Properties

Label 63.7.m.d
Level $63$
Weight $7$
Character orbit 63.m
Analytic conductor $14.493$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 63.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.4934072681\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Defining polynomial: \(x^{8} - x^{7} + 212 x^{6} + 473 x^{5} + 39800 x^{4} + 36821 x^{3} + 985651 x^{2} - 601290 x + 21068100\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 7 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + \beta_{1} - \beta_{2} ) q^{2} + ( 1 - 43 \beta_{2} + 4 \beta_{3} - \beta_{5} + \beta_{6} - \beta_{7} ) q^{4} + ( 26 - 2 \beta_{1} + 25 \beta_{2} + 5 \beta_{3} - \beta_{4} - 2 \beta_{6} - \beta_{7} ) q^{5} + ( -75 - 19 \beta_{1} - 12 \beta_{2} + 6 \beta_{3} + 6 \beta_{4} - \beta_{5} + 5 \beta_{6} + 4 \beta_{7} ) q^{7} + ( -392 - 42 \beta_{1} - 4 \beta_{2} + 46 \beta_{3} - 9 \beta_{4} - 13 \beta_{5} - 12 \beta_{6} - 8 \beta_{7} ) q^{8} +O(q^{10})\) \( q + ( 1 + \beta_{1} - \beta_{2} ) q^{2} + ( 1 - 43 \beta_{2} + 4 \beta_{3} - \beta_{5} + \beta_{6} - \beta_{7} ) q^{4} + ( 26 - 2 \beta_{1} + 25 \beta_{2} + 5 \beta_{3} - \beta_{4} - 2 \beta_{6} - \beta_{7} ) q^{5} + ( -75 - 19 \beta_{1} - 12 \beta_{2} + 6 \beta_{3} + 6 \beta_{4} - \beta_{5} + 5 \beta_{6} + 4 \beta_{7} ) q^{7} + ( -392 - 42 \beta_{1} - 4 \beta_{2} + 46 \beta_{3} - 9 \beta_{4} - 13 \beta_{5} - 12 \beta_{6} - 8 \beta_{7} ) q^{8} + ( -593 + 60 \beta_{1} + 299 \beta_{2} - 32 \beta_{3} - 14 \beta_{4} - \beta_{5} - \beta_{6} + 9 \beta_{7} ) q^{10} + ( 12 + \beta_{1} + 44 \beta_{2} - 105 \beta_{3} - 3 \beta_{4} - 11 \beta_{5} + 9 \beta_{6} - 13 \beta_{7} ) q^{11} + ( 303 + 3 \beta_{1} - 567 \beta_{2} + 2 \beta_{3} + 18 \beta_{4} - 19 \beta_{5} + 39 \beta_{6} - 40 \beta_{7} ) q^{13} + ( -249 - 122 \beta_{1} + 1844 \beta_{2} - 31 \beta_{3} + 25 \beta_{4} + 30 \beta_{5} - 25 \beta_{6} + 13 \beta_{7} ) q^{14} + ( -3015 - 626 \beta_{1} + 3035 \beta_{2} + 20 \beta_{3} + 5 \beta_{4} - 40 \beta_{5} - 55 \beta_{6} + 35 \beta_{7} ) q^{16} + ( 896 + 182 \beta_{1} - 436 \beta_{2} - 82 \beta_{3} - 30 \beta_{4} - 42 \beta_{5} - 42 \beta_{6} + 6 \beta_{7} ) q^{17} + ( -1425 + 166 \beta_{1} - 1594 \beta_{2} - 251 \beta_{3} - 125 \beta_{4} - 88 \beta_{5} - 118 \beta_{6} - 125 \beta_{7} ) q^{19} + ( 1482 - 366 \beta_{1} - 2922 \beta_{2} - 354 \beta_{3} + 39 \beta_{4} - 27 \beta_{5} + 42 \beta_{6} - 30 \beta_{7} ) q^{20} + ( 