Properties

Label 63.6.e.f.46.2
Level $63$
Weight $6$
Character 63.46
Analytic conductor $10.104$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,6,Mod(37,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 63.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1041806482\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 187x^{10} + 25399x^{8} + 1518438x^{6} + 66232188x^{4} + 1297462320x^{2} + 18380851776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 46.2
Root \(-3.54467 - 6.13954i\) of defining polynomial
Character \(\chi\) \(=\) 63.46
Dual form 63.6.e.f.37.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.54467 - 6.13954i) q^{2} +(-9.12931 + 15.8124i) q^{4} +(-41.1020 - 71.1908i) q^{5} +(112.556 - 64.3292i) q^{7} -97.4172 q^{8} +O(q^{10})\) \(q+(-3.54467 - 6.13954i) q^{2} +(-9.12931 + 15.8124i) q^{4} +(-41.1020 - 71.1908i) q^{5} +(112.556 - 64.3292i) q^{7} -97.4172 q^{8} +(-291.386 + 504.695i) q^{10} +(176.118 - 305.046i) q^{11} -885.257 q^{13} +(-793.924 - 463.014i) q^{14} +(637.449 + 1104.09i) q^{16} +(-212.519 + 368.094i) q^{17} +(781.192 + 1353.06i) q^{19} +1500.93 q^{20} -2497.12 q^{22} +(1394.12 + 2414.69i) q^{23} +(-1816.26 + 3145.85i) q^{25} +(3137.94 + 5435.07i) q^{26} +(-10.3538 + 2367.06i) q^{28} -3678.79 q^{29} +(1795.76 - 3110.34i) q^{31} +(2960.41 - 5127.59i) q^{32} +3013.24 q^{34} +(-9205.91 - 5368.86i) q^{35} +(-7144.58 - 12374.8i) q^{37} +(5538.13 - 9592.31i) q^{38} +(4004.05 + 6935.21i) q^{40} -14325.8 q^{41} +7589.72 q^{43} +(3215.68 + 5569.72i) q^{44} +(9883.41 - 17118.6i) q^{46} +(-2884.17 - 4995.54i) q^{47} +(8530.51 - 14481.2i) q^{49} +25752.1 q^{50} +(8081.78 - 13998.1i) q^{52} +(-12694.2 + 21987.0i) q^{53} -28955.3 q^{55} +(-10964.9 + 6266.77i) q^{56} +(13040.1 + 22586.1i) q^{58} +(21611.7 - 37432.5i) q^{59} +(-9723.73 - 16842.0i) q^{61} -25461.4 q^{62} -1177.95 q^{64} +(36385.9 + 63022.2i) q^{65} +(14720.6 - 25496.7i) q^{67} +(-3880.31 - 6720.89i) q^{68} +(-330.470 + 75550.9i) q^{70} +51664.4 q^{71} +(-18972.8 + 32861.8i) q^{73} +(-50650.3 + 87728.9i) q^{74} -28527.0 q^{76} +(199.741 - 45664.2i) q^{77} +(-26899.7 - 46591.7i) q^{79} +(52400.9 - 90761.1i) q^{80} +(50780.1 + 87953.8i) q^{82} -85967.6 q^{83} +34939.9 q^{85} +(-26903.0 - 46597.4i) q^{86} +(-17157.0 + 29716.7i) q^{88} +(-10409.9 - 18030.5i) q^{89} +(-99640.6 + 56947.8i) q^{91} -50909.6 q^{92} +(-20446.9 + 35415.0i) q^{94} +(64217.1 - 111227. i) q^{95} -97587.2 q^{97} +(-119146. - 1042.34i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 182 q^{4} + 142 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 182 q^{4} + 142 q^{7} + 686 q^{10} + 308 q^{13} - 1898 q^{16} + 9422 q^{19} - 18292 q^{22} - 7526 q^{25} + 37074 q^{28} + 23422 q^{31} - 55608 q^{34} - 18182 q^{37} + 69258 q^{40} - 87372 q^{43} + 25332 q^{46} + 30354 q^{49} + 34272 q^{52} - 96320 q^{55} - 89782 q^{58} - 16156 q^{61} + 380580 q^{64} + 144650 q^{67} - 187262 q^{70} - 100058 q^{73} - 685440 q^{76} + 101994 q^{79} + 75712 q^{82} + 602352 q^{85} + 752310 q^{88} - 282306 q^{91} - 120456 q^{94} - 866096 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.54467 6.13954i −0.626614 1.08533i −0.988226 0.152999i \(-0.951107\pi\)
0.361612 0.932329i \(-0.382226\pi\)
\(3\) 0 0
\(4\) −9.12931 + 15.8124i −0.285291 + 0.494138i
\(5\) −41.1020 71.1908i −0.735256 1.27350i −0.954611 0.297855i \(-0.903729\pi\)
0.219355 0.975645i \(-0.429605\pi\)
\(6\) 0 0
\(7\) 112.556 64.3292i 0.868204 0.496207i
\(8\) −97.4172 −0.538159
\(9\) 0 0
\(10\) −291.386 + 504.695i −0.921444 + 1.59599i
\(11\) 176.118 305.046i 0.438857 0.760123i −0.558745 0.829340i \(-0.688717\pi\)
0.997602 + 0.0692170i \(0.0220501\pi\)
\(12\) 0 0
\(13\) −885.257 −1.45282 −0.726408 0.687263i \(-0.758812\pi\)
−0.726408 + 0.687263i \(0.758812\pi\)
\(14\) −793.924 463.014i −1.08258 0.631356i
\(15\) 0 0
\(16\) 637.449 + 1104.09i 0.622509 + 1.07822i
\(17\) −212.519 + 368.094i −0.178351 + 0.308913i −0.941316 0.337527i \(-0.890410\pi\)
0.762965 + 0.646440i \(0.223743\pi\)
\(18\) 0 0
\(19\) 781.192 + 1353.06i 0.496448 + 0.859873i 0.999992 0.00409696i \(-0.00130411\pi\)
−0.503544 + 0.863970i \(0.667971\pi\)
\(20\) 1500.93 0.839047
\(21\) 0 0
\(22\) −2497.12 −1.09998
\(23\) 1394.12 + 2414.69i 0.549518 + 0.951793i 0.998308 + 0.0581556i \(0.0185219\pi\)
−0.448790 + 0.893637i \(0.648145\pi\)
\(24\) 0 0
\(25\) −1816.26 + 3145.85i −0.581202 + 1.00667i
\(26\) 3137.94 + 5435.07i 0.910356 + 1.57678i
\(27\) 0 0
\(28\) −10.3538 + 2367.06i −0.00249578 + 0.570576i
