Properties

Label 630.2.a.a.1.1
Level $630$
Weight $2$
Character 630.1
Self dual yes
Analytic conductor $5.031$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,2,Mod(1,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 630.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{7} -1.00000 q^{8} +1.00000 q^{10} +4.00000 q^{11} -2.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} -2.00000 q^{17} +4.00000 q^{19} -1.00000 q^{20} -4.00000 q^{22} +8.00000 q^{23} +1.00000 q^{25} +2.00000 q^{26} -1.00000 q^{28} +2.00000 q^{29} -1.00000 q^{32} +2.00000 q^{34} +1.00000 q^{35} +6.00000 q^{37} -4.00000 q^{38} +1.00000 q^{40} +6.00000 q^{41} -4.00000 q^{43} +4.00000 q^{44} -8.00000 q^{46} +1.00000 q^{49} -1.00000 q^{50} -2.00000 q^{52} +10.0000 q^{53} -4.00000 q^{55} +1.00000 q^{56} -2.00000 q^{58} -12.0000 q^{59} +14.0000 q^{61} +1.00000 q^{64} +2.00000 q^{65} -12.0000 q^{67} -2.00000 q^{68} -1.00000 q^{70} +8.00000 q^{71} +10.0000 q^{73} -6.00000 q^{74} +4.00000 q^{76} -4.00000 q^{77} +16.0000 q^{79} -1.00000 q^{80} -6.00000 q^{82} +12.0000 q^{83} +2.00000 q^{85} +4.00000 q^{86} -4.00000 q^{88} -10.0000 q^{89} +2.00000 q^{91} +8.00000 q^{92} -4.00000 q^{95} +2.00000 q^{97} -1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) −4.00000 −0.852803
\(23\) 8.00000 1.66812 0.834058 0.551677i \(-0.186012\pi\)
0.834058 + 0.551677i \(0.186012\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −2.00000 −0.262613
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) −1.00000 −0.119523
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) −4.00000 −0.426401
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 8.00000 0.834058
\(93\) 0 0
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 4.00000 0.381385
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) −8.00000 −0.746004
\(116\) 2.00000 0.185695
\(117\) 0 0
\(118\) 12.0000 1.10469
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −14.0000 −1.26750
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −2.00000 −0.175412
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 0 0
\(133\) −4.00000 −0.346844
\(134\) 12.0000 1.03664
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 1.00000 0.0845154
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) 6.00000 0.493197
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 4.00000 0.322329
\(155\) 0 0
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) −16.0000 −1.27289
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −2.00000 −0.153393
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) 10.0000 0.749532
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) −2.00000 −0.148250
\(183\) 0 0
\(184\) −8.00000 −0.589768
\(185\) −6.00000 −0.441129
\(186\) 0 0
\(187\) −8.00000 −0.585018
\(188\) 0 0
\(189\) 0 0
\(190\) 4.00000 0.290191
\(191\) 16.0000 1.15772 0.578860 0.815427i \(-0.303498\pi\)
0.578860 + 0.815427i \(0.303498\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) −2.00000 −0.140372
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 10.0000 0.686803
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) −14.0000 −0.948200
\(219\) 0 0
\(220\) −4.00000 −0.269680
\(221\) 4.00000 0.269069
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 18.0000 1.19734
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 8.00000 0.527504
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) 22.0000 1.44127 0.720634 0.693316i \(-0.243851\pi\)
0.720634 + 0.693316i \(0.243851\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) −2.00000 −0.129641
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) −5.00000 −0.321412
\(243\) 0 0
\(244\) 14.0000 0.896258
\(245\) −1.00000 −0.0638877
\(246\) 0 0
\(247\) −8.00000 −0.509028
\(248\) 0 0
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 32.0000 2.01182
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 14.0000 0.873296 0.436648 0.899632i \(-0.356166\pi\)
0.436648 + 0.899632i \(0.356166\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 2.00000 0.124035
\(261\) 0 0
\(262\) 20.0000 1.23560
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) 0 0
\(265\) −10.0000 −0.614295
\(266\) 4.00000 0.245256
\(267\) 0 0
\(268\) −12.0000 −0.733017
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) −1.00000 −0.0597614