10930 - 220 \beta_{1} - 44 \beta_{2} + 264 \beta_{3} + 37 \beta_{4} - 7 \beta_{5} - 132 \beta_{6} - 88 \beta_{7} ) q^{22} + ( -944 + 344 \beta_{1} + 1008 \beta_{2} + 64 \beta_{3} + 144 \beta_{4} - 128 \beta_{5} - 48 \beta_{6} - 16 \beta_{7} ) q^{23} + ( -60 + 43 \beta_{1} - 3927 \beta_{2} + 1021 \beta_{3} - 129 \beta_{4} + 103 \beta_{5} - 189 \beta_{6} + 17 \beta_{7} ) q^{25} + ( -358 - 1221 \beta_{1} - 804 \beta_{2} + 2678 \beta_{3} - 341 \beta_{4} - 210 \beta_{5} - 367 \beta_{6} - 341 \beta_{7} ) q^{26} + ( 5681 + 2932 \beta_{1} + 8285 \beta_{2} - 2154 \beta_{3} + 261 \beta_{4} + 194 \beta_{5} + 71 \beta_{6} + 225 \beta_{7} ) q^{28} + ( 1040 + 1537 \beta_{1} - 145 \beta_{2} - 1392 \beta_{3} + 48 \beta_{4} - 97 \beta_{5} - 435 \beta_{6} - 290 \beta_{7} ) q^{29} + ( -14670 - 1086 \beta_{1} + 7313 \beta_{2} + 530 \beta_{3} + 62 \beta_{4} + 70 \beta_{5} + 70 \beta_{6} - 18 \beta_{7} ) q^{31} + ( -465 + 116 \beta_{1} + 45905 \beta_{2} - 4330 \beta_{3} - 348 \beta_{4} + 581 \beta_{5} - 813 \beta_{6} + 349 \beta_{7} ) q^{32} + ( 8976 - 464 \beta_{1} - 17884 \beta_{2} - 248 \beta_{3} + 358 \beta_{4} - 142 \beta_{5} + 68 \beta_{6} + 148 \beta_{7} ) q^{34} + ( 19652 - 1261 \beta_{1} - 32617 \beta_{2} - 804 \beta_{3} + 344 \beta_{4} - 47 \beta_{5} + 127 \beta_{6} - 50 \beta_{7} ) q^{35} + ( 16431 - 1368 \beta_{1} - 16544 \beta_{2} - 113 \beta_{3} - 79 \beta_{4} + 226 \beta_{5} + 260 \beta_{6} - 147 \beta_{7} ) q^{37} + ( 14333 - 5074 \beta_{1} - 7018 \beta_{2} + 2639 \beta_{3} - 390 \beta_{4} - 501 \beta_{5} - 501 \beta_{6} + 93 \beta_{7} ) q^{38} + ( 18317 + 586 \beta_{1} + 18335 \beta_{2} - 1200 \beta_{3} + 23 \beta_{4} - 10 \beta_{5} + 61 \beta_{6} + 23 \beta_{7} ) q^{40} + ( 8866 + 1052 \beta_{1} - 16648 \beta_{2} + 1272 \beta_{3} + 872 \beta_{4} - 652 \beta_{5} + 1084 \beta_{6} - 864 \beta_{7} ) q^{41} + ( 6845 - 1459 \beta_{1} - 221 \beta_{2} + 1680 \beta_{3} - 620 \beta_{4} - 841 \beta_{5} - 663 \beta_{6} - 442 \beta_{7} ) q^{43} + ( -25623 + 7226 \beta_{1} + 25235 \beta_{2} - 388 \beta_{3} - 783 \beta_{4} + 776 \beta_{5} + 381 \beta_{6} + 7 \beta_{7} ) q^{44} + ( -344 + 64 \beta_{1} - 27616 \beta_{2} - 184 \beta_{3} - 192 \beta_{4} + 408 \beta_{5} - 536 \beta_{6} + 280 \beta_{7} ) q^{46} + ( -41226 - 1220 \beta_{1} - 39896 \beta_{2} + 1302 \beta_{3} + 1234 \beta_{4} + 192 \beta_{5} + 2180 \beta_{6} + 1234 \beta_{7} ) q^{47} + ( -66640 + 5525 \beta_{1} + 