\(29\) −3678.79 −0.812289 −0.406144 0.913809i \(-0.633127\pi\)
−0.406144 + 0.913809i \(0.633127\pi\)
\(30\) 0 0
\(31\) 1795.76 3110.34i 0.335617 0.581305i −0.647986 0.761652i \(-0.724389\pi\)
0.983603 + 0.180347i \(0.0577220\pi\)
\(32\) 2960.41 5127.59i 0.511067 0.885193i
\(33\) 0 0
\(34\) 3013.24 0.447029
\(35\) −9205.91 5368.86i −1.27027 0.740819i
\(36\) 0 0
\(37\) −7144.58 12374.8i −0.857971 1.48605i −0.873861 0.486175i \(-0.838392\pi\)
0.0158904 0.999874i \(-0.494942\pi\)
\(38\) 5538.13 9592.31i 0.622162 1.07762i
\(39\) 0 0
\(40\) 4004.05 + 6935.21i 0.395685 + 0.685346i
\(41\) −14325.8 −1.33094 −0.665471 0.746424i \(-0.731769\pi\)
−0.665471 + 0.746424i \(0.731769\pi\)
\(42\) 0 0
\(43\) 7589.72 0.625972 0.312986 0.949758i \(-0.398671\pi\)
0.312986 + 0.949758i \(0.398671\pi\)
\(44\) 3215.68 + 5569.72i 0.250404 + 0.433712i
\(45\) 0 0
\(46\) 9883.41 17118.6i 0.688672 1.19281i
\(47\) −2884.17 4995.54i −0.190448 0.329866i 0.754951 0.655782i \(-0.227661\pi\)
−0.945399 + 0.325916i \(0.894327\pi\)
\(48\) 0 0
\(49\) 8530.51 14481.2i 0.507557 0.861618i
\(50\) 25752.1 1.45676
\(51\) 0 0
\(52\) 8081.78 13998.1i 0.414475 0.717892i
\(53\) −12694.2 + 21987.0i −0.620747 + 1.07517i 0.368599 + 0.929588i \(0.379837\pi\)
−0.989347 + 0.145578i \(0.953496\pi\)
\(54\) 0 0
\(55\) −28955.3 −1.29069
\(56\) −10964.9 + 6266.77i −0.467232 + 0.267038i
\(57\) 0 0
\(58\) 13040.1 + 22586.1i 0.508992 + 0.881600i
\(59\) 21611.7 37432.5i 0.808273 1.39997i −0.105786 0.994389i \(-0.533736\pi\)
0.914059 0.405582i \(-0.132931\pi\)
\(60\) 0 0
\(61\) −9723.73 16842.0i −0.334586 0.579521i 0.648819 0.760943i \(-0.275263\pi\)
−0.983405 + 0.181422i \(0.941930\pi\)
\(62\) −25461.4 −0.841209
\(63\) 0 0
\(64\) −1177.95 −0.0359481
\(65\) 36385.9 + 63022.2i 1.06819 + 1.85016i
\(66\) 0 0
\(67\) 14720.6 25496.7i 0.400624 0.693901i −0.593177 0.805072i \(-0.702127\pi\)
0.993801 + 0.111171i \(0.0354600\pi\)
\(68\) −3880.31 6720.89i −0.101764 0.176260i
\(69\) 0 0
\(70\) −330.470 + 75550.9i −0.00806096 + 1.84287i
\(71\) 51664.4 1.21631 0.608157 0.793817i \(-0.291909\pi\)
0.608157 + 0.793817i \(0.291909\pi\)
\(72\) 0 0
\(73\) −18972.8 + 32861.8i −0.416701 + 0.721746i −0.995605 0.0936487i \(-0.970147\pi\)
0.578905 + 0.815395i \(0.303480\pi\)
\(74\) −50650.3 + 87728.9i −1.07523 + 1.86236i
\(75\) 0 0
\(76\) −28527.0 −0.566528
\(77\) 199.741 45664.2i 0.00383920 0.877706i
\(78\) 0 0
\(79\) −26899.7 46591.7i −0.484931 0.839926i 0.514919 0.857239i \(-0.327822\pi\)
−0.999850 + 0.0173134i \(0.994489\pi\)
\(80\) 52400.9 90761.1i 0.915407 1.58553i
\(81\) 0 0
\(82\) 50780.1 + 87953.8i 0.833987 + 1.44451i
\(83\) −85967.6 −1.36974 −0.684872 0.728663i \(-0.740142\pi\)
−0.684872 + 0.728663i \(0.740142\pi\)
\(84\) 0 0
\(85\) 34939.9 0.524535
\(86\) −26903.0 46597.4i −0.392243 0.679385i
\(87\) 0 0
\(88\) −17157.0 + 29716.7i −0.236175 + 0.409067i
\(89\) −10409.9 18030.5i −0.139307 0.241287i 0.787927 0.615768i \(-0.211154\pi\)
−0.927235 + 0.374481i \(0.877821\pi\)
\(90\) 0 0
\(91\) −99640.6 + 56947.8i −1.26134 + 0.720898i
\(92\) −50909.6 −0.627090
\(93\) 0 0
\(94\) −20446.9 + 35415.0i −0.238675 + 0.413397i
\(95\) 64217.1 111227.i 0.730032 1.26445i
\(96\) 0 0
\(97\) −97587.2 −1.05309 −0.526543 0.850149i \(-0.676512\pi\)
−0.526543 + 0.850149i \(0.676512\pi\)
\(98\) −119146. 1042.34i −1.25318 0.0109634i
\(99\) 0 0
\(100\) −33162.3 57438.8i −0.331623 0.574388i
\(101\) −19601.1 + 33950.0i −0.191195 + 0.331159i −0.945646 0.325197i \(-0.894570\pi\)
0.754452 + 0.656356i \(0.227903\pi\)
\(102\) 0 0
\(103\) 9614.12 + 16652.1i 0.0892928 + 0.154660i 0.907212 0.420673i \(-0.138206\pi\)
−0.817920 + 0.575333i \(0.804873\pi\)
\(104\) 86239.2 0.781847
\(105\) 0 0
\(106\) 179986. 1.55588
\(107\) 94910.6 + 164390.i 0.801411 + 1.38808i 0.918688 + 0.394985i \(0.129250\pi\)
−0.117277 + 0.993099i \(0.537417\pi\)
\(108\) 0 0
\(109\) 114021. 197491.i 0.919222 1.59214i 0.118622 0.992939i \(-0.462152\pi\)
0.800600 0.599200i \(-0.204514\pi\)
\(110\) 102637. + 177772.i 0.808764 + 1.40082i
\(111\) 0 0
\(112\) 142774. + 83265.4i 1.07548 + 0.627219i
\(113\) 50309.6 0.370642 0.185321 0.982678i \(-0.440668\pi\)
0.185321 + 0.982678i \(0.440668\pi\)
\(114\) 0 0
\(115\) 114603. 198498.i 0.808073 1.39962i
\(116\) 33584.8 58170.7i 0.231739 0.401383i
\(117\) 0 0
\(118\) −306425. −2.02590
\(119\) −241.025 + 55102.2i −0.00156025 + 0.356699i
\(120\) 0 0
\(121\) 18490.1 + 32025.8i 0.114809 + 0.198855i
\(122\) −68934.7 + 119398.i −0.419313 + 0.726272i
\(123\) 0 0
\(124\) 32788.1 + 56790.6i 0.191497 + 0.331682i