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 28.0000 1.66443 0.832214 0.554455i \(-0.187073\pi\)
0.832214 + 0.554455i \(0.187073\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) 8.00000 0.473050
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 2.00000 0.117444
\(291\) 0 0
\(292\) 10.0000 0.585206
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) −6.00000 −0.348743
\(297\) 0 0
\(298\) −10.0000 −0.579284
\(299\) −16.0000 −0.925304
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) 8.00000 0.460348
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) −14.0000 −0.801638
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) −4.00000 −0.227921
\(309\) 0 0
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) 16.0000 0.900070
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 8.00000 0.445823
\(323\) −8.00000 −0.445132
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) −20.0000 −1.10770
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 12.0000 0.658586
\(333\) 0 0
\(334\) −8.00000 −0.437741
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 9.00000 0.489535
\(339\) 0 0
\(340\) 2.00000 0.108465
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) −18.0000 −0.967686
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 1.00000 0.0534522
\(351\) 0 0
\(352\) −4.00000 −0.213201
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) −8.00000 −0.424596
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) 4.00000 0.211407
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −6.00000 −0.315353
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) −10.0000 −0.523424
\(366\) 0 0
\(367\) −32.0000 −1.67039 −0.835193 0.549957i \(-0.814644\pi\)
−0.835193 + 0.549957i \(0.814644\pi\)
\(368\) 8.00000 0.417029
\(369\) 0 0
\(370\) 6.00000 0.311925
\(371\) −10.0000 −0.519174
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 8.00000 0.413670
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) −4.00000 −0.205196
\(381\) 0 0
\(382\) −16.0000 −0.818631
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) 2.00000 0.101535
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) −16.0000 −0.805047
\(396\) 0 0
\(397\) 30.0000 1.50566 0.752828 0.658217i \(-0.228689\pi\)
0.752828 + 0.658217i \(0.228689\pi\)
\(398\) 24.0000 1.20301
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 14.0000 0.699127 0.349563 0.936913i \(-0.386330\pi\)
0.349563 + 0.936913i \(0.386330\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 2.00000 0.0992583
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 6.00000 0.296319
\(411\) 0 0
\(412\) −8.00000 −0.394132
\(413\) 12.0000 0.590481
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) −16.0000 −0.782586
\(419\) −20.0000 −0.977064 −0.488532 0.872546i \(-0.662467\pi\)
−0.488532 + 0.872546i \(0.662467\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 12.0000 0.584151
\(423\) 0 0
\(424\) −10.0000 −0.485643
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) −14.0000 −0.677507
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) −4.00000 −0.192897
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) 32.0000 1.53077
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 4.00000 0.190693
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 10.0000 0.474045
\(446\) 16.0000 0.757622
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) −2.00000 −0.0943858 −0.0471929 0.998886i \(-0.515028\pi\)
−0.0471929 + 0.998886i \(0.515028\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) −18.0000 −0.846649
\(453\) 0 0
\(454\) 4.00000 0.187729
\(455\) −2.00000 −0.0937614
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 10.0000 0.467269
\(459\) 0 0
\(460\) −8.00000 −0.373002
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) −22.0000 −1.01913
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 12.0000 0.554109
\(470\) 0 0
\(471\) 0 0
\(472\) 12.0000 0.552345
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) 0 0
\(479\) −32.0000 −1.46212 −0.731059 0.682315i \(-0.760973\pi\)
−0.731059 + 0.682315i \(0.760973\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 14.0000 0.637683
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) −14.0000 −0.633750
\(489\) 0 0
\(490\) 1.00000 0.0451754
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) 0 0
\(497\) −8.00000 −0.358849