55496 \beta_{2} + 1278 \beta_{3} - 178 \beta_{4} - 637 \beta_{5} + 985 \beta_{6} - 1008 \beta_{7} ) q^{49} + ( -121141 - 2511 \beta_{1} + 412 \beta_{2} + 2099 \beta_{3} - 1065 \beta_{4} - 653 \beta_{5} + 1236 \beta_{6} + 824 \beta_{7} ) q^{50} + ( -275506 - 14552 \beta_{1} + 138340 \beta_{2} + 7402 \beta_{3} - 2096 \beta_{4} - 1426 \beta_{5} - 1426 \beta_{6} + 922 \beta_{7} ) q^{52} + ( -864 - 511 \beta_{1} + 137478 \beta_{2} + 7879 \beta_{3} + 1533 \beta_{4} + 353 \beta_{5} + 669 \beta_{6} + 1375 \beta_{7} ) q^{53} + ( 46156 - 7433 \beta_{1} - 90141 \beta_{2} - 7102 \beta_{3} + 1582 \beta_{4} - 1251 \beta_{5} + 2171 \beta_{6} - 1840 \beta_{7} ) q^{55} + ( 137333 + 20804 \beta_{1} - 221837 \beta_{2} - 3878 \beta_{3} + 1316 \beta_{4} + 2359 \beta_{5} + 1393 \beta_{6} - 665 \beta_{7} ) q^{56} + ( 130129 + 13414 \beta_{1} - 130901 \beta_{2} - 772 \beta_{3} - 1699 \beta_{4} + 1544 \beta_{5} + 617 \beta_{6} + 155 \beta_{7} ) q^{58} + ( 27852 - 2709 \beta_{1} - 13548 \beta_{2} + 571 \beta_{3} - 3079 \beta_{4} + 811 \beta_{5} + 811 \beta_{6} + 2323 \beta_{7} ) q^{59} + ( 36236 - 17232 \beta_{1} + 39700 \beta_{2} + 32440 \beta_{3} + 2744 \beta_{4} + 1440 \beta_{5} + 3328 \beta_{6} + 2744 \beta_{7} ) q^{61} + ( -63657 - 6697 \beta_{1} + 126374 \beta_{2} - 7121 \beta_{3} - 1106 \beta_{4} + 682 \beta_{5} - 940 \beta_{6} + 516 \beta_{7} ) q^{62} + ( 281992 + 47654 \beta_{1} + 1044 \beta_{2} - 48698 \beta_{3} + 2207 \beta_{4} + 3251 \beta_{5} + 3132 \beta_{6} + 2088 \beta_{7} ) q^{64} + ( 111258 - 24248 \beta_{1} - 111212 \beta_{2} + 46 \beta_{3} + 2178 \beta_{4} - 92 \beta_{5} + 2040 \beta_{6} - 2086 \beta_{7} ) q^{65} + ( -2148 - 1045 \beta_{1} - 289965 \beta_{2} - 4267 \beta_{3} + 3135 \beta_{4} + 1103 \beta_{5} + 987 \beta_{6} + 3193 \beta_{7} ) q^{67} + ( 69942 - 156 \beta_{1} + 68274 \beta_{2} + 1440 \beta_{3} - 1398 \beta_{4} - 540 \beta_{5} - 1986 \beta_{6} - 1398 \beta_{7} ) q^{68} + ( 81733 - 6836 \beta_{1} + 115725 \beta_{2} + 30590 \beta_{3} - 413 \beta_{4} + 3300 \beta_{5} - 2341 \beta_{6} + 737 \beta_{7} ) q^{70} + ( -188446 + 20866 \beta_{1} + 758 \beta_{2} - 21624 \beta_{3} + 3408 \beta_{4} + 4166 \beta_{5} + 2274 \beta_{6} + 1516 \beta_{7} ) q^{71} + ( -71634 + 27083 \beta_{1} + 34855 \beta_{2} - 14317 \beta_{3} + 2297 \beta_{4} + 3475 \beta_{5} + 3475 \beta_{6} - 373 \beta_{7} ) q^{73} + ( 723 + 588 \beta_{1} + 113570 \beta_{2} + 21745 \beta_{3} - 