Properties

Label 63.6.e.f.46.4
Level $63$
Weight $6$
Character 63.46
Analytic conductor $10.104$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,6,Mod(37,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 63.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1041806482\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 187x^{10} + 25399x^{8} + 1518438x^{6} + 66232188x^{4} + 1297462320x^{2} + 18380851776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 46.4
Root \(2.44476 + 4.23445i\) of defining polynomial
Character \(\chi\) \(=\) 63.46
Dual form 63.6.e.f.37.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.44476 + 4.23445i) q^{2} +(4.04630 - 7.00840i) q^{4} +(-21.3752 - 37.0229i) q^{5} +(43.2256 + 122.223i) q^{7} +196.034 q^{8} +O(q^{10})\) \(q+(2.44476 + 4.23445i) q^{2} +(4.04630 - 7.00840i) q^{4} +(-21.3752 - 37.0229i) q^{5} +(43.2256 + 122.223i) q^{7} +196.034 q^{8} +(104.514 - 181.024i) q^{10} +(355.439 - 615.638i) q^{11} +885.624 q^{13} +(-411.872 + 481.843i) q^{14} +(349.773 + 605.825i) q^{16} +(-350.659 + 607.359i) q^{17} +(627.946 + 1087.63i) q^{19} -345.962 q^{20} +3475.85 q^{22} +(-523.092 - 906.022i) q^{23} +(648.701 - 1123.58i) q^{25} +(2165.14 + 3750.13i) q^{26} +(1031.49 + 191.611i) q^{28} -6150.88 q^{29} +(-1147.12 + 1986.87i) q^{31} +(1426.31 - 2470.45i) q^{32} -3429.10 q^{34} +(3601.11 - 4212.89i) q^{35} +(-202.054 - 349.968i) q^{37} +(-3070.35 + 5318.01i) q^{38} +(-4190.26 - 7257.74i) q^{40} +17891.4 q^{41} -14604.8 q^{43} +(-2876.43 - 4982.11i) q^{44} +(2557.67 - 4430.01i) q^{46} +(-10568.6 - 18305.4i) q^{47} +(-13070.1 + 10566.3i) q^{49} +6343.67 q^{50} +(3583.50 - 6206.80i) q^{52} +(53.6064 - 92.8490i) q^{53} -30390.3 q^{55} +(8473.66 + 23959.9i) q^{56} +(-15037.4 - 26045.6i) q^{58} +(-22249.4 + 38537.1i) q^{59} +(11606.2 + 20102.5i) q^{61} -11217.7 q^{62} +36333.5 q^{64} +(-18930.4 - 32788.4i) q^{65} +(3335.66 - 5777.53i) q^{67} +(2837.74 + 4915.11i) q^{68} +(26643.1 + 4949.23i) q^{70} -25110.5 q^{71} +(-4737.49 + 8205.57i) q^{73} +(987.948 - 1711.18i) q^{74} +10163.4 q^{76} +(90609.5 + 16831.6i) q^{77} +(13238.1 + 22929.0i) q^{79} +(14953.0 - 25899.3i) q^{80} +(43740.2 + 75760.2i) q^{82} +7494.03 q^{83} +29981.6 q^{85} +(-35705.3 - 61843.3i) q^{86} +(69678.0 - 120686. i) q^{88} +(16085.6 + 27861.2i) q^{89} +(38281.6 + 108244. i) q^{91} -8466.35 q^{92} +(51675.5 - 89504.7i) q^{94} +(26845.0 - 46496.8i) q^{95} -155070. q^{97} +(-76695.9 - 29512.5i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 182 q^{4} + 142 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 182 q^{4} + 142 q^{7} + 686 q^{10} + 308 q^{13} - 1898 q^{16} + 9422 q^{19} - 18292 q^{22} - 7526 q^{25} + 37074 q^{28} + 23422 q^{31} - 55608 q^{34} - 18182 q^{37} + 69258 q^{40} - 87372 q^{43} + 25332 q^{46} + 30354 q^{49} + 34272 q^{52} - 96320 q^{55} - 89782 q^{58} - 16156 q^{61} + 380580 q^{64} + 144650 q^{67} - 187262 q^{70} - 100058 q^{73} - 685440 q^{76} + 101994 q^{79} + 75712 q^{82} + 602352 q^{85} + 752310 q^{88} - 282306 q^{91} - 120456 q^{94} - 866096 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44476 + 4.23445i 0.432177 + 0.748552i 0.997060 0.0766186i \(-0.0244124\pi\)
−0.564884 + 0.825170i \(0.691079\pi\)
\(3\) 0 0
\(4\) 4.04630 7.00840i 0.126447 0.219012i
\(5\) −21.3752 37.0229i −0.382371 0.662286i 0.609029 0.793148i \(-0.291559\pi\)
−0.991401 + 0.130861i \(0.958226\pi\)
\(6\) 0 0
\(7\) 43.2256 + 122.223i 0.333423 + 0.942777i
\(8\) 196.034 1.08294
\(9\) 0 0
\(10\) 104.514 181.024i 0.330504 0.572449i
\(11\) 355.439 615.638i 0.885693 1.53407i 0.0407765 0.999168i \(-0.487017\pi\)
0.844917 0.534898i \(-0.179650\pi\)
\(12\) 0 0
\(13\) 885.624 1.45342 0.726709 0.686945i \(-0.241049\pi\)
0.726709 + 0.686945i \(0.241049\pi\)
\(14\) −411.872 + 481.843i −0.561620 + 0.657031i
\(15\) 0 0
\(16\) 349.773 + 605.825i 0.341576 + 0.591626i
\(17\) −350.659 + 607.359i −0.294281 + 0.509710i −0.974817 0.223005i \(-0.928413\pi\)
0.680536 + 0.732714i \(0.261747\pi\)
\(18\) 0 0
\(19\) 627.946 + 1087.63i 0.399060 + 0.691192i 0.993610 0.112866i \(-0.0360031\pi\)
−0.594550 + 0.804059i \(0.702670\pi\)
\(20\) −345.962 −0.193399
\(21\) 0 0
\(22\) 3475.85 1.53110
\(23\) −523.092 906.022i −0.206186 0.357124i 0.744324 0.667818i \(-0.232772\pi\)
−0.950510 + 0.310694i \(0.899438\pi\)
\(24\) 0 0
\(25\) 648.701 1123.58i 0.207584 0.359547i
\(26\) 2165.14 + 3750.13i 0.628134 + 1.08796i
\(27\) 0 0
\(28\) 1031.49 + 191.611i 0.248640 + 0.0461875i
\(29\) −6150.88 −1.35813 −0.679067 0.734077i \(-0.737615\pi\)
−0.679067 + 0.734077i \(0.737615\pi\)
\(30\) 0 0
\(31\) −1147.12 + 1986.87i −0.214390 + 0.371334i −0.953084 0.302707i \(-0.902110\pi\)
0.738694 + 0.674041i \(0.235443\pi\)
\(32\) 1426.31 2470.45i 0.246229 0.426482i
\(33\) 0 0
\(34\) −3429.10 −0.508725
\(35\) 3601.11 4212.89i 0.496897 0.581312i