\(125\) 41719.7 0.238817
\(126\) 0 0
\(127\) −235054. −1.29318 −0.646588 0.762839i \(-0.723805\pi\)
−0.646588 + 0.762839i \(0.723805\pi\)
\(128\) −90557.8 156851.i −0.488541 0.846178i
\(129\) 0 0
\(130\) 257951. 446785.i 1.33869 2.31868i
\(131\) −28690.0 49692.5i −0.146067 0.252995i 0.783704 0.621135i \(-0.213328\pi\)
−0.929770 + 0.368140i \(0.879995\pi\)
\(132\) 0 0
\(133\) 174969. + 102041.i 0.857693 + 0.500204i
\(134\) −208718. −1.00415
\(135\) 0 0
\(136\) 20703.0 35858.7i 0.0959813 0.166245i
\(137\) 109484. 189632.i 0.498367 0.863196i −0.501632 0.865081i \(-0.667267\pi\)
0.999998 + 0.00188499i \(0.000600011\pi\)
\(138\) 0 0
\(139\) −37298.9 −0.163742 −0.0818708 0.996643i \(-0.526089\pi\)
−0.0818708 + 0.996643i \(0.526089\pi\)
\(140\) 168938. 96553.8i 0.728464 0.416341i
\(141\) 0 0
\(142\) −183133. 317196.i −0.762159 1.32010i
\(143\) −155910. + 270044.i −0.637579 + 1.10432i
\(144\) 0 0
\(145\) 151206. + 261896.i 0.597240 + 1.03445i
\(146\) 269009. 1.04444
\(147\) 0 0
\(148\) 260900. 0.979085
\(149\) −198204. 343300.i −0.731387 1.26680i −0.956291 0.292418i \(-0.905540\pi\)
0.224904 0.974381i \(-0.427793\pi\)
\(150\) 0 0
\(151\) −138220. + 239405.i −0.493321 + 0.854458i −0.999970 0.00769465i \(-0.997551\pi\)
0.506649 + 0.862152i \(0.330884\pi\)
\(152\) −76101.5 131812.i −0.267168 0.462748i
\(153\) 0 0
\(154\) −281065. + 160638.i −0.955004 + 0.545816i
\(155\) −295237. −0.987057
\(156\) 0 0
\(157\) 54401.7 94226.6i 0.176142 0.305087i −0.764414 0.644726i \(-0.776971\pi\)
0.940556 + 0.339639i \(0.110305\pi\)
\(158\) −190701. + 330304.i −0.607730 + 1.05262i
\(159\) 0 0
\(160\) −486716. −1.50306
\(161\) 312252. + 182104.i 0.949380 + 0.553676i
\(162\) 0 0
\(163\) −65806.5 113980.i −0.193999 0.336016i 0.752573 0.658509i \(-0.228813\pi\)
−0.946572 + 0.322493i \(0.895479\pi\)
\(164\) 130785. 226526.i 0.379705 0.657669i
\(165\) 0 0
\(166\) 304726. + 527802.i 0.858302 + 1.48662i
\(167\) −14833.5 −0.0411580 −0.0205790 0.999788i \(-0.506551\pi\)
−0.0205790 + 0.999788i \(0.506551\pi\)
\(168\) 0 0
\(169\) 412386. 1.11068
\(170\) −123850. 214515.i −0.328681 0.569292i
\(171\) 0 0
\(172\) −69288.9 + 120012.i −0.178584 + 0.309317i
\(173\) −359079. 621944.i −0.912169 1.57992i −0.810994 0.585054i \(-0.801073\pi\)
−0.101175 0.994869i \(-0.532260\pi\)
\(174\) 0 0
\(175\) −2059.87 + 470921.i −0.00508446 + 1.16239i
\(176\) 449066. 1.09277
\(177\) 0 0
\(178\) −73799.5 + 127824.i −0.174584 + 0.302388i
\(179\) −81946.5 + 141936.i −0.191160 + 0.331100i −0.945635 0.325230i \(-0.894558\pi\)
0.754475 + 0.656329i \(0.227892\pi\)
\(180\) 0 0
\(181\) −414321. −0.940027 −0.470013 0.882659i \(-0.655751\pi\)
−0.470013 + 0.882659i \(0.655751\pi\)
\(182\) 702826. + 409886.i 1.57279 + 0.917244i
\(183\) 0 0
\(184\) −135812. 235233.i −0.295728 0.512216i
\(185\) −587314. + 1.01726e6i −1.26166 + 2.18525i
\(186\) 0 0
\(187\) 74857.1 + 129656.i 0.156541 + 0.271138i
\(188\) 105322. 0.217333
\(189\) 0 0
\(190\) −910513. −1.82979
\(191\) 51316.9 + 88883.5i 0.101783 + 0.176294i 0.912419 0.409256i \(-0.134212\pi\)
−0.810636 + 0.585550i \(0.800878\pi\)
\(192\) 0 0
\(193\) 160154. 277395.i 0.309488 0.536049i −0.668762 0.743476i \(-0.733176\pi\)
0.978250 + 0.207427i \(0.0665090\pi\)
\(194\) 345914. + 599141.i 0.659878 + 1.14294i
\(195\) 0 0
\(196\) 151106. + 267092.i 0.280957 + 0.496615i
\(197\) 495759. 0.910134 0.455067 0.890457i \(-0.349615\pi\)
0.455067 + 0.890457i \(0.349615\pi\)
\(198\) 0 0
\(199\) −260356. + 450950.i −0.466052 + 0.807226i −0.999248 0.0387653i \(-0.987658\pi\)
0.533196 + 0.845992i \(0.320991\pi\)
\(200\) 176935. 306460.i 0.312779 0.541750i
\(201\) 0 0
\(202\) 277917. 0.479221
\(203\) −414069. + 236654.i −0.705233 + 0.403064i
\(204\) 0 0
\(205\) 588819. + 1.01987e6i 0.978583 + 1.69495i
\(206\) 68157.7 118053.i 0.111904 0.193824i
\(207\) 0 0
\(208\) −564306. 977407.i −0.904392 1.56645i
\(209\) 550329. 0.871478
\(210\) 0 0
\(211\) 759493. 1.17440 0.587202 0.809440i \(-0.300229\pi\)
0.587202 + 0.809440i \(0.300229\pi\)
\(212\) −231778. 401452.i −0.354187 0.613470i
\(213\) 0 0
\(214\) 672852. 1.16541e6i 1.00435 1.73959i
\(215\) −311953. 540319.i −0.460249 0.797175i
\(216\) 0 0
\(217\) 2036.62 465606.i 0.00293604 0.671227i
\(218\) −1.61667e6 −2.30399
\(219\) 0 0
\(220\) 264342. 457854.i 0.368222 0.637779i
\(221\) 188134. 325858.i 0.259111 0.448794i
\(222\) 0 0
\(223\) −352354. −0.474479 −0.237240 0.971451i \(-0.576243\pi\)
−0.237240 + 0.971451i \(0.576243\pi\)
\(224\) 3357.50 767579.i 0.00447091 1.02212i
\(225\) 0 0