1764 \beta_{4} - 135 \beta_{5} - 1041 \beta_{6} - 1311 \beta_{7} ) q^{74} + ( -178434 - 20802 \beta_{1} + 351000 \beta_{2} - 23238 \beta_{3} - 6588 \beta_{4} + 4152 \beta_{5} - 5868 \beta_{6} + 3432 \beta_{7} ) q^{76} + ( -131974 + 22686 \beta_{1} - 9761 \beta_{2} + 5245 \beta_{3} - 2777 \beta_{4} - 1416 \beta_{5} - 3562 \beta_{6} + 4999 \beta_{7} ) q^{77} + ( 160501 - 5248 \beta_{1} - 157751 \beta_{2} + 2750 \beta_{3} + 7518 \beta_{4} - 5500 \beta_{5} - 732 \beta_{6} - 2018 \beta_{7} ) q^{79} + ( 353365 - 7040 \beta_{1} - 177485 \beta_{2} + 3990 \beta_{3} + 4150 \beta_{4} + 665 \beta_{5} + 665 \beta_{6} - 2545 \beta_{7} ) q^{80} + ( -111998 - 34314 \beta_{1} - 123606 \beta_{2} + 74692 \beta_{3} - 8836 \beta_{4} - 5544 \beta_{5} - 9356 \beta_{6} - 8836 \beta_{7} ) q^{82} + ( 97070 + 15973 \beta_{1} - 192851 \beta_{2} + 15078 \beta_{3} - 698 \beta_{4} - 197 \beta_{5} + 1289 \beta_{6} - 2184 \beta_{7} ) q^{83} + ( -38232 + 22438 \beta_{1} - 326 \beta_{2} - 22112 \beta_{3} - 3480 \beta_{4} - 3806 \beta_{5} - 978 \beta_{6} - 652 \beta_{7} ) q^{85} + ( -198682 - 24517 \beta_{1} + 200278 \beta_{2} + 1596 \beta_{3} - 1539 \beta_{4} - 3192 \beta_{5} - 6327 \beta_{6} + 4731 \beta_{7} ) q^{86} + ( 9479 + 2788 \beta_{1} - 92535 \beta_{2} + 16374 \beta_{3} - 8364 \beta_{4} - 6691 \beta_{5} + 1115 \beta_{6} - 12267 \beta_{7} ) q^{88} + ( 81340 + 2428 \beta_{1} + 81682 \beta_{2} - 5582 \beta_{3} + 534 \beta_{4} - 384 \beta_{5} + 1644 \beta_{6} + 534 \beta_{7} ) q^{89} + ( -76547 + 76118 \beta_{1} + 193604 \beta_{2} - 70667 \beta_{3} + 2651 \beta_{4} - 4416 \beta_{5} - 5894 \beta_{6} + 5827 \beta_{7} ) q^{91} + ( -82320 + 18704 \beta_{1} - 2464 \beta_{2} - 16240 \beta_{3} - 1680 \beta_{4} - 4144 \beta_{5} - 7392 \beta_{6} - 4928 \beta_{7} ) q^{92} + ( -86578 - 101972 \beta_{1} + 41952 \beta_{2} + 52686 \beta_{3} + 8748 \beta_{4} - 726 \beta_{5} - 726 \beta_{6} - 6074 \beta_{7} ) q^{94} + ( 4680 - 1292 \beta_{1} + 137338 \beta_{2} - 24524 \beta_{3} + 3876 \beta_{4} - 5972 \beta_{5} + 8556 \beta_{6} - 3388 \beta_{7} ) q^{95} + ( -118308 - 33555 \beta_{1} + 232593 \beta_{2} - 37586 \beta_{3} - 8058 \beta_{4} + 4027 \beta_{5} - 4023 \beta_{6} - 8 \beta_{7} ) q^{97} + ( -150010 - 58739 \beta_{1} - 531307 \beta_{2} + 18889 \beta_{3} - 7291 \beta_{4} - 16086 \beta_{5} - 4121 \beta_{6} - 14371 \beta_{7} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 5q^{2} - 173q^{4} + 