\(36\) 0 0
\(37\) −202.054 349.968i −0.0242641 0.0420266i 0.853638 0.520866i \(-0.174391\pi\)
−0.877902 + 0.478839i \(0.841058\pi\)
\(38\) −3070.35 + 5318.01i −0.344929 + 0.597434i
\(39\) 0 0
\(40\) −4190.26 7257.74i −0.414086 0.717218i
\(41\) 17891.4 1.66221 0.831103 0.556119i \(-0.187710\pi\)
0.831103 + 0.556119i \(0.187710\pi\)
\(42\) 0 0
\(43\) −14604.8 −1.20455 −0.602275 0.798289i \(-0.705739\pi\)
−0.602275 + 0.798289i \(0.705739\pi\)
\(44\) −2876.43 4982.11i −0.223986 0.387956i
\(45\) 0 0
\(46\) 2557.67 4430.01i 0.178217 0.308681i
\(47\) −10568.6 18305.4i −0.697870 1.20875i −0.969204 0.246260i \(-0.920798\pi\)
0.271334 0.962485i \(-0.412535\pi\)
\(48\) 0 0
\(49\) −13070.1 + 10566.3i −0.777658 + 0.628687i
\(50\) 6343.67 0.358852
\(51\) 0 0
\(52\) 3583.50 6206.80i 0.183780 0.318317i
\(53\) 53.6064 92.8490i 0.00262136 0.00454033i −0.864712 0.502268i \(-0.832499\pi\)
0.867333 + 0.497728i \(0.165832\pi\)
\(54\) 0 0
\(55\) −30390.3 −1.35465
\(56\) 8473.66 + 23959.9i 0.361078 + 1.02097i
\(57\) 0 0
\(58\) −15037.4 26045.6i −0.586953 1.01663i
\(59\) −22249.4 + 38537.1i −0.832124 + 1.44128i 0.0642267 + 0.997935i \(0.479542\pi\)
−0.896351 + 0.443346i \(0.853791\pi\)
\(60\) 0 0
\(61\) 11606.2 + 20102.5i 0.399360 + 0.691712i 0.993647 0.112541i \(-0.0358990\pi\)
−0.594287 + 0.804253i \(0.702566\pi\)
\(62\) −11217.7 −0.370617
\(63\) 0 0
\(64\) 36333.5 1.10881
\(65\) −18930.4 32788.4i −0.555746 0.962580i
\(66\) 0 0
\(67\) 3335.66 5777.53i 0.0907809 0.157237i −0.817059 0.576554i \(-0.804397\pi\)
0.907840 + 0.419317i \(0.137730\pi\)
\(68\) 2837.74 + 4915.11i 0.0744218 + 0.128902i
\(69\) 0 0
\(70\) 26643.1 + 4949.23i 0.649890 + 0.120724i
\(71\) −25110.5 −0.591166 −0.295583 0.955317i \(-0.595514\pi\)
−0.295583 + 0.955317i \(0.595514\pi\)
\(72\) 0 0
\(73\) −4737.49 + 8205.57i −0.104050 + 0.180219i −0.913350 0.407176i \(-0.866513\pi\)
0.809300 + 0.587396i \(0.199847\pi\)
\(74\) 987.948 1711.18i 0.0209727 0.0363258i
\(75\) 0 0
\(76\) 10163.4 0.201840
\(77\) 90609.5 + 16831.6i 1.74159 + 0.323519i
\(78\) 0 0
\(79\) 13238.1 + 22929.0i 0.238647 + 0.413349i 0.960326 0.278879i \(-0.0899627\pi\)
−0.721679 + 0.692228i \(0.756629\pi\)
\(80\) 14953.0 25899.3i 0.261217 0.452442i
\(81\) 0 0
\(82\) 43740.2 + 75760.2i 0.718366 + 1.24425i
\(83\) 7494.03 0.119404 0.0597022 0.998216i \(-0.480985\pi\)
0.0597022 + 0.998216i \(0.480985\pi\)
\(84\) 0 0
\(85\) 29981.6 0.450098
\(86\) −35705.3 61843.3i −0.520578 0.901668i
\(87\) 0 0
\(88\) 69678.0 120686.i 0.959155 1.66131i
\(89\) 16085.6 + 27861.2i 0.215260 + 0.372841i 0.953353 0.301858i \(-0.0976067\pi\)
−0.738093 + 0.674699i \(0.764273\pi\)
\(90\) 0 0
\(91\) 38281.6 + 108244.i 0.484603 + 1.37025i
\(92\) −8466.35 −0.104286
\(93\) 0 0
\(94\) 51675.5 89504.7i 0.603206 1.04478i
\(95\) 26845.0 46496.8i 0.305178 0.528584i
\(96\) 0 0
\(97\) −155070. −1.67340 −0.836699 0.547664i \(-0.815517\pi\)
−0.836699 + 0.547664i \(0.815517\pi\)
\(98\) −76695.9 29512.5i −0.806691 0.310414i
\(99\) 0 0
\(100\) −5249.68 9092.71i −0.0524968 0.0909271i
\(101\) −55960.9 + 96927.1i −0.545860 + 0.945457i 0.452692 + 0.891667i \(0.350464\pi\)
−0.998552 + 0.0537904i \(0.982870\pi\)
\(102\) 0 0
\(103\) 30342.1 + 52554.1i 0.281808 + 0.488105i 0.971830 0.235683i \(-0.0757326\pi\)
−0.690022 + 0.723788i \(0.742399\pi\)
\(104\) 173612. 1.57397
\(105\) 0 0
\(106\) 524.219 0.00453156
\(107\) 56266.4 + 97456.3i 0.475105 + 0.822906i 0.999593 0.0285115i \(-0.00907672\pi\)
−0.524488 + 0.851418i \(0.675743\pi\)
\(108\) 0 0
\(109\) 3811.67 6602.01i 0.0307291 0.0532243i −0.850252 0.526376i \(-0.823550\pi\)
0.880981 + 0.473152i \(0.156884\pi\)
\(110\) −74297.0 128686.i −0.585450 1.01403i
\(111\) 0 0
\(112\) −58926.9 + 68937.6i −0.443883 + 0.519291i
\(113\) −41498.7 −0.305730 −0.152865 0.988247i \(-0.548850\pi\)
−0.152865 + 0.988247i \(0.548850\pi\)
\(114\) 0 0
\(115\) −22362.4 + 38732.8i −0.157679 + 0.273108i
\(116\) −24888.3 + 43107.8i −0.171732 + 0.297448i
\(117\) 0 0
\(118\) −217578. −1.43850
\(119\) −89390.8 16605.3i −0.578663 0.107493i
\(120\) 0 0
\(121\) −172148. 298170.i −1.06891 1.85140i
\(122\) −56748.6 + 98291.5i −0.345188 + 0.597883i
\(123\) 0 0
\(124\) 9283.17 + 16078.9i 0.0542178 + 0.0939080i
\(125\) −189060. −1.08224
\(126\) 0 0
\(127\) 94796.7 0.521535 0.260768 0.965402i \(-0.416024\pi\)
0.260768 + 0.965402i \(0.416024\pi\)
\(128\) 43184.6 + 74797.9i 0.232972 + 0.403519i
\(129\) 0 0
\(130\) 92560.5 160319.i 0.480360 0.832009i
\(131\) 105547. + 182814.i 0.537365 + 0.930744i 0.999045 + 0.0436972i \(0.0139137\pi\)
−0.461679 + 0.887047i \(0.652753\pi\)
\(132\) 0 0
\(133\) −105791. + 123763.i −0.518585 + 0.606684i
\(134\) 32619.5 0.156934
\(135\) 0 0
\(136\) −68740.8 + 119063.i −0.318689 + 0.551986i
\(137\) 48096.6 83305.7i 0.218934 0.379204i −0.735549 0.677472i \(-0.763076\pi\)