\(226\) −178331. 308878.i −0.232250 0.402268i
\(227\) 587661. 1.01786e6i 0.756941 1.31106i −0.187463 0.982272i \(-0.560026\pi\)
0.944404 0.328788i \(-0.106640\pi\)
\(228\) 0 0
\(229\) 17343.0 + 30039.0i 0.0218542 + 0.0378526i 0.876746 0.480954i \(-0.159710\pi\)
−0.854891 + 0.518807i \(0.826376\pi\)
\(230\) −1.62491e6 −2.02540
\(231\) 0 0
\(232\) 358378. 0.437141
\(233\) −33247.7 57586.7i −0.0401210 0.0694917i 0.845268 0.534343i \(-0.179441\pi\)
−0.885389 + 0.464852i \(0.846108\pi\)
\(234\) 0 0
\(235\) −237091. + 410654.i −0.280056 + 0.485072i
\(236\) 394599. + 683466.i 0.461186 + 0.798798i
\(237\) 0 0
\(238\) 339157. 193839.i 0.388113 0.221819i
\(239\) 968532. 1.09678 0.548390 0.836223i \(-0.315241\pi\)
0.548390 + 0.836223i \(0.315241\pi\)
\(240\) 0 0
\(241\) 317055. 549155.i 0.351635 0.609049i −0.634901 0.772593i \(-0.718959\pi\)
0.986536 + 0.163544i \(0.0522926\pi\)
\(242\) 131082. 227041.i 0.143882 0.249211i
\(243\) 0 0
\(244\) 355084. 0.381818
\(245\) −1.38155e6 12086.4i −1.47046 0.0128642i
\(246\) 0 0
\(247\) −691555. 1.19781e6i −0.721248 1.24924i
\(248\) −174938. + 303001.i −0.180615 + 0.312835i
\(249\) 0 0
\(250\) −147882. 256140.i −0.149646 0.259195i
\(251\) 1.77716e6 1.78050 0.890249 0.455474i \(-0.150530\pi\)
0.890249 + 0.455474i \(0.150530\pi\)
\(252\) 0 0
\(253\) 982124. 0.964639
\(254\) 833186. + 1.44312e6i 0.810322 + 1.40352i
\(255\) 0 0
\(256\) −660841. + 1.14461e6i −0.630228 + 1.09159i
\(257\) 720322. + 1.24764e6i 0.680290 + 1.17830i 0.974892 + 0.222677i \(0.0714795\pi\)
−0.294602 + 0.955620i \(0.595187\pi\)
\(258\) 0 0
\(259\) −1.60022e6 933245.i −1.48228 0.864463i
\(260\) −1.32871e6 −1.21898
\(261\) 0 0
\(262\) −203393. + 352286.i −0.183055 + 0.317061i
\(263\) 49484.0 85708.8i 0.0441139 0.0764075i −0.843125 0.537717i \(-0.819287\pi\)
0.887239 + 0.461310i \(0.152620\pi\)
\(264\) 0 0
\(265\) 2.08703e6 1.82563
\(266\) 6280.96 1.43593e6i 0.00544279 1.24431i
\(267\) 0 0
\(268\) 268777. + 465535.i 0.228589 + 0.395927i
\(269\) 37927.9 65693.0i 0.0319579 0.0553526i −0.849604 0.527421i \(-0.823159\pi\)
0.881562 + 0.472068i \(0.156492\pi\)
\(270\) 0 0
\(271\) 97239.3 + 168423.i 0.0804301 + 0.139309i 0.903435 0.428726i \(-0.141037\pi\)
−0.823005 + 0.568035i \(0.807704\pi\)
\(272\) −541881. −0.444101
\(273\) 0 0
\(274\) −1.55234e6 −1.24913
\(275\) 639753. + 1.10808e6i 0.510129 + 0.883570i
\(276\) 0 0
\(277\) −162678. + 281766.i −0.127388 + 0.220643i −0.922664 0.385605i \(-0.873993\pi\)
0.795276 + 0.606248i \(0.207326\pi\)
\(278\) 132212. + 228998.i 0.102603 + 0.177713i
\(279\) 0 0
\(280\) 896815. + 523020.i 0.683609 + 0.398679i
\(281\) 2.17543e6 1.64353 0.821767 0.569824i \(-0.192989\pi\)
0.821767 + 0.569824i \(0.192989\pi\)
\(282\) 0 0
\(283\) −285752. + 494936.i −0.212091 + 0.367353i −0.952369 0.304949i \(-0.901361\pi\)
0.740278 + 0.672301i \(0.234694\pi\)
\(284\) −471660. + 816939.i −0.347003 + 0.601027i
\(285\) 0 0
\(286\) 2.21060e6 1.59806
\(287\) −1.61245e6 + 921567.i −1.15553 + 0.660423i
\(288\) 0 0
\(289\) 619600. + 1.07318e6i 0.436382 + 0.755835i
\(290\) 1.07195e6 1.85667e6i 0.748478 1.29640i
\(291\) 0 0
\(292\) −346417. 600012.i −0.237762 0.411815i
\(293\) −2.15439e6 −1.46607 −0.733037 0.680189i \(-0.761898\pi\)
−0.733037 + 0.680189i \(0.761898\pi\)
\(294\) 0 0
\(295\) −3.55314e6 −2.37715
\(296\) 696005. + 1.20552e6i 0.461725 + 0.799731i
\(297\) 0 0
\(298\) −1.40514e6 + 2.43377e6i −0.916595 + 1.58759i
\(299\) −1.23416e6 2.13762e6i −0.798349 1.38278i
\(300\) 0 0
\(301\) 854266. 488241.i 0.543471 0.310612i
\(302\) 1.95978e6 1.23649
\(303\) 0 0
\(304\) −995940. + 1.72502e6i −0.618086 + 1.07056i
\(305\) −799330. + 1.38448e6i −0.492013 + 0.852192i
\(306\) 0 0
\(307\) −2.86577e6 −1.73539 −0.867693 0.497101i \(-0.834398\pi\)
−0.867693 + 0.497101i \(0.834398\pi\)
\(308\) 720238. + 420041.i 0.432613 + 0.252299i
\(309\) 0 0
\(310\) 1.04652e6 + 1.81262e6i 0.618504 + 1.07128i
\(311\) 1.07116e6 1.85531e6i 0.627992 1.08771i −0.359962 0.932967i \(-0.617210\pi\)
0.987954 0.154747i \(-0.0494563\pi\)
\(312\) 0 0
\(313\) −124864. 216271.i −0.0720405 0.124778i 0.827755 0.561090i \(-0.189618\pi\)
−0.899795 + 0.436312i \(0.856284\pi\)
\(314\) −771344. −0.441493
\(315\) 0 0
\(316\) 982304. 0.553386
\(317\) −429015. 743077.i −0.239787 0.415322i 0.720866 0.693074i \(-0.243744\pi\)
−0.960653 + 0.277752i \(0.910411\pi\)
\(318\) 0 0
\(319\) −647903. + 1.12220e6i −0.356479 + 0.617439i
\(320\) 48416.1 + 83859.2i 0.0264311 + 0.0457800i
\(321\) 0 0
\(322\) 11209.1 2.56258e6i 0.00602463 1.37733i