294q^{5} - 656q^{7} - 3326q^{8} + O(q^{10}) \) \( 8q + 5q^{2} - 173q^{4} + 294q^{5} - 656q^{7} - 3326q^{8} - 3411q^{10} + 314q^{11} + 5360q^{14} - 12721q^{16} + 5532q^{17} - 18234q^{19} + 86106q^{22} - 3928q^{23} - 17038q^{25} - 12366q^{26} + 85037q^{28} + 8300q^{29} - 89508q^{31} + 186207q^{32} + 25860q^{35} + 64706q^{37} + 77136q^{38} + 221823q^{40} + 45740q^{43} - 92529q^{44} - 111504q^{46} - 483276q^{47} - 310684q^{49} - 967216q^{50} - 1673988q^{52} + 540974q^{53} + 241885q^{56} + 539799q^{58} + 181770q^{59} + 418224q^{61} + 2378626q^{64} + 414204q^{65} - 1158902q^{67} + 821250q^{68} + 1087917q^{70} - 1442344q^{71} - 378666q^{73} + 432940q^{74} - 1065994q^{77} + 611452q^{79} + 2094945q^{80} - 1561266q^{82} - 275112q^{85} - 816224q^{86} - 366441q^{88} + 989196q^{89} + 304446q^{91} - 678720q^{92} - 716148q^{94} + 591792q^{95} - 3509629q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - x^{7} + 212 x^{6} + 473 x^{5} + 39800 x^{4} + 36821 x^{3} + 985651 x^{2} - 601290 x + 21068100\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\(-405518177 \nu^{7} - 12595814413 \nu^{6} - 65484675874 \nu^{5} - 2673339327091 \nu^{4} - 20860832470090 \nu^{3} - 529666993003657 \nu^{2} - 423382833624317 \nu - 1017283529220570\)\()/ 11540026222043130 \)
\(\beta_{3}\)\(=\)\((\)\(8497603 \nu^{7} - 13389005 \nu^{6} + 1621914529 \nu^{5} + 3085757533 \nu^{4} + 336428371378 \nu^{3} + 15479370553 \nu^{2} + 8366760637851 \nu - 5583985297290\)\()/ 7542500798721 \)
\(\beta_{4}\)\(=\)\((\)\(30359760961 \nu^{7} - 17272473736 \nu^{6} + 12542253415247 \nu^{5} - 45647117796292 \nu^{4} + 2374626244486355 \nu^{3} - 4649039539643404 \nu^{2} + 177824901485458486 \nu - 887386378854226320\)\()/ 23080052444086260 \)
\(\beta_{5}\)\(=\)\((\)\(36613259519 \nu^{7} + 484838322556 \nu^{6} + 240706081393 \nu^{5} + 69967211645572 \nu^{4} + 594392649047605 \nu^{3} + 4771038672935884 \nu^{2} - 171328578806357686 \nu - 1022366367515487780\)\()/ 23080052444086260 \)
\(\beta_{6}\)\(=\)\((\)\(20960695316 \nu^{7} - 201659710511 \nu^{6} + 3951590320162 \nu^{5} - 21226630078907 \nu^{4} + 569010508767670 \nu^{3} - 4885911718111139 \nu^{2} - 9572214805242754 \nu - 12764692598290560\)\()/ 3297150349155180 \)
\(\beta_{7}\)\(=\)\((\)\(14593340681 \nu^{7} + 40700920519 \nu^{6} + 3013487903677 \nu^{5} + 21592891249843 \nu^{4} + 580595236989325 \nu^{3} + 2960686065927031 \nu^{2} + 14428518294215396 \nu + 66916687643934480\)\()/ 1357650143769780 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(-\beta_{7} + \beta_{6} - \beta_{5} + 2 \beta_{3} - 106 \beta_{2} + 1\)