0.954482 + 0.298268i \(0.0964088\pi\)
\(138\) 0 0
\(139\) −401994. −1.76475 −0.882375 0.470548i \(-0.844056\pi\)
−0.882375 + 0.470548i \(0.844056\pi\)
\(140\) −14954.4 42284.6i −0.0644835 0.182332i
\(141\) 0 0
\(142\) −61389.1 106329.i −0.255488 0.442518i
\(143\) 314785. 545224.i 1.28728 2.22964i
\(144\) 0 0
\(145\) 131476. + 227724.i 0.519311 + 0.899474i
\(146\) −46328.1 −0.179871
\(147\) 0 0
\(148\) −3270.29 −0.0122725
\(149\) −37650.0 65211.8i −0.138931 0.240636i 0.788161 0.615469i \(-0.211033\pi\)
−0.927092 + 0.374833i \(0.877700\pi\)
\(150\) 0 0
\(151\) 245297. 424867.i 0.875488 1.51639i 0.0192454 0.999815i \(-0.493874\pi\)
0.856242 0.516574i \(-0.172793\pi\)
\(152\) 123098. + 213213.i 0.432159 + 0.748522i
\(153\) 0 0
\(154\) 150246. + 424830.i 0.510505 + 1.44349i
\(155\) 98079.6 0.327906
\(156\) 0 0
\(157\) 230508. 399251.i 0.746339 1.29270i −0.203228 0.979132i \(-0.565143\pi\)
0.949567 0.313566i \(-0.101524\pi\)
\(158\) −64727.7 + 112112.i −0.206276 + 0.357280i
\(159\) 0 0
\(160\) −121951. −0.376604
\(161\) 88126.1 103097.i 0.267941 0.313461i
\(162\) 0 0
\(163\) 239222. + 414344.i 0.705232 + 1.22150i 0.966608 + 0.256260i \(0.0824904\pi\)
−0.261376 + 0.965237i \(0.584176\pi\)
\(164\) 72393.9 125390.i 0.210181 0.364043i
\(165\) 0 0
\(166\) 18321.1 + 31733.1i 0.0516038 + 0.0893803i
\(167\) −498852. −1.38414 −0.692070 0.721830i \(-0.743301\pi\)
−0.692070 + 0.721830i \(0.743301\pi\)
\(168\) 0 0
\(169\) 413036. 1.11243
\(170\) 73297.8 + 126956.i 0.194522 + 0.336922i
\(171\) 0 0
\(172\) −59095.5 + 102356.i −0.152312 + 0.263811i
\(173\) −130322. 225724.i −0.331056 0.573405i 0.651663 0.758508i \(-0.274072\pi\)
−0.982719 + 0.185103i \(0.940738\pi\)
\(174\) 0 0
\(175\) 165369. + 30718.9i 0.408186 + 0.0758248i
\(176\) 497292. 1.21012
\(177\) 0 0
\(178\) −78651.1 + 136228.i −0.186061 + 0.322267i
\(179\) −266709. + 461954.i −0.622164 + 1.07762i 0.366918 + 0.930253i \(0.380413\pi\)
−0.989082 + 0.147367i \(0.952920\pi\)
\(180\) 0 0
\(181\) 185798. 0.421546 0.210773 0.977535i \(-0.432402\pi\)
0.210773 + 0.977535i \(0.432402\pi\)
\(182\) −364764. + 426732.i −0.816269 + 0.954941i
\(183\) 0 0
\(184\) −102544. 177611.i −0.223287 0.386745i
\(185\) −8637.90 + 14961.3i −0.0185558 + 0.0321395i
\(186\) 0 0
\(187\) 249275. + 431758.i 0.521285 + 0.902893i
\(188\) −171055. −0.352974
\(189\) 0 0
\(190\) 262518. 0.527564
\(191\) 354418. + 613871.i 0.702964 + 1.21757i 0.967421 + 0.253171i \(0.0814736\pi\)
−0.264458 + 0.964397i \(0.585193\pi\)
\(192\) 0 0
\(193\) 361752. 626573.i 0.699065 1.21082i −0.269726 0.962937i \(-0.586933\pi\)
0.968791 0.247879i \(-0.0797337\pi\)
\(194\) −379109. 656637.i −0.723203 1.25262i
\(195\) 0 0
\(196\) 21167.6 + 134355.i 0.0393578 + 0.249812i
\(197\) −147313. −0.270443 −0.135222 0.990815i \(-0.543175\pi\)
−0.135222 + 0.990815i \(0.543175\pi\)
\(198\) 0 0
\(199\) −710.490 + 1230.60i −0.00127182 + 0.00220285i −0.866661 0.498898i \(-0.833738\pi\)
0.865389 + 0.501101i \(0.167071\pi\)
\(200\) 127167. 220260.i 0.224802 0.389368i
\(201\) 0 0
\(202\) −547244. −0.943632
\(203\) −265875. 751782.i −0.452833 1.28042i
\(204\) 0 0
\(205\) −382432. 662392.i −0.635579 1.10086i
\(206\) −148358. + 256964.i −0.243581 + 0.421895i
\(207\) 0 0
\(208\) 309768. + 536533.i 0.496452 + 0.859881i
\(209\) 892786. 1.41378
\(210\) 0 0
\(211\) −30296.2 −0.0468470 −0.0234235 0.999726i \(-0.507457\pi\)
−0.0234235 + 0.999726i \(0.507457\pi\)
\(212\) −433.815 751.389i −0.000662926 0.00114822i
\(213\) 0 0
\(214\) −275116. + 476514.i −0.410659 + 0.711281i
\(215\) 312181. + 540713.i 0.460585 + 0.797757i
\(216\) 0 0
\(217\) −292427. 54321.2i −0.421568 0.0783106i
\(218\) 37274.5 0.0531215
\(219\) 0 0
\(220\) −122968. + 212987.i −0.171292 + 0.296686i
\(221\) −310552. + 537891.i −0.427714 + 0.740822i
\(222\) 0 0
\(223\) −147864. −0.199114 −0.0995570 0.995032i \(-0.531743\pi\)
−0.0995570 + 0.995032i \(0.531743\pi\)
\(224\) 363599. + 67542.4i 0.484176 + 0.0899407i
\(225\) 0 0
\(226\) −101454. 175724.i −0.132129 0.228855i
\(227\) 406723. 704464.i 0.523882 0.907391i −0.475731 0.879591i \(-0.657817\pi\)
0.999614 0.0277999i \(-0.00885012\pi\)
\(228\) 0 0
\(229\) −641094. 1.11041e6i −0.807854 1.39924i −0.914347 0.404931i \(-0.867295\pi\)
0.106493 0.994313i \(-0.466038\pi\)
\(230\) −218683. −0.272581
\(231\) 0 0
\(232\) −1.20578e6 −1.47078
\(233\) −617850. 1.07015e6i −0.745578 1.29138i −0.949924 0.312481i \(-0.898840\pi\)
0.204346 0.978899i \(-0.434493\pi\)
\(234\) 0 0
\(235\) −451813. + 782564.i −0.533691 + 0.924379i
\(236\) 180055. + 311865.i 0.210439 + 0.364491i
\(237\) 0 0
\(238\) −148225. 419117.i −0.169621 0.479615i
\(239\) −874240. −0.990001 −0.495001 0.868893i \(-0.664832\pi\)
−0.495001 + 0.868893i \(0.664832\pi\)
\(240\) 0 0
\(241\) 489805. 848367.i 0.543226 0.940895i −0.455490 0.890241i \(-0.650536\pi\)
0.998716 0.0506545i \(-0.0161307\pi\)