\(323\) −664073. −0.354168
\(324\) 0 0
\(325\) 1.60785e6 2.78488e6i 0.844380 1.46251i
\(326\) −466524. + 808043.i −0.243125 + 0.421105i
\(327\) 0 0
\(328\) 1.39558e6 0.716259
\(329\) −645989. 376739.i −0.329030 0.191889i
\(330\) 0 0
\(331\) 1.16446e6 + 2.01690e6i 0.584189 + 1.01185i 0.994976 + 0.100114i \(0.0319208\pi\)
−0.410786 + 0.911732i \(0.634746\pi\)
\(332\) 784825. 1.35936e6i 0.390776 0.676843i
\(333\) 0 0
\(334\) 52580.0 + 91071.2i 0.0257902 + 0.0446699i
\(335\) −2.42018e6 −1.17824
\(336\) 0 0
\(337\) −384940. −0.184637 −0.0923185 0.995730i \(-0.529428\pi\)
−0.0923185 + 0.995730i \(0.529428\pi\)
\(338\) −1.46177e6 2.53186e6i −0.695966 1.20545i
\(339\) 0 0
\(340\) −318977. + 552484.i −0.149645 + 0.259193i
\(341\) −632532. 1.09558e6i −0.294576 0.510220i
\(342\) 0 0
\(343\) 28591.3 2.17870e6i 0.0131219 0.999914i
\(344\) −739370. −0.336873
\(345\) 0 0
\(346\) −2.54563e6 + 4.40917e6i −1.14316 + 1.98000i
\(347\) 546073. 945826.i 0.243460 0.421685i −0.718238 0.695798i \(-0.755051\pi\)
0.961697 + 0.274113i \(0.0883843\pi\)
\(348\) 0 0
\(349\) 1.96544e6 0.863765 0.431883 0.901930i \(-0.357849\pi\)
0.431883 + 0.901930i \(0.357849\pi\)
\(350\) 2.89854e6 1.65661e6i 1.26476 0.722854i
\(351\) 0 0
\(352\) −1.04277e6 1.80613e6i −0.448570 0.776947i
\(353\) −1.29884e6 + 2.24966e6i −0.554779 + 0.960905i 0.443142 + 0.896451i \(0.353864\pi\)
−0.997921 + 0.0644536i \(0.979470\pi\)
\(354\) 0 0
\(355\) −2.12351e6 3.67803e6i −0.894301 1.54898i
\(356\) 380142. 0.158972
\(357\) 0 0
\(358\) 1.16189e6 0.479135
\(359\) 1.24594e6 + 2.15803e6i 0.510225 + 0.883735i 0.999930 + 0.0118470i \(0.00377109\pi\)
−0.489705 + 0.871888i \(0.662896\pi\)
\(360\) 0 0
\(361\) 17529.0 30361.2i 0.00707929 0.0122617i
\(362\) 1.46863e6 + 2.54374e6i 0.589034 + 1.02024i
\(363\) 0 0
\(364\) 9165.80 2.09545e6i 0.00362591 0.828943i
\(365\) 3.11928e6 1.22553
\(366\) 0 0
\(367\) 1.80000e6 3.11769e6i 0.697602 1.20828i −0.271694 0.962384i \(-0.587584\pi\)
0.969296 0.245898i \(-0.0790827\pi\)
\(368\) −1.77737e6 + 3.07849e6i −0.684160 + 1.18500i
\(369\) 0 0
\(370\) 8.32733e6 3.16229
\(371\) −14396.9 + 3.29136e6i −0.00543041 + 1.24148i
\(372\) 0 0
\(373\) −943797. 1.63470e6i −0.351242 0.608369i 0.635225 0.772327i \(-0.280907\pi\)
−0.986467 + 0.163958i \(0.947574\pi\)
\(374\) 530687. 919176.i 0.196182 0.339797i
\(375\) 0 0
\(376\) 280968. + 486651.i 0.102491 + 0.177520i
\(377\) 3.25668e6 1.18011
\(378\) 0 0
\(379\) 753126. 0.269321 0.134660 0.990892i \(-0.457006\pi\)
0.134660 + 0.990892i \(0.457006\pi\)
\(380\) 1.17252e6 + 2.03086e6i 0.416543 + 0.721474i
\(381\) 0 0
\(382\) 363803. 630125.i 0.127558 0.220937i
\(383\) −149129. 258299.i −0.0519475 0.0899757i 0.838882 0.544313i \(-0.183210\pi\)
−0.890830 + 0.454337i \(0.849876\pi\)
\(384\) 0 0
\(385\) −3.25908e6 + 1.86267e6i −1.12058 + 0.640449i
\(386\) −2.27077e6 −0.775719
\(387\) 0 0
\(388\) 890904. 1.54309e6i 0.300436 0.520370i
\(389\) 912091. 1.57979e6i 0.305608 0.529328i −0.671789 0.740743i \(-0.734474\pi\)
0.977396 + 0.211415i \(0.0678071\pi\)
\(390\) 0 0
\(391\) −1.18511e6 −0.392029
\(392\) −831019. + 1.41072e6i −0.273146 + 0.463688i
\(393\) 0 0
\(394\) −1.75730e6 3.04373e6i −0.570303 0.987793i
\(395\) −2.21127e6 + 3.83003e6i −0.713097 + 1.23512i
\(396\) 0 0
\(397\) −807950. 1.39941e6i −0.257281 0.445625i 0.708231 0.705981i \(-0.249493\pi\)
−0.965513 + 0.260356i \(0.916160\pi\)
\(398\) 3.69150e6 1.16814
\(399\) 0 0
\(400\) −4.63109e6 −1.44721
\(401\) −1.72790e6 2.99280e6i −0.536608 0.929431i −0.999084 0.0427998i \(-0.986372\pi\)
0.462476 0.886632i \(-0.346961\pi\)
\(402\) 0 0
\(403\) −1.58971e6 + 2.75345e6i −0.487590 + 0.844530i
\(404\) −357888. 619880.i −0.109092 0.188953i
\(405\) 0 0
\(406\) 2.92068e6 + 1.70333e6i 0.879365 + 0.512843i
\(407\) −5.03317e6 −1.50611
\(408\) 0 0
\(409\) 714625. 1.23777e6i 0.211237 0.365873i −0.740865 0.671654i \(-0.765584\pi\)
0.952102 + 0.305781i \(0.0989175\pi\)
\(410\) 4.17434e6 7.23016e6i 1.22639 2.12417i
\(411\) 0 0
\(412\) −351081. −0.101898
\(413\) 24510.5 5.60350e6i 0.00707093 1.61653i
\(414\) 0 0
\(415\) 3.53344e6 + 6.12011e6i 1.00711 + 1.74437i
\(416\) −2.62073e6 + 4.53923e6i −0.742486 + 1.28602i
\(417\) 0 0
\(418\) −1.95073e6 3.37877e6i −0.546081 0.945840i
\(419\) 2.27839e6 0.634006 0.317003 0.948425i \(-0.397323\pi\)
0.317003 + 0.948425i \(0.397323\pi\)
\(420\) 0 0
\(421\) 6.36256e6 1.74955 0.874775 0.484529i \(-0.161009\pi\)
0.874775 + 0.484529i \(0.161009\pi\)
\(422\) −2.69215e6 4.66294e6i −0.735899 1.27461i
\(423\) 0 0