\(498\) 0 0
\(499\) −12.0000 −0.537194 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) 12.0000 0.535586
\(503\) −40.0000 −1.78351 −0.891756 0.452517i \(-0.850526\pi\)
−0.891756 + 0.452517i \(0.850526\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) −32.0000 −1.42257
\(507\) 0 0
\(508\) −16.0000 −0.709885
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −14.0000 −0.617514
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) 6.00000 0.263625
\(519\) 0 0
\(520\) −2.00000 −0.0877058
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) −20.0000 −0.873704
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) 0 0
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 10.0000 0.434372
\(531\) 0 0
\(532\) −4.00000 −0.173422
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 12.0000 0.518805
\(536\) 12.0000 0.518321
\(537\) 0 0
\(538\) −18.0000 −0.776035
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) −16.0000 −0.687259
\(543\) 0 0
\(544\) 2.00000 0.0857493
\(545\) −14.0000 −0.599694
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) −10.0000 −0.427179
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) −16.0000 −0.680389
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 1.00000 0.0422577
\(561\) 0 0
\(562\) −6.00000 −0.253095
\(563\) −20.0000 −0.842900 −0.421450 0.906852i \(-0.638479\pi\)
−0.421450 + 0.906852i \(0.638479\pi\)
\(564\) 0 0
\(565\) 18.0000 0.757266
\(566\) −28.0000 −1.17693
\(567\) 0 0
\(568\) −8.00000 −0.335673
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) −8.00000 −0.334497
\(573\) 0 0
\(574\) 6.00000 0.250435
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) 34.0000 1.41544 0.707719 0.706494i \(-0.249724\pi\)
0.707719 + 0.706494i \(0.249724\pi\)
\(578\) 13.0000 0.540729
\(579\) 0 0
\(580\) −2.00000 −0.0830455
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 40.0000 1.65663
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −12.0000 −0.494032
\(591\) 0 0
\(592\) 6.00000 0.246598
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) −2.00000 −0.0819920
\(596\) 10.0000 0.409616
\(597\) 0 0
\(598\) 16.0000 0.654289
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) −4.00000 −0.163028
\(603\) 0 0
\(604\) −8.00000 −0.325515
\(605\) −5.00000 −0.203279
\(606\) 0 0
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 14.0000 0.566843
\(611\) 0 0
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) −20.0000 −0.807134
\(615\) 0 0
\(616\) 4.00000 0.161165
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −8.00000 −0.320771
\(623\) 10.0000 0.400642
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 6.00000 0.239808
\(627\) 0 0
\(628\) −18.0000 −0.718278
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) −16.0000 −0.636446
\(633\) 0 0
\(634\) −2.00000 −0.0794301
\(635\) 16.0000 0.634941
\(636\) 0 0
\(637\) −2.00000 −0.0792429
\(638\) −8.00000 −0.316723
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) −34.0000 −1.34292 −0.671460 0.741041i \(-0.734332\pi\)
−0.671460 + 0.741041i \(0.734332\pi\)
\(642\) 0 0
\(643\) −28.0000 −1.10421 −0.552106 0.833774i \(-0.686176\pi\)
−0.552106 + 0.833774i \(0.686176\pi\)
\(644\) −8.00000 −0.315244
\(645\) 0 0
\(646\) 8.00000 0.314756
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) −48.0000 −1.88416
\(650\) 2.00000 0.0784465
\(651\) 0 0
\(652\) 20.0000 0.783260
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) 20.0000 0.781465
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 38.0000 1.47803 0.739014 0.673690i \(-0.235292\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) −12.0000 −0.466393
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 4.00000 0.155113
\(666\) 0 0
\(667\) 16.0000 0.619522
\(668\) 8.00000 0.309529
\(669\) 0 0
\(670\) −12.0000 −0.463600
\(671\) 56.0000 2.16186
\(672\) 0 0
\(673\) −30.0000 −1.15642 −0.578208 0.815890i \(-0.696248\pi\)
−0.578208 + 0.815890i \(0.696248\pi\)
\(674\) −18.0000 −0.693334
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 26.0000 0.999261 0.499631 0.866239i \(-0.333469\pi\)
0.499631 + 0.866239i \(0.333469\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) −2.00000 −0.0766965
\(681\) 0 0
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 10.0000 0.382080
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) −20.0000 −0.761939