\(242\) 841722. 1.45791e6i 0.923912 1.60026i
\(243\) 0 0
\(244\) 187848. 0.201991
\(245\) 670573. + 258036.i 0.713725 + 0.274641i
\(246\) 0 0
\(247\) 556124. + 963235.i 0.580002 + 1.00459i
\(248\) −224874. + 389493.i −0.232172 + 0.402133i
\(249\) 0 0
\(250\) −462205. 800563.i −0.467719 0.810113i
\(251\) 213005. 0.213406 0.106703 0.994291i \(-0.465971\pi\)
0.106703 + 0.994291i \(0.465971\pi\)
\(252\) 0 0
\(253\) −743709. −0.730469
\(254\) 231755. + 401412.i 0.225395 + 0.390396i
\(255\) 0 0
\(256\) 370184. 641177.i 0.353035 0.611474i
\(257\) 789506. + 1.36746e6i 0.745629 + 1.29147i 0.949900 + 0.312553i \(0.101184\pi\)
−0.204272 + 0.978914i \(0.565483\pi\)
\(258\) 0 0
\(259\) 34040.4 39823.3i 0.0315315 0.0368883i
\(260\) −306392. −0.281089
\(261\) 0 0
\(262\) −516076. + 893871.i −0.464473 + 0.804492i
\(263\) 144544. 250357.i 0.128857 0.223188i −0.794377 0.607425i \(-0.792202\pi\)
0.923234 + 0.384238i \(0.125536\pi\)
\(264\) 0 0
\(265\) −4583.39 −0.00400933
\(266\) −782703. 145395.i −0.678255 0.125993i
\(267\) 0 0
\(268\) −26994.2 46755.2i −0.0229579 0.0397643i
\(269\) −1.02244e6 + 1.77092e6i −0.861506 + 1.49217i 0.00896851 + 0.999960i \(0.497145\pi\)
−0.870475 + 0.492213i \(0.836188\pi\)
\(270\) 0 0
\(271\) 302981. + 524779.i 0.250607 + 0.434063i 0.963693 0.267013i \(-0.0860366\pi\)
−0.713086 + 0.701076i \(0.752703\pi\)
\(272\) −490604. −0.402077
\(273\) 0 0
\(274\) 470338. 0.378472
\(275\) −461147. 798731.i −0.367712 0.636896i
\(276\) 0 0
\(277\) −611375. + 1.05893e6i −0.478750 + 0.829219i −0.999703 0.0243664i \(-0.992243\pi\)
0.520953 + 0.853585i \(0.325576\pi\)
\(278\) −982780. 1.70222e6i −0.762683 1.32101i
\(279\) 0 0
\(280\) 705939. 825867.i 0.538111 0.629528i
\(281\) −639205. −0.482919 −0.241460 0.970411i \(-0.577626\pi\)
−0.241460 + 0.970411i \(0.577626\pi\)
\(282\) 0 0
\(283\) −236827. + 410197.i −0.175779 + 0.304457i −0.940430 0.339986i \(-0.889578\pi\)
0.764652 + 0.644444i \(0.222911\pi\)
\(284\) −101605. + 175984.i −0.0747511 + 0.129473i
\(285\) 0 0
\(286\) 3.07830e6 2.22533
\(287\) 773365. + 2.18675e6i 0.554217 + 1.56709i
\(288\) 0 0
\(289\) 464006. + 803681.i 0.326797 + 0.566030i
\(290\) −642856. + 1.11346e6i −0.448868 + 0.777463i
\(291\) 0 0
\(292\) 38338.6 + 66404.3i 0.0263135 + 0.0455763i
\(293\) 829294. 0.564338 0.282169 0.959365i \(-0.408946\pi\)
0.282169 + 0.959365i \(0.408946\pi\)
\(294\) 0 0
\(295\) 1.90234e6 1.27272
\(296\) −39609.4 68605.5i −0.0262766 0.0455124i
\(297\) 0 0
\(298\) 184091. 318854.i 0.120086 0.207994i
\(299\) −463263. 802394.i −0.299674 0.519051i
\(300\) 0 0
\(301\) −631301. 1.78505e6i −0.401625 1.13562i
\(302\) 2.39877e6 1.51346
\(303\) 0 0
\(304\) −439278. + 760851.i −0.272618 + 0.472189i
\(305\) 496169. 859390.i 0.305408 0.528981i
\(306\) 0 0
\(307\) 1.63715e6 0.991385 0.495693 0.868498i \(-0.334914\pi\)
0.495693 + 0.868498i \(0.334914\pi\)
\(308\) 484596. 566921.i 0.291074 0.340522i
\(309\) 0 0
\(310\) 239781. + 415313.i 0.141713 + 0.245455i
\(311\) 303729. 526074.i 0.178068 0.308422i −0.763151 0.646220i \(-0.776349\pi\)
0.941219 + 0.337798i \(0.109682\pi\)
\(312\) 0 0
\(313\) −789012. 1.36661e6i −0.455222 0.788467i 0.543479 0.839423i \(-0.317107\pi\)
−0.998701 + 0.0509555i \(0.983773\pi\)
\(314\) 2.25414e6 1.29020
\(315\) 0 0
\(316\) 214261. 0.120705
\(317\) −1.09343e6 1.89387e6i −0.611142 1.05853i −0.991048 0.133505i \(-0.957377\pi\)
0.379906 0.925025i \(-0.375956\pi\)
\(318\) 0 0
\(319\) −2.18626e6 + 3.78672e6i −1.20289 + 2.08347i
\(320\) −776635. 1.34517e6i −0.423977 0.734349i
\(321\) 0 0
\(322\) 652008. + 121117.i 0.350439 + 0.0650977i
\(323\) −880779. −0.469743
\(324\) 0 0
\(325\) 574505. 995072.i 0.301707 0.522572i
\(326\) −1.16968e6 + 2.02595e6i −0.609569 + 1.05580i
\(327\) 0 0
\(328\) 3.50731e6 1.80007
\(329\) 1.78051e6 2.08300e6i 0.906892 1.06096i
\(330\) 0 0
\(331\) 1.38434e6 + 2.39775e6i 0.694503 + 1.20291i 0.970348 + 0.241712i \(0.0777090\pi\)
−0.275845 + 0.961202i \(0.588958\pi\)
\(332\) 30323.1 52521.1i 0.0150983 0.0261510i
\(333\) 0 0
\(334\) −1.21957e6 2.11236e6i −0.598193 1.03610i
\(335\) −285202. −0.138848
\(336\) 0 0
\(337\) −2.45187e6 −1.17604 −0.588021 0.808846i \(-0.700093\pi\)
−0.588021 + 0.808846i \(0.700093\pi\)
\(338\) 1.00977e6 + 1.74898e6i 0.480765 + 0.832709i
\(339\) 0 0
\(340\) 121315. 210123.i 0.0569135 0.0985771i
\(341\) 815461. + 1.41242e6i 0.379767 + 0.657776i
\(342\) 0 0
\(343\) −1.85642e6 1.14074e6i −0.852001 0.523540i
\(344\) −2.86303e6 −1.30446
\(345\) 0 0
\(346\) 637210. 1.10368e6i 0.286149 0.495625i
\(347\) −740499. + 1.28258e6i −0.330142 + 0.571823i −0.982539 0.186054i \(-0.940430\pi\)
0.652398 + 0.757877i \(0.273763\pi\)
\(348\) 0 0
\(349\) −1.28643e6 −0.565357 −0.282678 0.959215i \(-0.591223\pi\)
−0.282678 + 0.959215i \(0.591223\pi\)
\(350\) 274209. + 775345.i 0.119650 + 0.338318i