\(424\) 1.23663e6 2.14191e6i 0.334061 0.578611i
\(425\) −771979. 1.33711e6i −0.207316 0.359082i
\(426\) 0 0
\(427\) −2.17789e6 1.27014e6i −0.578052 0.337118i
\(428\) −3.46587e6 −0.914541
\(429\) 0 0
\(430\) −2.21154e6 + 3.83050e6i −0.576798 + 0.999043i
\(431\) 1.32575e6 2.29626e6i 0.343770 0.595427i −0.641360 0.767240i \(-0.721629\pi\)
0.985129 + 0.171814i \(0.0549627\pi\)
\(432\) 0 0
\(433\) 688738. 0.176536 0.0882682 0.996097i \(-0.471867\pi\)
0.0882682 + 0.996097i \(0.471867\pi\)
\(434\) −2.86583e6 + 1.63791e6i −0.730341 + 0.417414i
\(435\) 0 0
\(436\) 2.08187e6 + 3.60591e6i 0.524491 + 0.908445i
\(437\) −2.17816e6 + 3.77268e6i −0.545614 + 0.945031i
\(438\) 0 0
\(439\) 116398. + 201608.i 0.0288261 + 0.0499282i 0.880079 0.474828i \(-0.157490\pi\)
−0.851252 + 0.524756i \(0.824156\pi\)
\(440\) 2.82075e6 0.694596
\(441\) 0 0
\(442\) −2.66749e6 −0.649452
\(443\) −718741. 1.24490e6i −0.174006 0.301386i 0.765811 0.643066i \(-0.222338\pi\)
−0.939817 + 0.341679i \(0.889004\pi\)
\(444\) 0 0
\(445\) −855739. + 1.48218e6i −0.204853 + 0.354815i
\(446\) 1.24898e6 + 2.16329e6i 0.297315 + 0.514965i
\(447\) 0 0
\(448\) −132585. + 75776.5i −0.0312103 + 0.0178377i
\(449\) −333630. −0.0780997 −0.0390499 0.999237i \(-0.512433\pi\)
−0.0390499 + 0.999237i \(0.512433\pi\)
\(450\) 0 0
\(451\) −2.52304e6 + 4.37003e6i −0.584093 + 1.01168i
\(452\) −459292. + 795516.i −0.105741 + 0.183148i
\(453\) 0 0
\(454\) −8.33224e6 −1.89724
\(455\) 8.14960e6 + 4.75282e6i 1.84547 + 1.07627i
\(456\) 0 0
\(457\) 1.27431e6 + 2.20717e6i 0.285421 + 0.494363i 0.972711 0.232020i \(-0.0745334\pi\)
−0.687290 + 0.726383i \(0.741200\pi\)
\(458\) 122950. 212956.i 0.0273883 0.0474380i
\(459\) 0 0
\(460\) 2.09249e6 + 3.62429e6i 0.461071 + 0.798599i
\(461\) −1.54182e6 −0.337894 −0.168947 0.985625i \(-0.554037\pi\)
−0.168947 + 0.985625i \(0.554037\pi\)
\(462\) 0 0
\(463\) −1.05753e6 −0.229266 −0.114633 0.993408i \(-0.536569\pi\)
−0.114633 + 0.993408i \(0.536569\pi\)
\(464\) −2.34504e6 4.06174e6i −0.505657 0.875824i
\(465\) 0 0
\(466\) −235704. + 408251.i −0.0502808 + 0.0870889i
\(467\) −411966. 713545.i −0.0874115 0.151401i 0.819005 0.573787i \(-0.194526\pi\)
−0.906416 + 0.422386i \(0.861193\pi\)
\(468\) 0 0
\(469\) 16695.0 3.81676e6i 0.00350474 0.801241i
\(470\) 3.36163e6 0.701949
\(471\) 0 0
\(472\) −2.10535e6 + 3.64657e6i −0.434980 + 0.753407i
\(473\) 1.33669e6 2.31522e6i 0.274712 0.475815i
\(474\) 0 0
\(475\) −5.67538e6 −1.15415
\(476\) −869099. 506856.i −0.175813 0.102534i
\(477\) 0 0
\(478\) −3.43312e6 5.94634e6i −0.687258 1.19037i
\(479\) 613204. 1.06210e6i 0.122114 0.211508i −0.798487 0.602012i \(-0.794366\pi\)
0.920601 + 0.390504i \(0.127699\pi\)
\(480\) 0 0
\(481\) 6.32479e6 + 1.09549e7i 1.24647 + 2.15896i
\(482\) −4.49541e6 −0.881358
\(483\) 0 0
\(484\) −675207. −0.131016
\(485\) 4.01103e6 + 6.94732e6i 0.774287 + 1.34110i
\(486\) 0 0
\(487\) 1.36094e6 2.35722e6i 0.260027 0.450379i −0.706222 0.707990i \(-0.749602\pi\)
0.966249 + 0.257611i \(0.0829353\pi\)
\(488\) 947259. + 1.64070e6i 0.180061 + 0.311874i
\(489\) 0 0
\(490\) 4.82293e6 + 8.52493e6i 0.907446 + 1.60399i
\(491\) −5.69198e6 −1.06552 −0.532758 0.846268i \(-0.678844\pi\)
−0.532758 + 0.846268i \(0.678844\pi\)
\(492\) 0 0
\(493\) 781814. 1.35414e6i 0.144873 0.250927i
\(494\) −4.90266e6 + 8.49166e6i −0.903888 + 1.56558i
\(495\) 0 0
\(496\) 4.57882e6 0.835698
\(497\) 5.81511e6 3.32353e6i 1.05601 0.603543i
\(498\) 0 0
\(499\) −2.43358e6 4.21509e6i −0.437517 0.757802i 0.559980 0.828506i \(-0.310809\pi\)
−0.997497 + 0.0707042i \(0.977475\pi\)
\(500\) −380872. + 659689.i −0.0681324 + 0.118009i
\(501\) 0 0
\(502\) −6.29943e6 1.09109e7i −1.11569 1.93242i
\(503\) 8.13233e6 1.43316 0.716581 0.697504i \(-0.245706\pi\)
0.716581 + 0.697504i \(0.245706\pi\)
\(504\) 0 0
\(505\) 3.22257e6 0.562308
\(506\) −3.48130e6 6.02979e6i −0.604457 1.04695i
\(507\) 0 0
\(508\) 2.14588e6 3.71677e6i 0.368931 0.639008i
\(509\) 2.30125e6 + 3.98589e6i 0.393704 + 0.681915i 0.992935 0.118661i \(-0.0378602\pi\)
−0.599231 + 0.800576i \(0.704527\pi\)
\(510\) 0 0
\(511\) −21517.6 + 4.91929e6i −0.00364537 + 0.833393i
\(512\) 3.57415e6 0.602556
\(513\) 0 0
\(514\) 5.10660e6 8.84490e6i 0.852559 1.47668i
\(515\) 790320. 1.36887e6i 0.131306 0.227429i
\(516\) 0 0
\(517\) −2.03183e6 −0.334318
\(518\) −57444.1 + 1.31327e7i −0.00940634 + 2.15045i
\(519\) 0 0
\(520\) −3.54461e6 6.13944e6i −0.574857 0.995682i
\(521\) −234824. + 406727.i −0.0379008 + 0.0656461i −0.884354 0.466818i \(-0.845400\pi\)
0.846453 + 0.532464i \(0.178734\pi\)