\(\nu^{3}\)\(=\)\(-8 \beta_{7} - 12 \beta_{6} - 10 \beta_{5} - 6 \beta_{4} + 165 \beta_{3} - 4 \beta_{2} - 161 \beta_{1} - 204\)
\(\nu^{4}\)\(=\)\(213 \beta_{7} - 217 \beta_{6} - 8 \beta_{5} - 205 \beta_{4} + 4 \beta_{3} + 17990 \beta_{2} - 718 \beta_{1} - 17986\)
\(\nu^{5}\)\(=\)\(2462 \beta_{7} + 930 \beta_{6} + 766 \beta_{5} + 2544 \beta_{4} - 30357 \beta_{3} + 77878 \beta_{2} - 848 \beta_{1} - 1614\)
\(\nu^{6}\)\(=\)\(4432 \beta_{7} + 6648 \beta_{6} + 45813 \beta_{5} + 43597 \beta_{4} - 195138 \beta_{3} + 2216 \beta_{2} + 192922 \beta_{1} + 3368601\)
\(\nu^{7}\)\(=\)\(-221730 \beta_{7} + 385038 \beta_{6} + 326616 \beta_{5} - 104886 \beta_{4} - 163308 \beta_{3} - 21042174 \beta_{2} + 6116101 \beta_{1} + 20878866\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1 - \beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
10.1
−6.30797 10.9257i
−2.75320 4.76869i
2.26350 + 3.92050i
7.29767 + 12.6399i
−6.30797 + 10.9257i
−2.75320 + 4.76869i
2.26350 3.92050i
7.29767 12.6399i
−5.80797 10.0597i 0 −35.4650 + 61.4271i 165.302 95.4373i 0 −103.254 + 327.089i 80.4975 0 −1920.14 1108.59i
10.2 −2.25320 3.90266i 0 21.8461 37.8386i −53.9244 + 31.1333i 0 218.833 264.124i −485.305 0 243.005 + 140.299i
10.3 2.76350 + 4.78652i 0 16.7261 28.9705i 57.9943 33.4830i 0 −240.457 + 244.600i 538.619 0 320.535 + 185.061i
10.4 7.79767 + 13.5060i 0 −89.6073 + 155.204i −22.3721 + 12.9165i 0 −203.121 276.389i −1796.81 0 −348.901 201.438i
19.1 −5.80797 + 10.0597i 0 −35.4650 61.4271i 165.302 + 95.4373i 0 −103.254 327.089i 80.4975 0 −1920.14 + 1108.59i
19.2 −2.25320 + 3.90266i 0 21.8461 + 37.8386i −53.9244 31.1333i 0 218.833 + 264.124i −485.305 0 243.005 140.299i
19.3 2.76350 4.78652i 0 16.7261 + 28.9705i 57.9943 + 33.4830i 0 −240.457 244.600i 538.619 0 320.535 185.061i
19.4 7.79767 13.5060i 0 −89.6073 155.204i −22.3721 12.9165i 0 −203.121 + 276.389i −1796.81 0 −348.901 + 201.438i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.7.m.d 8
3.b odd 2 1 21.7.f.a 8
7.c even 3 1 441.7.d.c 8
7.d odd 6 1 inner 63.7.m.d 8
7.d odd 6 1 441.7.d.c 8
12.b even 2 1 336.7.bh.d 8
21.c even 2 1 147.7.f.d 8
21.g even 6 1 21.7.f.a 8
21.g even 6 1 147.7.d.b 8
21.h odd 6 1 147.7.d.b 8
21.h odd 6 1 147.7.f.d 8