\(351\) 0 0
\(352\) −1.01393e6 1.75619e6i −0.436167 0.755464i
\(353\) 1.12562e6 1.94963e6i 0.480790 0.832752i −0.518967 0.854794i \(-0.673683\pi\)
0.999757 + 0.0220418i \(0.00701668\pi\)
\(354\) 0 0
\(355\) 536742. + 929664.i 0.226045 + 0.391521i
\(356\) 260349. 0.108876
\(357\) 0 0
\(358\) −2.60816e6 −1.07554
\(359\) −362932. 628617.i −0.148624 0.257424i 0.782095 0.623159i \(-0.214151\pi\)
−0.930719 + 0.365735i \(0.880818\pi\)
\(360\) 0 0
\(361\) 449417. 778413.i 0.181502 0.314371i
\(362\) 454232. + 786753.i 0.182182 + 0.315549i
\(363\) 0 0
\(364\) 913515. + 169695.i 0.361378 + 0.0671298i
\(365\) 405059. 0.159142
\(366\) 0 0
\(367\) −1.71382e6 + 2.96843e6i −0.664202 + 1.15043i 0.315298 + 0.948993i \(0.397895\pi\)
−0.979501 + 0.201440i \(0.935438\pi\)
\(368\) 365927. 633805.i 0.140856 0.243970i
\(369\) 0 0
\(370\) −84470.4 −0.0320775
\(371\) 13665.5 + 2538.50i 0.00515454 + 0.000957509i
\(372\) 0 0
\(373\) 546522. + 946604.i 0.203393 + 0.352287i 0.949619 0.313405i \(-0.101470\pi\)
−0.746227 + 0.665692i \(0.768136\pi\)
\(374\) −1.21884e6 + 2.11109e6i −0.450575 + 0.780418i
\(375\) 0 0
\(376\) −2.07181e6 3.58847e6i −0.755753 1.30900i
\(377\) −5.44737e6 −1.97394
\(378\) 0 0
\(379\) −2.92579e6 −1.04627 −0.523137 0.852249i \(-0.675238\pi\)
−0.523137 + 0.852249i \(0.675238\pi\)
\(380\) −217245. 376280.i −0.0771777 0.133676i
\(381\) 0 0
\(382\) −1.73294e6 + 3.00153e6i −0.607609 + 1.05241i
\(383\) −51966.3 90008.2i −0.0181019 0.0313534i 0.856833 0.515595i \(-0.172429\pi\)
−0.874934 + 0.484241i \(0.839096\pi\)
\(384\) 0 0
\(385\) −1.31364e6 3.71441e6i −0.451673 1.27714i
\(386\) 3.53759e6 1.20848
\(387\) 0 0
\(388\) −627460. + 1.08679e6i −0.211596 + 0.366495i
\(389\) 86465.6 149763.i 0.0289714 0.0501799i −0.851176 0.524880i \(-0.824110\pi\)
0.880148 + 0.474700i \(0.157443\pi\)
\(390\) 0 0
\(391\) 733707. 0.242706
\(392\) −2.56218e6 + 2.07136e6i −0.842159 + 0.680832i
\(393\) 0 0
\(394\) −360146. 623791.i −0.116879 0.202441i
\(395\) 565932. 980224.i 0.182504 0.316106i
\(396\) 0 0
\(397\) −1.29983e6 2.25137e6i −0.413913 0.716918i 0.581401 0.813617i \(-0.302505\pi\)
−0.995314 + 0.0966990i \(0.969172\pi\)
\(398\) −6947.91 −0.00219860
\(399\) 0 0
\(400\) 907594. 0.283623
\(401\) 1.72506e6 + 2.98789e6i 0.535726 + 0.927904i 0.999128 + 0.0417559i \(0.0132952\pi\)
−0.463402 + 0.886148i \(0.653371\pi\)
\(402\) 0 0
\(403\) −1.01592e6 + 1.75962e6i −0.311598 + 0.539704i
\(404\) 452869. + 784392.i 0.138045 + 0.239100i
\(405\) 0 0
\(406\) 2.53338e6 2.96376e6i 0.762755 0.892335i
\(407\) −287272. −0.0859621
\(408\) 0 0
\(409\) 721374. 1.24946e6i 0.213232 0.369329i −0.739492 0.673165i \(-0.764934\pi\)
0.952724 + 0.303837i \(0.0982677\pi\)
\(410\) 1.86991e6 3.23878e6i 0.549365 0.951528i
\(411\) 0 0
\(412\) 491093. 0.142535
\(413\) −5.67187e6 1.05361e6i −1.63626 0.303952i
\(414\) 0 0
\(415\) −160186. 277451.i −0.0456568 0.0790799i
\(416\) 1.26318e6 2.18789e6i 0.357874 0.619857i
\(417\) 0 0
\(418\) 2.18265e6 + 3.78046e6i 0.611002 + 1.05829i
\(419\) 5.10039e6 1.41928 0.709641 0.704564i \(-0.248857\pi\)
0.709641 + 0.704564i \(0.248857\pi\)
\(420\) 0 0
\(421\) 5.08241e6 1.39754 0.698771 0.715346i \(-0.253731\pi\)
0.698771 + 0.715346i \(0.253731\pi\)
\(422\) −74066.9 128288.i −0.0202462 0.0350674i
\(423\) 0 0
\(424\) 10508.6 18201.5i 0.00283878 0.00491692i
\(425\) 454945. + 787988.i 0.122176 + 0.211616i
\(426\) 0 0
\(427\) −1.95531e6 + 2.28749e6i −0.518974 + 0.607140i
\(428\) 910683. 0.240302
\(429\) 0 0
\(430\) −1.52641e6 + 2.64383e6i −0.398109 + 0.689544i
\(431\) 1.23720e6 2.14290e6i 0.320810 0.555659i −0.659845 0.751401i \(-0.729378\pi\)
0.980655 + 0.195742i \(0.0627115\pi\)
\(432\) 0 0
\(433\) −331952. −0.0850855 −0.0425428 0.999095i \(-0.513546\pi\)
−0.0425428 + 0.999095i \(0.513546\pi\)
\(434\) −484892. 1.37107e6i −0.123572 0.349409i
\(435\) 0 0
\(436\) −30846.3 53427.4i −0.00777119 0.0134601i
\(437\) 656947. 1.13787e6i 0.164561 0.285028i
\(438\) 0 0
\(439\) 2.05610e6 + 3.56127e6i 0.509193 + 0.881948i 0.999943 + 0.0106480i \(0.00338942\pi\)
−0.490750 + 0.871300i \(0.663277\pi\)
\(440\) −5.95752e6 −1.46701
\(441\) 0 0
\(442\) −3.03690e6 −0.739391
\(443\) 2.92674e6 + 5.06927e6i 0.708558 + 1.22726i 0.965392 + 0.260802i \(0.0839871\pi\)
−0.256835 + 0.966455i \(0.582680\pi\)
\(444\) 0 0
\(445\) 687668. 1.19108e6i 0.164619 0.285128i
\(446\) −361493. 626124.i −0.0860524 0.149047i
\(447\) 0 0
\(448\) 1.57053e6 + 4.44080e6i 0.369702 + 1.04536i
\(449\) 3.86497e6 0.904754 0.452377 0.891827i \(-0.350576\pi\)
0.452377 + 0.891827i \(0.350576\pi\)
\(450\) 0 0
\(451\) 6.35930e6 1.10146e7i 1.47220 2.54993i
\(452\) −167916. + 290839.i −0.0386586 + 0.0669586i
\(453\) 0 0
\(454\) 3.97736e6 0.905638
\(455\) 3.18923e6 3.73103e6i 0.722200 0.844891i
\(456\) 0 0
\(457\) 2.69523e6 + 4.66828e6i 0.603678 + 1.04560i 0.992259 + 0.124186i \(0.0396321\pi\)