\(522\) 0 0
\(523\) 6.02078e6 + 1.04283e7i 0.962495 + 1.66709i 0.716200 + 0.697895i \(0.245880\pi\)
0.246295 + 0.969195i \(0.420787\pi\)
\(524\) 1.04768e6 0.166686
\(525\) 0 0
\(526\) −701617. −0.110570
\(527\) 763266. + 1.32202e6i 0.119715 + 0.207353i
\(528\) 0 0
\(529\) −668993. + 1.15873e6i −0.103940 + 0.180029i
\(530\) −7.39781e6 1.28134e7i −1.14397 1.98141i
\(531\) 0 0
\(532\) −3.21087e6 + 1.83512e6i −0.491862 + 0.281115i
\(533\) 1.26820e7 1.93361
\(534\) 0 0
\(535\) 7.80204e6 1.35135e7i 1.17848 2.04119i
\(536\) −1.43404e6 + 2.48382e6i −0.215600 + 0.373429i
\(537\) 0 0
\(538\) −537766. −0.0801010
\(539\) −2.91506e6 5.15261e6i −0.432191 0.763933i
\(540\) 0 0
\(541\) 2.43174e6 + 4.21190e6i 0.357211 + 0.618707i 0.987494 0.157659i \(-0.0503945\pi\)
−0.630283 + 0.776365i \(0.717061\pi\)
\(542\) 689361. 1.19401e6i 0.100797 0.174586i
\(543\) 0 0
\(544\) 1.25829e6 + 2.17942e6i 0.182299 + 0.315750i
\(545\) −1.87461e7 −2.70345
\(546\) 0 0
\(547\) 5.47821e6 0.782836 0.391418 0.920213i \(-0.371985\pi\)
0.391418 + 0.920213i \(0.371985\pi\)
\(548\) 1.99903e6 + 3.46241e6i 0.284359 + 0.492524i
\(549\) 0 0
\(550\) 4.53542e6 7.85557e6i 0.639309 1.10732i
\(551\) −2.87384e6 4.97764e6i −0.403259 0.698465i
\(552\) 0 0
\(553\) −6.02492e6 3.51372e6i −0.837796 0.488601i
\(554\) 2.30656e6 0.319293
\(555\) 0 0
\(556\) 340513. 589786.i 0.0467140 0.0809110i
\(557\) −6.18341e6 + 1.07100e7i −0.844481 + 1.46268i 0.0415907 + 0.999135i \(0.486757\pi\)
−0.886071 + 0.463549i \(0.846576\pi\)
\(558\) 0 0
\(559\) −6.71885e6 −0.909422
\(560\) 59429.5 1.35866e7i 0.00800815 1.83080i
\(561\) 0 0
\(562\) −7.71116e6 1.33561e7i −1.02986 1.78377i
\(563\) 7.15837e6 1.23987e7i 0.951794 1.64856i 0.210255 0.977647i \(-0.432571\pi\)
0.741539 0.670909i \(-0.234096\pi\)
\(564\) 0 0
\(565\) −2.06783e6 3.58158e6i −0.272517 0.472013i
\(566\) 4.05158e6 0.531597
\(567\) 0 0
\(568\) −5.03300e6 −0.654570
\(569\) −4.55772e6 7.89420e6i −0.590156 1.02218i −0.994211 0.107445i \(-0.965733\pi\)
0.404055 0.914735i \(-0.367600\pi\)
\(570\) 0 0
\(571\) 2.54771e6 4.41277e6i 0.327009 0.566397i −0.654908 0.755709i \(-0.727292\pi\)
0.981917 + 0.189312i \(0.0606258\pi\)
\(572\) −2.84670e6 4.93063e6i −0.363791 0.630104i
\(573\) 0 0
\(574\) 1.13736e7 + 6.63304e6i 1.44085 + 0.840297i
\(575\) −1.01283e7 −1.27752
\(576\) 0 0
\(577\) 87796.6 152068.i 0.0109784 0.0190151i −0.860484 0.509477i \(-0.829839\pi\)
0.871462 + 0.490462i \(0.163172\pi\)
\(578\) 4.39255e6 7.60812e6i 0.546886 0.947234i
\(579\) 0 0
\(580\) −5.52162e6 −0.681549
\(581\) −9.67613e6 + 5.53023e6i −1.18922 + 0.679677i
\(582\) 0 0
\(583\) 4.47136e6 + 7.74462e6i 0.544839 + 0.943689i
\(584\) 1.84828e6 3.20131e6i 0.224251 0.388415i
\(585\) 0 0
\(586\) 7.63660e6 + 1.32270e7i 0.918663 + 1.59117i
\(587\) −6.35775e6 −0.761567 −0.380784 0.924664i \(-0.624346\pi\)
−0.380784 + 0.924664i \(0.624346\pi\)
\(588\) 0 0
\(589\) 5.61132e6 0.666465
\(590\) 1.25947e7 + 2.18146e7i 1.48956 + 2.57999i
\(591\) 0 0
\(592\) 9.10862e6 1.57766e7i 1.06819 1.85016i
\(593\) 5.59393e6 + 9.68897e6i 0.653251 + 1.13146i 0.982329 + 0.187162i \(0.0599289\pi\)
−0.329078 + 0.944303i \(0.606738\pi\)
\(594\) 0 0
\(595\) 3.93268e6 2.24766e6i 0.455403 0.260278i
\(596\) 7.23787e6 0.834632
\(597\) 0 0
\(598\) −8.74935e6 + 1.51543e7i −1.00051 + 1.73294i
\(599\) −227851. + 394650.i −0.0259468 + 0.0449412i −0.878707 0.477361i \(-0.841593\pi\)
0.852760 + 0.522302i \(0.174927\pi\)
\(600\) 0 0
\(601\) −1.72814e7 −1.95161 −0.975804 0.218649i \(-0.929835\pi\)
−0.975804 + 0.218649i \(0.929835\pi\)
\(602\) −6.02566e6 3.51415e6i −0.677662 0.395211i
\(603\) 0 0
\(604\) −2.52371e6 4.37120e6i −0.281480 0.487538i
\(605\) 1.51996e6 2.63265e6i 0.168828 0.292418i
\(606\) 0 0
\(607\) −963589. 1.66898e6i −0.106150 0.183857i 0.808057 0.589104i \(-0.200519\pi\)
−0.914207 + 0.405246i \(0.867186\pi\)
\(608\) 9.25060e6 1.01487
\(609\) 0 0
\(610\) 1.13334e7 1.23321
\(611\) 2.55323e6 + 4.42233e6i 0.276686 + 0.479235i
\(612\) 0 0
\(613\) −963889. + 1.66950e6i −0.103604 + 0.179447i −0.913167 0.407586i \(-0.866371\pi\)
0.809563 + 0.587033i \(0.199704\pi\)
\(614\) 1.01582e7 + 1.75945e7i 1.08742 + 1.88346i
\(615\) 0 0
\(616\) −19458.2 + 4.44848e6i −0.00206610 + 0.472345i
\(617\) −8.90588e6 −0.941812 −0.470906 0.882183i \(-0.656073\pi\)
−0.470906 + 0.882183i \(0.656073\pi\)
\(618\) 0 0
\(619\) −1.18219e6 + 2.04762e6i −0.124011 + 0.214794i −0.921346 0.388743i \(-0.872909\pi\)
0.797335 + 0.603537i \(0.206243\pi\)
\(620\) 2.69531e6 4.66842e6i 0.281598 0.487742i