84.j odd 6 1 336.7.bh.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.7.f.a 8 3.b odd 2 1
21.7.f.a 8 21.g even 6 1
63.7.m.d 8 1.a even 1 1 trivial
63.7.m.d 8 7.d odd 6 1 inner
147.7.d.b 8 21.g even 6 1
147.7.d.b 8 21.h odd 6 1
147.7.f.d 8 21.c even 2 1
147.7.f.d 8 21.h odd 6 1
336.7.bh.d 8 12.b even 2 1
336.7.bh.d 8 84.j odd 6 1
441.7.d.c 8 7.c even 3 1
441.7.d.c 8 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{2}^{8} - \cdots\) acting on \(S_{7}^{\mathrm{new}}(63, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 20358144 + 1281408 T + 992080 T^{2} - 12248 T^{3} + 37712 T^{4} + 442 T^{5} + 227 T^{6} - 5 T^{7} + T^{8} \)
$3$ \( T^{8} \)
$5$ \( 422734160250000 + 25332592050000 T + 334857307500 T^{2} - 10257232500 T^{3} - 72000675 T^{4} + 2447550 T^{5} + 20487 T^{6} - 294 T^{7} + T^{8} \)
$7$ \( \)\(19\!\cdots\!01\)\( + 1068239320229254544 T + 5128335320842510 T^{2} + 12493153898344 T^{3} + 41840034887 T^{4} + 106190056 T^{5} + 370510 T^{6} + 656 T^{7} + T^{8} \)
$11$ \( \)\(18\!\cdots\!44\)\( - 98293722790383421872 T + 5063514049337341372 T^{2} - 8590189886857868 T^{3} + 14795841919805 T^{4} - 3395131754 T^{5} + 3844943 T^{6} - 314 T^{7} + T^{8} \)
$13$ \( \)\(21\!\cdots\!56\)\( + \)\(14\!\cdots\!08\)\( T^{2} + 331924469476329 T^{4} + 30553062 T^{6} + T^{8} \)
$17$ \( \)\(14\!\cdots\!04\)\( - \)\(32\!\cdots\!48\)\( T - 18954316226540153088 T^{2} + 49044433474028160 T^{3} + 325284835782096 T^{4} + 99181347120 T^{5} - 7727652 T^{6} - 5532 T^{7} + T^{8} \)
$19$ \( \)\(40\!\cdots\!56\)\( + \)\(29\!\cdots\!56\)\( T + \)\(80\!\cdots\!44\)\( T^{2} + 80019415606831775892 T^{3} - 3659130219753963 T^{4} - 1012664156058 T^{5} + 55289115 T^{6} + 18234 T^{7} + T^{8} \)
$23$ \( \)\(15\!\cdots\!56\)\( + \)\(35\!\cdots\!28\)\( T + \)\(83\!\cdots\!96\)\( T^{2} - 12921467685980241920 T^{3} + 20933343724396544 T^{4} - 749772681728 T^{5} + 161320832 T^{6} + 3928 T^{7} + T^{8} \)
$29$ \( ( -131918946476762880 + 26271861557728 T - 1346898667 T^{2} - 4150 T^{3} + T^{4} )^{2} \)
$31$ \( \)\(16\!\cdots\!01\)\( - \)\(45\!\cdots\!96\)\( T - \)\(58\!\cdots\!94\)\( T^{2} + \)\(26\!\cdots\!36\)\( T^{3} + 706793352941013399 T^{4} + 68718078342072 T^{5} + 3438291822 T^{6} + 89508 T^{7} + T^{8} \)
$37$ \( \)\(23\!\cdots\!36\)\( - \)\(16\!\cdots\!60\)\( T + \)\(13\!\cdots\!00\)\( T^{2} - \)\(47\!\cdots\!28\)\( T^{3} + 2903640625281916109 T^{4} - 97788930340930 T^{5} + 3733577311 T^{6} - 64706 T^{7} + T^{8} \)