−0.388581 + 0.921415i \(0.627035\pi\)
\(458\) 3.13464e6 5.42936e6i 0.698271 1.20944i
\(459\) 0 0
\(460\) 180970. + 313449.i 0.0398760 + 0.0690673i
\(461\) −1.17429e6 −0.257350 −0.128675 0.991687i \(-0.541072\pi\)
−0.128675 + 0.991687i \(0.541072\pi\)
\(462\) 0 0
\(463\) 4.03702e6 0.875203 0.437601 0.899169i \(-0.355828\pi\)
0.437601 + 0.899169i \(0.355828\pi\)
\(464\) −2.15141e6 3.72636e6i −0.463905 0.803507i
\(465\) 0 0
\(466\) 3.02099e6 5.23251e6i 0.644443 1.11621i
\(467\) 718550. + 1.24456e6i 0.152463 + 0.264074i 0.932132 0.362118i \(-0.117946\pi\)
−0.779669 + 0.626191i \(0.784613\pi\)
\(468\) 0 0
\(469\) 850335. + 157959.i 0.178508 + 0.0331597i
\(470\) −4.41830e6 −0.922594
\(471\) 0 0
\(472\) −4.36163e6 + 7.55456e6i −0.901143 + 1.56082i
\(473\) −5.19112e6 + 8.99129e6i −1.06686 + 1.84786i
\(474\) 0 0
\(475\) 1.62940e6 0.331355
\(476\) −478078. + 559296.i −0.0967123 + 0.113142i
\(477\) 0 0
\(478\) −2.13731e6 3.70192e6i −0.427855 0.741067i
\(479\) −1.18608e6 + 2.05436e6i −0.236198 + 0.409107i −0.959620 0.281299i \(-0.909235\pi\)
0.723422 + 0.690406i \(0.242568\pi\)
\(480\) 0 0
\(481\) −178944. 309940.i −0.0352659 0.0610823i
\(482\) 4.78982e6 0.939079
\(483\) 0 0
\(484\) −2.78625e6 −0.540639
\(485\) 3.31466e6 + 5.74116e6i 0.639859 + 1.10827i
\(486\) 0 0
\(487\) −334534. + 579430.i −0.0639172 + 0.110708i −0.896213 0.443624i \(-0.853693\pi\)
0.832296 + 0.554332i \(0.187026\pi\)
\(488\) 2.27520e6 + 3.94076e6i 0.432484 + 0.749084i
\(489\) 0 0
\(490\) 546751. + 3.47034e6i 0.102873 + 0.652954i
\(491\) −9.58134e6 −1.79359 −0.896794 0.442448i \(-0.854110\pi\)
−0.896794 + 0.442448i \(0.854110\pi\)
\(492\) 0 0
\(493\) 2.15686e6 3.73579e6i 0.399673 0.692254i
\(494\) −2.71918e6 + 4.70976e6i −0.501326 + 0.868322i
\(495\) 0 0
\(496\) −1.60493e6 −0.292921
\(497\) −1.08541e6 3.06909e6i −0.197108 0.557338i
\(498\) 0 0
\(499\) 1.08902e6 + 1.88625e6i 0.195788 + 0.339115i 0.947159 0.320766i \(-0.103940\pi\)
−0.751370 + 0.659881i \(0.770607\pi\)
\(500\) −764991. + 1.32500e6i −0.136846 + 0.237024i
\(501\) 0 0
\(502\) 520746. + 901959.i 0.0922289 + 0.159745i
\(503\) −5.11108e6 −0.900726 −0.450363 0.892846i \(-0.648705\pi\)
−0.450363 + 0.892846i \(0.648705\pi\)
\(504\) 0 0
\(505\) 4.78470e6 0.834885
\(506\) −1.81819e6 3.14920e6i −0.315692 0.546794i
\(507\) 0 0
\(508\) 383576. 664373.i 0.0659465 0.114223i
\(509\) −3.54335e6 6.13725e6i −0.606204 1.04998i −0.991860 0.127334i \(-0.959358\pi\)
0.385656 0.922643i \(-0.373975\pi\)
\(510\) 0 0
\(511\) −1.20769e6 224341.i −0.204599 0.0380064i
\(512\) 6.38385e6 1.07624
\(513\) 0 0
\(514\) −3.86031e6 + 6.68624e6i −0.644487 + 1.11628i
\(515\) 1.29714e6 2.24671e6i 0.215510 0.373275i
\(516\) 0 0
\(517\) −1.50260e7 −2.47239
\(518\) 251850. + 46783.8i 0.0412400 + 0.00766075i
\(519\) 0 0
\(520\) −3.71099e6 6.42762e6i −0.601841 1.04242i
\(521\) 1.72694e6 2.99114e6i 0.278729 0.482772i −0.692340 0.721571i \(-0.743420\pi\)
0.971069 + 0.238799i \(0.0767536\pi\)
\(522\) 0 0
\(523\) 278599. + 482548.i 0.0445375 + 0.0771413i 0.887435 0.460933i \(-0.152485\pi\)
−0.842897 + 0.538074i \(0.819152\pi\)
\(524\) 1.70831e6 0.271793
\(525\) 0 0
\(526\) 1.41350e6 0.222757
\(527\) −804494. 1.39342e6i −0.126182 0.218553i
\(528\) 0 0
\(529\) 2.67092e6 4.62617e6i 0.414975 0.718758i
\(530\) −11205.3 19408.1i −0.00173274 0.00300119i
\(531\) 0 0
\(532\) 439320. + 1.24221e6i 0.0672979 + 0.190290i
\(533\) 1.58450e7 2.41588
\(534\) 0 0
\(535\) 2.40541e6 4.16629e6i 0.363333 0.629311i
\(536\) 653901. 1.13259e6i 0.0983106 0.170279i
\(537\) 0 0
\(538\) −9.99851e6 −1.48929
\(539\) 1.85942e6 + 1.18021e7i 0.275681 + 1.74980i
\(540\) 0 0
\(541\) −2.39364e6 4.14591e6i −0.351614 0.609013i 0.634919 0.772579i \(-0.281034\pi\)
−0.986532 + 0.163566i \(0.947700\pi\)
\(542\) −1.48143e6 + 2.56592e6i −0.216613 + 0.375184i
\(543\) 0 0
\(544\) 1.00030e6 + 1.73257e6i 0.144921 + 0.251011i
\(545\) −325901. −0.0469997
\(546\) 0 0
\(547\) 2.30360e6 0.329184 0.164592 0.986362i \(-0.447369\pi\)
0.164592 + 0.986362i \(0.447369\pi\)
\(548\) −389226. 674159.i −0.0553669 0.0958984i
\(549\) 0 0
\(550\) 2.25479e6 3.90541e6i 0.317833 0.550503i
\(551\) −3.86242e6 6.68991e6i −0.541977 0.938732i
\(552\) 0 0
\(553\) −2.23024e6 + 2.60912e6i −0.310126 + 0.362811i
\(554\) −5.97866e6 −0.827617
\(555\) 0 0
\(556\) −1.62659e6 + 2.81734e6i −0.223147 + 0.386502i
\(557\) 6.94253e6 1.20248e7i 0.948156 1.64225i 0.198851 0.980030i \(-0.436279\pi\)
0.749305 0.662225i \(-0.230388\pi\)
\(558\) 0 0
\(559\) −1.29344e7 −1.75072
\(560\) 3.81185e6 + 708090.i 0.513648 + 0.0954154i
\(561\) 0 0
\(562\) −1.56270e6 2.70668e6i −0.208706 0.361490i
\(563\) −1.97962e6 + 3.42880e6i −0.263215 + 0.455902i −0.967094 0.254417i \(-0.918116\pi\)
0.703879 + 0.710320i \(0.251450\pi\)
\(564\) 0 0
\(565\) 887042. + 1.53640e6i 0.116902 + 0.202481i