\(690\) 0 0
\(691\) 36.0000 1.36950 0.684752 0.728776i \(-0.259910\pi\)
0.684752 + 0.728776i \(0.259910\pi\)
\(692\) 18.0000 0.684257
\(693\) 0 0
\(694\) −4.00000 −0.151838
\(695\) 4.00000 0.151729
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) −14.0000 −0.529908
\(699\) 0 0
\(700\) −1.00000 −0.0377964
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 24.0000 0.905177
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 8.00000 0.300235
\(711\) 0 0
\(712\) 10.0000 0.374766
\(713\) 0 0
\(714\) 0 0
\(715\) 8.00000 0.299183
\(716\) −4.00000 −0.149487
\(717\) 0 0
\(718\) 24.0000 0.895672
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 3.00000 0.111648
\(723\) 0 0
\(724\) 6.00000 0.222988
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 0 0
\(730\) 10.0000 0.370117
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) 46.0000 1.69905 0.849524 0.527549i \(-0.176889\pi\)
0.849524 + 0.527549i \(0.176889\pi\)
\(734\) 32.0000 1.18114
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) −48.0000 −1.76810
\(738\) 0 0
\(739\) −28.0000 −1.03000 −0.514998 0.857191i \(-0.672207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(740\) −6.00000 −0.220564
\(741\) 0 0
\(742\) 10.0000 0.367112
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) 10.0000 0.366126
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 16.0000 0.583848 0.291924 0.956441i \(-0.405705\pi\)
0.291924 + 0.956441i \(0.405705\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 4.00000 0.145671
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) −28.0000 −1.01701
\(759\) 0 0
\(760\) 4.00000 0.145095
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 0 0
\(763\) −14.0000 −0.506834
\(764\) 16.0000 0.578860
\(765\) 0 0
\(766\) 16.0000 0.578103
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) −4.00000 −0.144150
\(771\) 0 0
\(772\) 2.00000 0.0719816
\(773\) 26.0000 0.935155 0.467578 0.883952i \(-0.345127\pi\)
0.467578 + 0.883952i \(0.345127\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −2.00000 −0.0717958
\(777\) 0 0
\(778\) −26.0000 −0.932145
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 16.0000 0.572159
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 18.0000 0.642448
\(786\) 0 0
\(787\) 20.0000 0.712923 0.356462 0.934310i \(-0.383983\pi\)
0.356462 + 0.934310i \(0.383983\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) 16.0000 0.569254
\(791\) 18.0000 0.640006
\(792\) 0 0
\(793\) −28.0000 −0.994309
\(794\) −30.0000 −1.06466
\(795\) 0 0
\(796\) −24.0000 −0.850657
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) −14.0000 −0.494357
\(803\) 40.0000 1.41157
\(804\) 0 0
\(805\) 8.00000 0.281963
\(806\) 0 0
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) 22.0000 0.773479 0.386739 0.922189i \(-0.373601\pi\)
0.386739 + 0.922189i \(0.373601\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) −2.00000 −0.0701862
\(813\) 0 0
\(814\) −24.0000 −0.841200
\(815\) −20.0000 −0.700569
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 38.0000 1.32864
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) −22.0000 −0.767805 −0.383903 0.923374i \(-0.625420\pi\)
−0.383903 + 0.923374i \(0.625420\pi\)
\(822\) 0 0
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) −12.0000 −0.417533
\(827\) −28.0000 −0.973655 −0.486828 0.873498i \(-0.661846\pi\)
−0.486828 + 0.873498i \(0.661846\pi\)
\(828\) 0 0
\(829\) −18.0000 −0.625166 −0.312583 0.949890i \(-0.601194\pi\)
−0.312583 + 0.949890i \(0.601194\pi\)
\(830\) 12.0000 0.416526
\(831\) 0 0
\(832\) −2.00000 −0.0693375
\(833\) −2.00000 −0.0692959
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) 16.0000 0.553372
\(837\) 0 0
\(838\) 20.0000 0.690889
\(839\) −8.00000 −0.276191 −0.138095 0.990419i \(-0.544098\pi\)
−0.138095 + 0.990419i \(0.544098\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 26.0000 0.896019
\(843\) 0 0
\(844\) −12.0000 −0.413057
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) −5.00000 −0.171802
\(848\) 10.0000 0.343401
\(849\) 0 0
\(850\) 2.00000 0.0685994
\(851\) 48.0000 1.64542
\(852\) 0 0
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 14.0000 0.479070
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 4.00000 0.136399
\(861\) 0 0
\(862\) 0 0