$41$ \( \)\(36\!\cdots\!44\)\( + \)\(43\!\cdots\!00\)\( T^{2} + \)\(15\!\cdots\!32\)\( T^{4} + 21593029296 T^{6} + T^{8} \)
$43$ \( ( -293597400770976796 + 85125133057276 T - 4841210811 T^{2} - 22870 T^{3} + T^{4} )^{2} \)
$47$ \( \)\(99\!\cdots\!96\)\( + \)\(26\!\cdots\!80\)\( T + \)\(10\!\cdots\!60\)\( T^{2} - \)\(36\!\cdots\!00\)\( T^{3} - \)\(15\!\cdots\!24\)\( T^{4} + 6508813429466640 T^{5} + 91320005532 T^{6} + 483276 T^{7} + T^{8} \)
$53$ \( \)\(73\!\cdots\!64\)\( + \)\(30\!\cdots\!60\)\( T + \)\(20\!\cdots\!00\)\( T^{2} - \)\(41\!\cdots\!16\)\( T^{3} + \)\(60\!\cdots\!97\)\( T^{4} - 40803243733591190 T^{5} + 203978340551 T^{6} - 540974 T^{7} + T^{8} \)
$59$ \( \)\(20\!\cdots\!00\)\( - \)\(67\!\cdots\!60\)\( T - \)\(32\!\cdots\!28\)\( T^{2} + \)\(11\!\cdots\!68\)\( T^{3} + \)\(51\!\cdots\!49\)\( T^{4} + 13446651706756290 T^{5} - 62962743777 T^{6} - 181770 T^{7} + T^{8} \)
$61$ \( \)\(68\!\cdots\!00\)\( + \)\(30\!\cdots\!00\)\( T - \)\(93\!\cdots\!00\)\( T^{2} - \)\(63\!\cdots\!00\)\( T^{3} + \)\(15\!\cdots\!00\)\( T^{4} + 71069068838315520 T^{5} - 111626861088 T^{6} - 418224 T^{7} + T^{8} \)
$67$ \( \)\(29\!\cdots\!04\)\( + \)\(10\!\cdots\!28\)\( T + \)\(26\!\cdots\!52\)\( T^{2} + \)\(21\!\cdots\!00\)\( T^{3} + \)\(12\!\cdots\!29\)\( T^{4} + 387875645278331366 T^{5} + 908045258107 T^{6} + 1158902 T^{7} + T^{8} \)
$71$ \( ( -\)\(19\!\cdots\!12\)\( - 115286062429846880 T - 36558200716 T^{2} + 721172 T^{3} + T^{4} )^{2} \)
$73$ \( \)\(77\!\cdots\!24\)\( + \)\(13\!\cdots\!92\)\( T + \)\(10\!\cdots\!44\)\( T^{2} + \)\(36\!\cdots\!56\)\( T^{3} + \)\(43\!\cdots\!01\)\( T^{4} - 88270688635072434 T^{5} - 185313643497 T^{6} + 378666 T^{7} + T^{8} \)
$79$ \( \)\(99\!\cdots\!01\)\( - \)\(96\!\cdots\!32\)\( T + \)\(92\!\cdots\!06\)\( T^{2} - \)\(15\!\cdots\!80\)\( T^{3} + \)\(81\!\cdots\!39\)\( T^{4} - 103324245868979728 T^{5} + 521211945622 T^{6} - 611452 T^{7} + T^{8} \)
$83$ \( \)\(52\!\cdots\!24\)\( + \)\(31\!\cdots\!16\)\( T^{2} + \)\(85\!\cdots\!29\)\( T^{4} + 524747194014 T^{6} + T^{8} \)
$89$ \( \)\(87\!\cdots\!56\)\( + \)\(92\!\cdots\!00\)\( T + \)\(22\!\cdots\!76\)\( T^{2} - \)\(10\!\cdots\!00\)\( T^{3} + \)\(14\!\cdots\!80\)\( T^{4} - 103856130641901456 T^{5} + 431160022908 T^{6} - 989196 T^{7} + T^{8} \)
$97$ \( \)\(90\!\cdots\!76\)\( + \)\(26\!\cdots\!08\)\( T^{2} + \)\(12\!\cdots\!73\)\( T^{4} + 2056709392566 T^{6} + T^{8} \)
show more
show less