\(566\) −2.31595e6 −0.303870
\(567\) 0 0
\(568\) −4.92250e6 −0.640199
\(569\) −4.75540e6 8.23659e6i −0.615752 1.06651i −0.990252 0.139287i \(-0.955519\pi\)
0.374500 0.927227i \(-0.377815\pi\)
\(570\) 0 0
\(571\) 4.53978e6 7.86313e6i 0.582699 1.00926i −0.412459 0.910976i \(-0.635330\pi\)
0.995158 0.0982881i \(-0.0313367\pi\)
\(572\) −2.54743e6 4.41228e6i −0.325546 0.563862i
\(573\) 0 0
\(574\) −7.36897e6 + 8.62085e6i −0.933528 + 1.09212i
\(575\) −1.35732e6 −0.171204
\(576\) 0 0
\(577\) 1.79193e6 3.10371e6i 0.224069 0.388099i −0.731971 0.681336i \(-0.761399\pi\)
0.956040 + 0.293237i \(0.0947326\pi\)
\(578\) −2.26876e6 + 3.92962e6i −0.282468 + 0.489250i
\(579\) 0 0
\(580\) 2.12797e6 0.262661
\(581\) 323934. + 915945.i 0.0398121 + 0.112572i
\(582\) 0 0
\(583\) −38107.6 66004.3i −0.00464344 0.00804268i
\(584\) −928706. + 1.60857e6i −0.112680 + 0.195167i
\(585\) 0 0
\(586\) 2.02742e6 + 3.51160e6i 0.243894 + 0.422436i
\(587\) 6.14848e6 0.736499 0.368250 0.929727i \(-0.379957\pi\)
0.368250 + 0.929727i \(0.379957\pi\)
\(588\) 0 0
\(589\) −2.88131e6 −0.342218
\(590\) 4.65077e6 + 8.05536e6i 0.550040 + 0.952698i
\(591\) 0 0
\(592\) 141346. 244819.i 0.0165760 0.0287105i
\(593\) 6.64979e6 + 1.15178e7i 0.776554 + 1.34503i 0.933917 + 0.357490i \(0.116367\pi\)
−0.157363 + 0.987541i \(0.550299\pi\)
\(594\) 0 0
\(595\) 1.29597e6 + 3.66445e6i 0.150073 + 0.424343i
\(596\) −609373. −0.0702697
\(597\) 0 0
\(598\) 2.26513e6 3.92332e6i 0.259024 0.448643i
\(599\) 2.30732e6 3.99639e6i 0.262748 0.455094i −0.704223 0.709979i \(-0.748704\pi\)
0.966971 + 0.254885i \(0.0820377\pi\)
\(600\) 0 0
\(601\) 8.17563e6 0.923284 0.461642 0.887066i \(-0.347260\pi\)
0.461642 + 0.887066i \(0.347260\pi\)
\(602\) 6.01532e6 7.03723e6i 0.676500 0.791426i
\(603\) 0 0
\(604\) −1.98509e6 3.43828e6i −0.221405 0.383485i
\(605\) −7.35941e6 + 1.27469e7i −0.817437 + 1.41584i
\(606\) 0 0
\(607\) 2.18494e6 + 3.78443e6i 0.240696 + 0.416897i 0.960913 0.276852i \(-0.0892911\pi\)
−0.720217 + 0.693749i \(0.755958\pi\)
\(608\) 3.58259e6 0.393041
\(609\) 0 0
\(610\) 4.85205e6 0.527960
\(611\) −9.35983e6 1.62117e7i −1.01430 1.75681i
\(612\) 0 0
\(613\) −2.72460e6 + 4.71914e6i −0.292854 + 0.507238i −0.974483 0.224460i \(-0.927938\pi\)
0.681629 + 0.731698i \(0.261272\pi\)
\(614\) 4.00244e6 + 6.93243e6i 0.428453 + 0.742103i
\(615\) 0 0
\(616\) 1.77625e7 + 3.29957e6i 1.88605 + 0.350352i
\(617\) −1.32758e7 −1.40394 −0.701969 0.712208i \(-0.747695\pi\)
−0.701969 + 0.712208i \(0.747695\pi\)
\(618\) 0 0
\(619\) 2.23142e6 3.86494e6i 0.234075 0.405430i −0.724928 0.688824i \(-0.758127\pi\)
0.959004 + 0.283394i \(0.0914605\pi\)
\(620\) 396859. 687381.i 0.0414627 0.0718155i
\(621\) 0 0
\(622\) 2.97018e6 0.307827
\(623\) −2.70997e6 + 3.17036e6i −0.279734 + 0.327256i
\(624\) 0 0
\(625\) 2.01399e6 + 3.48834e6i 0.206233 + 0.357206i
\(626\) 3.85789e6 6.68206e6i 0.393472 0.681514i
\(627\) 0 0
\(628\) −1.86541e6 3.23098e6i −0.188744 0.326915i
\(629\) 283408. 0.0285618
\(630\) 0 0
\(631\) 8.00421e6 0.800286 0.400143 0.916453i \(-0.368960\pi\)
0.400143 + 0.916453i \(0.368960\pi\)
\(632\) 2.59510e6 + 4.49485e6i 0.258441 + 0.447634i
\(633\) 0 0
\(634\) 5.34634e6 9.26014e6i 0.528243 0.914943i
\(635\) −2.02630e6 3.50965e6i −0.199420 0.345406i
\(636\) 0 0
\(637\) −1.15752e7 + 9.35780e6i −1.13026 + 0.913746i
\(638\) −2.13796e7 −2.07944
\(639\) 0 0
\(640\) 1.84616e6 3.19764e6i 0.178164 0.308588i
\(641\) −1.94455e6 + 3.36806e6i −0.186928 + 0.323768i −0.944224 0.329303i \(-0.893186\pi\)
0.757297 + 0.653071i \(0.226520\pi\)
\(642\) 0 0
\(643\) −1.77478e7 −1.69285 −0.846423 0.532511i \(-0.821249\pi\)
−0.846423 + 0.532511i \(0.821249\pi\)
\(644\) −365962. 1.03479e6i −0.0347714 0.0983186i
\(645\) 0 0
\(646\) −2.15329e6 3.72961e6i −0.203012 0.351627i
\(647\) −4.36138e6 + 7.55413e6i −0.409603 + 0.709453i −0.994845 0.101405i \(-0.967666\pi\)
0.585242 + 0.810858i \(0.300999\pi\)
\(648\) 0 0
\(649\) 1.58166e7 + 2.73952e7i 1.47401 + 2.55307i
\(650\) 5.61811e6 0.521563
\(651\) 0 0
\(652\) 3.87185e6 0.356697
\(653\) 714958. + 1.23834e6i 0.0656141 + 0.113647i 0.896966 0.442099i \(-0.145766\pi\)
−0.831352 + 0.555746i \(0.812433\pi\)
\(654\) 0 0
\(655\) 4.51220e6 7.81536e6i 0.410946 0.711780i
\(656\) 6.25793e6 + 1.08391e7i 0.567769 + 0.983404i
\(657\) 0 0
\(658\) 1.31733e7 + 2.44707e6i 1.18612 + 0.220334i
\(659\) 9.20182e6 0.825392 0.412696 0.910869i \(-0.364587\pi\)
0.412696 + 0.910869i \(0.364587\pi\)
\(660\) 0 0
\(661\) −717566. + 1.24286e6i −0.0638790 + 0.110642i −0.896196 0.443658i \(-0.853681\pi\)
0.832317 + 0.554300i \(0.187014\pi\)
\(662\) −6.76878e6 + 1.17239e7i −0.600296 + 1.03974i
\(663\) 0 0
\(664\) 1.46908e6 0.129308
\(665\) 6.84339e6 + 1.27123e6i 0.600091 + 0.111473i
\(666\) 0 0
\(667\) 3.21748e6 + 5.57283e6i 0.280028 + 0.485022i
\(668\) −2.01850e6 + 3.49615e6i −0.175020 + 0.303144i