\(863\) −32.0000 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) 14.0000 0.475739
\(867\) 0 0
\(868\) 0 0
\(869\) 64.0000 2.17105
\(870\) 0 0
\(871\) 24.0000 0.813209
\(872\) −14.0000 −0.474100
\(873\) 0 0
\(874\) −32.0000 −1.08242
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) 8.00000 0.269987
\(879\) 0 0
\(880\) −4.00000 −0.134840
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) −28.0000 −0.942275 −0.471138 0.882060i \(-0.656156\pi\)
−0.471138 + 0.882060i \(0.656156\pi\)
\(884\) 4.00000 0.134535
\(885\) 0 0
\(886\) −36.0000 −1.20944
\(887\) −8.00000 −0.268614 −0.134307 0.990940i \(-0.542881\pi\)
−0.134307 + 0.990940i \(0.542881\pi\)
\(888\) 0 0
\(889\) 16.0000 0.536623
\(890\) −10.0000 −0.335201
\(891\) 0 0
\(892\) −16.0000 −0.535720
\(893\) 0 0
\(894\) 0 0
\(895\) 4.00000 0.133705
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 2.00000 0.0667409
\(899\) 0 0
\(900\) 0 0
\(901\) −20.0000 −0.666297
\(902\) −24.0000 −0.799113
\(903\) 0 0
\(904\) 18.0000 0.598671
\(905\) −6.00000 −0.199447
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) −4.00000 −0.132745
\(909\) 0 0
\(910\) 2.00000 0.0662994
\(911\) −32.0000 −1.06021 −0.530104 0.847933i \(-0.677847\pi\)
−0.530104 + 0.847933i \(0.677847\pi\)
\(912\) 0 0
\(913\) 48.0000 1.58857
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) 20.0000 0.660458
\(918\) 0 0
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) 8.00000 0.263752
\(921\) 0 0
\(922\) 14.0000 0.461065
\(923\) −16.0000 −0.526646
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 0 0
\(927\) 0 0
\(928\) −2.00000 −0.0656532
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) 4.00000 0.131095
\(932\) 22.0000 0.720634
\(933\) 0 0
\(934\) −12.0000 −0.392652
\(935\) 8.00000 0.261628
\(936\) 0 0
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) −12.0000 −0.391814
\(939\) 0 0
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) 48.0000 1.56310
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) −52.0000 −1.68977 −0.844886 0.534946i \(-0.820332\pi\)
−0.844886 + 0.534946i \(0.820332\pi\)
\(948\) 0 0
\(949\) −20.0000 −0.649227
\(950\) −4.00000 −0.129777
\(951\) 0 0
\(952\) −2.00000 −0.0648204
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) 0 0
\(957\) 0 0
\(958\) 32.0000 1.03387
\(959\) 10.0000 0.322917
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 12.0000 0.386896
\(963\) 0 0
\(964\) −14.0000 −0.450910
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) −5.00000 −0.160706
\(969\) 0 0
\(970\) 2.00000 0.0642161
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) 0 0
\(973\) 4.00000 0.128234
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) −40.0000 −1.27841
\(980\) −1.00000 −0.0319438
\(981\) 0 0
\(982\) −36.0000 −1.14881
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 4.00000 0.127386
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 8.00000 0.253745
\(995\) 24.0000 0.760851
\(996\) 0 0
\(997\) 22.0000 0.696747 0.348373 0.937356i \(-0.386734\pi\)
0.348373 + 0.937356i \(0.386734\pi\)
\(998\) 12.0000 0.379853
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.a.a.1.1 1
3.2 odd 2 210.2.a.e.1.1 1
4.3 odd 2 5040.2.a.k.1.1 1
5.2 odd 4 3150.2.g.q.2899.1 2
5.3 odd 4 3150.2.g.q.2899.2 2
5.4 even 2 3150.2.a.bp.1.1 1
7.6 odd 2 4410.2.a.t.1.1 1
12.11 even 2 1680.2.a.j.1.1 1
15.2 even 4 1050.2.g.g.799.2 2
15.8 even 4 1050.2.g.g.799.1 2
15.14 odd 2 1050.2.a.c.1.1 1
21.2 odd 6 1470.2.i.a.361.1 2
21.5 even 6 1470.2.i.j.361.1 2
21.11 odd 6 1470.2.i.a.961.1 2
21.17 even 6 1470.2.i.j.961.1 2
21.20 even 2 1470.2.a.j.1.1 1
24.5 odd 2 6720.2.a.j.1.1 1
24.11 even 2 6720.2.a.bq.1.1 1
60.59 even 2 8400.2.a.ce.1.1 1
105.104 even 2 7350.2.a.w.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.a.e.1.1 1 3.2 odd 2
630.2.a.a.1.1 1 1.1 even 1 trivial
1050.2.a.c.1.1 1 15.14 odd 2
1050.2.g.g.799.1 2 15.8 even 4
1050.2.g.g.799.2 2 15.2 even 4
1470.2.a.j.1.1 1 21.20 even 2
1470.2.i.a.361.1 2 21.2 odd 6
1470.2.i.a.961.1 2 21.11 odd 6
1470.2.i.j.361.1 2 21.5 even 6
1470.2.i.j.961.1 2 21.17 even 6
1680.2.a.j.1.1 1 12.11 even 2
3150.2.a.bp.1.1 1 5.4 even 2
3150.2.g.q.2899.1 2 5.2 odd 4
3150.2.g.q.2899.2 2 5.3 odd 4
4410.2.a.t.1.1 1 7.6 odd 2
5040.2.a.k.1.1 1 4.3 odd 2
6720.2.a.j.1.1 1 24.5 odd 2
6720.2.a.bq.1.1 1 24.11 even 2
7350.2.a.w.1.1 1 105.104 even 2
8400.2.a.ce.1.1 1 60.59 even 2