 −2.23607
629.3 1.00000 0 1.00000 2.23607 0 2.23607 1.41421i 1.00000 0 2.23607
629.4 1.00000 0 1.00000 2.23607 0 2.23607 + 1.41421i 1.00000 0 2.23607
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
7.b Odd 1 yes
15.d Odd 1 yes
105.g Even 1 yes

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(630, [\chi])\):

\( T_{11}^{2} + 32 \)
\( T_{23} + 4 \)