Properties

Label 630.2.bk
Level 630
Weight 2
Character orbit bk
Rep. character \(\chi_{630}(101,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 64
Newform subspaces 3
Sturm bound 288
Trace bound 1

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.bk (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(288\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(630, [\chi])\).

Total New Old
Modular forms 304 64 240
Cusp forms 272 64 208
Eisenstein series 32 0 32

Trace form

\( 64q - 64q^{4} - 4q^{7} + O(q^{10}) \) \( 64q - 64q^{4} - 4q^{7} - 12q^{11} - 12q^{13} + 6q^{14} + 4q^{15} + 64q^{16} + 16q^{18} + 16q^{21} + 36q^{23} - 32q^{25} - 24q^{26} - 36q^{27} + 4q^{28} - 6q^{29} - 2q^{30} + 4q^{37} - 12q^{39} + 6q^{41} + 28q^{42} + 4q^{43} + 12q^{44} + 6q^{45} - 6q^{46} + 72q^{47} + 10q^{49} - 40q^{51} + 12q^{52} + 72q^{53} - 36q^{54} - 6q^{56} - 12q^{57} - 120q^{59} - 4q^{60} + 28q^{63} - 64q^{64} - 48q^{66} + 56q^{67} + 12q^{70} - 16q^{72} - 36q^{74} - 12q^{77} + 16q^{78} - 16q^{79} + 40q^{81} - 16q^{84} + 12q^{85} - 48q^{86} + 12q^{87} - 6q^{89} + 24q^{91} - 36q^{92} - 28q^{93} - 12q^{97} + 48q^{98} - 48q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(630, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
630.2.bk.a \(4\) \(5.031\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(-2\) \(-10\) \(q+\zeta_{12}^{3}q^{2}+(\zeta_{12}+\zeta_{12}^{3})q^{3}-q^{4}+\cdots\)
630.2.bk.b \(28\) \(5.031\) None \(0\) \(2\) \(-14\) \(8\)
630.2.bk.c \(32\) \(5.031\) None \(0\) \(-2\) \(16\) \(-2\)

Decomposition of \(S_{2}^{\mathrm{old}}(630, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(630, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ (\( ( 1 + T^{2} )^{2} \))
$3$ (\( 1 + 3 T^{2} + 9 T^{4} \))
$5$ (\( ( 1 + T + T^{2} )^{2} \))
$7$ (\( ( 1 + 5 T + 7 T^{2} )^{2} \))
$11$ (\( 1 + 6 T + 28 T^{2} + 96 T^{3} + 267 T^{4} + 1056 T^{5} + 3388 T^{6} + 7986 T^{7} + 14641 T^{8} \))
$13$ (\( ( 1 + 6 T + 25 T^{2} + 78 T^{3} + 169 T^{4} )^{2} \))
$17$ (\( ( 1 - 17 T^{2} + 289 T^{4} )^{2} \))
$19$ (\( 1 - 6 T + 44 T^{2} - 192 T^{3} + 891 T^{4} - 3648 T^{5} + 15884 T^{6} - 41154 T^{7} + 130321 T^{8} \))
$23$ (\( 1 + 12 T + 70 T^{2} + 264 T^{3} + 1059 T^{4} + 6072 T^{5} + 37030 T^{6} + 146004 T^{7} + 279841 T^{8} \))
$29$ (\( 1 + 12 T + 109 T^{2} + 732 T^{3} + 4272 T^{4} + 21228 T^{5} + 91669 T^{6} + 292668 T^{7} + 707281 T^{8} \))
$31$ (\( 1 - 52 T^{2} + 1626 T^{4} - 49972 T^{6} + 923521 T^{8} \))
$37$ (\( 1 + 2 T - 44 T^{2} - 52 T^{3} + 787 T^{4} - 1924 T^{5} - 60236 T^{6} + 101306 T^{7} + 1874161 T^{8} \))
$41$ (\( ( 1 - 9 T + 40 T^{2} - 369 T^{3} + 1681 T^{4} )^{2} \))
$43$ (\( 1 - 4 T - 47 T^{2} + 92 T^{3} + 1432 T^{4} + 3956 T^{5} - 86903 T^{6} - 318028 T^{7} + 3418801 T^{8} \))
$47$ (\( ( 1 + 9 T + 47 T^{2} )^{4} \))
$53$ (\( 1 + 6 T + 40 T^{2} + 168 T^{3} - 1389 T^{4} + 8904 T^{5} + 112360 T^{6} + 893262 T^{7} + 7890481 T^{8} \))
$59$ (\( ( 1 + 6 T + 100 T^{2} + 354 T^{3} + 3481 T^{4} )^{2} \))
$61$ (\( 1 - 76 T^{2} + 1974 T^{4} - 282796 T^{6} + 13845841 T^{8} \))
$67$ (\( ( 1 + 4 T + 67 T^{2} )^{4} \))
$71$ (\( 1 - 260 T^{2} + 26874 T^{4} - 1310660 T^{6} + 25411681 T^{8} \))
$73$ (\( ( 1 - 12 T + 121 T^{2} - 876 T^{3} + 5329 T^{4} )^{2} \))
$79$ (\( ( 1 + 2 T - 84 T^{2} + 158 T^{3} + 6241 T^{4} )^{2} \))
$83$ (\( 1 + 12 T - 31 T^{2} + 108 T^{3} + 11784 T^{4} + 8964 T^{5} - 213559 T^{6} + 6861444 T^{7} + 47458321 T^{8} \))
$89$ (\( 1 + 12 T + 38 T^{2} - 864 T^{3} - 9501 T^{4} - 76896 T^{5} + 300998 T^{6} + 8459628 T^{7} + 62742241 T^{8} \))
$97$ (\( 1 - 12 T + 110 T^{2} - 744 T^{3} - 909 T^{4} - 72168 T^{5} + 1034990 T^{6} - 10952076 T^{7} + 88529281 T^{8} \))
show more
show less