\(669\) 0 0
\(670\) −697249. 1.20767e6i −0.0600069 0.103935i
\(671\) 1.65012e7 1.41484
\(672\) 0 0
\(673\) 2.10985e7 1.79562 0.897808 0.440388i \(-0.145159\pi\)
0.897808 + 0.440388i \(0.145159\pi\)
\(674\) −5.99423e6 1.03823e7i −0.508258 0.880328i
\(675\) 0 0
\(676\) 1.67127e6 2.89472e6i 0.140663 0.243635i
\(677\) −1.16835e7 2.02364e7i −0.979720 1.69692i −0.663387 0.748276i \(-0.730882\pi\)
−0.316333 0.948648i \(-0.602452\pi\)
\(678\) 0 0
\(679\) −6.70300e6 1.89532e7i −0.557949 1.57764i
\(680\) 5.87740e6 0.487431
\(681\) 0 0
\(682\) −3.98721e6 + 6.90606e6i −0.328253 + 0.568551i
\(683\) 6.67445e6 1.15605e7i 0.547474 0.948253i −0.450972 0.892538i \(-0.648923\pi\)
0.998447 0.0557153i \(-0.0177439\pi\)
\(684\) 0 0
\(685\) −4.11229e6 −0.334856
\(686\) 291894. 1.06497e7i 0.0236818 0.864029i
\(687\) 0 0
\(688\) −5.10838e6 8.84797e6i −0.411445 0.712644i
\(689\) 47475.1 82229.2i 0.00380993 0.00659900i
\(690\) 0 0
\(691\) −6.57343e6 1.13855e7i −0.523717 0.907105i −0.999619 0.0276066i \(-0.991211\pi\)
0.475901 0.879499i \(-0.342122\pi\)
\(692\) −2.10928e6 −0.167444
\(693\) 0 0
\(694\) −7.24137e6 −0.570718
\(695\) 8.59271e6 + 1.48830e7i 0.674789 + 1.16877i
\(696\) 0 0
\(697\) −6.27377e6 + 1.08665e7i −0.489155 + 0.847242i
\(698\) −3.14501e6 5.44732e6i −0.244334 0.423199i
\(699\) 0 0
\(700\) 884421. 1.03467e6i 0.0682204 0.0798100i
\(701\) 7.87304e6 0.605128 0.302564 0.953129i \(-0.402157\pi\)
0.302564 + 0.953129i \(0.402157\pi\)
\(702\) 0 0
\(703\) 253758. 439522.i 0.0193657 0.0335423i
\(704\) 1.29143e7 2.23683e7i 0.982065 1.70099i
\(705\) 0 0
\(706\) 1.10075e7 0.831144
\(707\) −1.42657e7 2.65000e6i −1.07336 0.199387i
\(708\) 0 0
\(709\) 7.47288e6 + 1.29434e7i 0.558306 + 0.967014i 0.997638 + 0.0686895i \(0.0218818\pi\)
−0.439332 + 0.898325i \(0.644785\pi\)
\(710\) −2.62441e6 + 4.54561e6i −0.195383 + 0.338413i
\(711\) 0 0
\(712\) 3.15333e6 + 5.46172e6i 0.233114 + 0.403766i
\(713\) 2.40019e6 0.176816
\(714\) 0 0
\(715\) −2.69144e7 −1.96888
\(716\) 2.15837e6 + 3.73840e6i 0.157341 + 0.272523i
\(717\) 0 0
\(718\) 1.77456e6 3.07363e6i 0.128464 0.222506i
\(719\) 177912. + 308153.i 0.0128347 + 0.0222303i 0.872371 0.488844i \(-0.162581\pi\)
−0.859537 + 0.511074i \(0.829248\pi\)
\(720\) 0 0
\(721\) −5.11178e6 + 5.98020e6i −0.366214 + 0.428428i
\(722\) 4.39487e6 0.313764
\(723\) 0 0
\(724\) 751795. 1.30215e6i 0.0533032 0.0923238i
\(725\) −3.99009e6 + 6.91103e6i −0.281927 + 0.488312i
\(726\) 0 0
\(727\) −1.16451e7 −0.817160 −0.408580 0.912722i \(-0.633976\pi\)
−0.408580 + 0.912722i \(0.633976\pi\)
\(728\) 7.50447e6 + 2.12194e7i 0.524797 + 1.48390i
\(729\) 0 0
\(730\) 990272. + 1.71520e6i 0.0687776 + 0.119126i
\(731\) 5.12130e6 8.87036e6i 0.354476 0.613971i
\(732\) 0 0
\(733\) −7.84459e6 1.35872e7i −0.539275 0.934052i −0.998943 0.0459613i \(-0.985365\pi\)
0.459668 0.888091i \(-0.347968\pi\)
\(734\) −1.67595e7 −1.14821
\(735\) 0 0
\(736\) −2.98437e6 −0.203076
\(737\) −2.37125e6 4.10712e6i −0.160808 0.278528i
\(738\) 0 0
\(739\) −7.48534e6 + 1.29650e7i −0.504197 + 0.873295i 0.495791 + 0.868442i \(0.334878\pi\)
−0.999988 + 0.00485312i \(0.998455\pi\)
\(740\) 69903.1 + 121076.i 0.00469264 + 0.00812789i
\(741\) 0 0
\(742\) 22659.6 + 64071.8i 0.00151093 + 0.00427225i
\(743\) 1.51503e7 1.00682 0.503408 0.864049i \(-0.332079\pi\)
0.503408 + 0.864049i \(0.332079\pi\)
\(744\) 0 0
\(745\) −1.60955e6 + 2.78783e6i −0.106247 + 0.184025i
\(746\) −2.67223e6 + 4.62844e6i −0.175803 + 0.304500i
\(747\) 0 0
\(748\) 4.03457e6 0.263660
\(749\) −9.47929e6 + 1.10897e7i −0.617406 + 0.722294i
\(750\) 0 0
\(751\) −1.06857e7 1.85082e7i −0.691359 1.19747i −0.971393 0.237478i \(-0.923679\pi\)
0.280034 0.959990i \(-0.409654\pi\)
\(752\) 7.39325e6 1.28055e7i 0.476750 0.825756i
\(753\) 0 0
\(754\) −1.33175e7 2.30666e7i −0.853089 1.47759i
\(755\) −2.09731e7 −1.33905
\(756\) 0 0
\(757\) −1.74578e7 −1.10726 −0.553632 0.832762i \(-0.686758\pi\)
−0.553632 + 0.832762i \(0.686758\pi\)
\(758\) −7.15286e6 1.23891e7i −0.452175 0.783190i
\(759\) 0 0
\(760\) 5.26251e6 9.11494e6i 0.330491 0.572426i
\(761\) 6.12587e6 + 1.06103e7i 0.383448 + 0.664151i 0.991553 0.129706i \(-0.0414033\pi\)
−0.608105 + 0.793857i \(0.708070\pi\)
\(762\) 0 0
\(763\) 971682. + 180500.i 0.0604245 + 0.0112245i
\(764\) 5.73633e6 0.355550
\(765\) 0 0
\(766\) 254090. 440097.i 0.0156465 0.0271004i
\(767\) −1.97046e7 + 3.41293e7i −1.20942 + 2.09479i
\(768\) 0 0
\(769\) 7.26941e6 0.443285 0.221643 0.975128i \(-0.428858\pi\)
0.221643 + 0.975128i \(0.428858\pi\)
\(770\) 1.25169e7 1.46434e7i 0.760801 0.890050i
\(771\) 0 0
\(772\) −2.92751e6 5.07060e6i −0.176789 0.306208i
\(773\) 1.01072e6 1.75062e6i 0.0608389 0.105376i −0.834002 0.551762i \(-0.813956\pi\)
0.894841 + 0.446386i \(0.147289\pi\)
\(774\) 0 0
\(775\) 1.48827e6 + 2.57777e6i 0.0890080 + 0.154166i
\(776\) −3.03990e7 −1.81219