\(621\) 0 0
\(622\) −1.51876e7 −1.57403
\(623\) −2.33159e6 1.35977e6i −0.240675 0.140361i
\(624\) 0 0
\(625\) 3.96104e6 + 6.86072e6i 0.405610 + 0.702538i
\(626\) −885203. + 1.53322e6i −0.0902832 + 0.156375i
\(627\) 0 0
\(628\) 993301. + 1.72045e6i 0.100504 + 0.174077i
\(629\) 6.07344e6 0.612080
\(630\) 0 0
\(631\) −3.00892e6 −0.300841 −0.150420 0.988622i \(-0.548063\pi\)
−0.150420 + 0.988622i \(0.548063\pi\)
\(632\) 2.62050e6 + 4.53883e6i 0.260970 + 0.452014i
\(633\) 0 0
\(634\) −3.04143e6 + 5.26792e6i −0.300507 + 0.520494i
\(635\) 9.66118e6 + 1.67337e7i 0.950815 + 1.64686i
\(636\) 0 0
\(637\) −7.55169e6 + 1.28196e7i −0.737387 + 1.25177i
\(638\) 9.18640e6 0.893499
\(639\) 0 0
\(640\) −7.44422e6 + 1.28938e7i −0.718405 + 1.24431i
\(641\) −3.53263e6 + 6.11869e6i −0.339588 + 0.588184i −0.984355 0.176195i \(-0.943621\pi\)
0.644767 + 0.764379i \(0.276954\pi\)
\(642\) 0 0
\(643\) 1.11768e7 1.06608 0.533038 0.846091i \(-0.321050\pi\)
0.533038 + 0.846091i \(0.321050\pi\)
\(644\) −5.73015e6 + 3.27497e6i −0.544442 + 0.311166i
\(645\) 0 0
\(646\) 2.35392e6 + 4.07710e6i 0.221927 + 0.384388i
\(647\) 3.56677e6 6.17783e6i 0.334977 0.580197i −0.648504 0.761212i \(-0.724605\pi\)
0.983480 + 0.181015i \(0.0579382\pi\)
\(648\) 0 0
\(649\) −7.61243e6 1.31851e7i −0.709433 1.22877i
\(650\) −2.27972e7 −2.11640
\(651\) 0 0
\(652\) 2.40307e6 0.221385
\(653\) −3.09586e6 5.36218e6i −0.284117 0.492106i 0.688277 0.725448i \(-0.258367\pi\)
−0.972395 + 0.233342i \(0.925034\pi\)
\(654\) 0 0
\(655\) −2.35843e6 + 4.08493e6i −0.214793 + 0.372033i
\(656\) −9.13197e6 1.58170e7i −0.828523 1.43504i
\(657\) 0 0
\(658\) −23189.4 + 5.30149e6i −0.00208797 + 0.477346i
\(659\) 747569. 0.0670560 0.0335280 0.999438i \(-0.489326\pi\)
0.0335280 + 0.999438i \(0.489326\pi\)
\(660\) 0 0
\(661\) 1.03881e7 1.79927e7i 0.924769 1.60175i 0.132836 0.991138i \(-0.457592\pi\)
0.791933 0.610609i \(-0.209075\pi\)
\(662\) 8.25523e6 1.42985e7i 0.732123 1.26807i
\(663\) 0 0
\(664\) 8.37473e6 0.737141
\(665\) 72830.6 1.66503e7i 0.00638646 1.46005i
\(666\) 0 0
\(667\) −5.12870e6 8.88316e6i −0.446367 0.773131i
\(668\) 135420. 234554.i 0.0117420 0.0203377i
\(669\) 0 0
\(670\) 8.57873e6 + 1.48588e7i 0.738305 + 1.27878i
\(671\) −6.85011e6 −0.587343
\(672\) 0 0
\(673\) −1.20681e7 −1.02707 −0.513536 0.858068i \(-0.671665\pi\)
−0.513536 + 0.858068i \(0.671665\pi\)
\(674\) 1.36449e6 + 2.36336e6i 0.115696 + 0.200392i
\(675\) 0 0
\(676\) −3.76480e6 + 6.52083e6i −0.316866 + 0.548828i
\(677\) 5.65866e6 + 9.80109e6i 0.474506 + 0.821869i 0.999574 0.0291915i \(-0.00929325\pi\)
−0.525067 + 0.851061i \(0.675960\pi\)
\(678\) 0 0
\(679\) −1.09840e7 + 6.27771e6i −0.914293 + 0.522549i
\(680\) −3.40375e6 −0.282283
\(681\) 0 0
\(682\) −4.48423e6 + 7.76692e6i −0.369171 + 0.639422i
\(683\) −2.84116e6 + 4.92103e6i −0.233047 + 0.403650i −0.958703 0.284408i \(-0.908203\pi\)
0.725656 + 0.688058i \(0.241536\pi\)
\(684\) 0 0
\(685\) −1.80001e7 −1.46571
\(686\) −1.34776e7 + 7.54723e6i −1.09346 + 0.612319i
\(687\) 0 0
\(688\) 4.83806e6 + 8.37977e6i 0.389673 + 0.674934i
\(689\) 1.12376e7 1.94641e7i 0.901832 1.56202i
\(690\) 0 0
\(691\) 2.88281e6 + 4.99317e6i 0.229679 + 0.397815i 0.957713 0.287726i \(-0.0928991\pi\)
−0.728034 + 0.685541i \(0.759566\pi\)
\(692\) 1.31126e7 1.04093
\(693\) 0 0
\(694\) −7.74258e6 −0.610221
\(695\) 1.53306e6 + 2.65534e6i 0.120392 + 0.208525i
\(696\) 0 0
\(697\) 3.04451e6 5.27324e6i 0.237375 0.411145i
\(698\) −6.96682e6 1.20669e7i −0.541248 0.937469i
\(699\) 0 0
\(700\) −7.42760e6 4.33176e6i −0.572932 0.334133i
\(701\) −4.04459e6 −0.310870 −0.155435 0.987846i \(-0.549678\pi\)
−0.155435 + 0.987846i \(0.549678\pi\)
\(702\) 0 0
\(703\) 1.11626e7 1.93341e7i 0.851875 1.47549i
\(704\) −207459. + 359329.i −0.0157761 + 0.0273250i
\(705\) 0 0
\(706\) 1.84159e7 1.39053
\(707\) −22230.2 + 5.08218e6i −0.00167261 + 0.382386i
\(708\) 0 0
\(709\) −3.57921e6 6.19937e6i −0.267406 0.463161i 0.700785 0.713372i \(-0.252833\pi\)
−0.968191 + 0.250211i \(0.919500\pi\)
\(710\) −1.50543e7 + 2.60748e7i −1.12076 + 1.94122i
\(711\) 0 0
\(712\) 1.01411e6 + 1.75648e6i 0.0749694 + 0.129851i
\(713\) 1.00140e7 0.737710
\(714\) 0 0
\(715\) 2.56329e7 1.87513
\(716\) −1.49623e6 2.59155e6i −0.109073 0.188919i
\(717\) 0 0
\(718\) 8.83289e6 1.52990e7i 0.639428 1.10752i
\(719\) −4.91370e6 8.51077e6i −0.354475 0.613969i 0.632553 0.774517i \(-0.282007\pi\)
−0.987028 + 0.160548i \(0.948674\pi\)
\(720\) 0 0
\(721\) 2.15334e6 + 1.25582e6i 0.154268 + 0.0899685i
\(722\) −248538. −0.0177439
\(723\) 0 0
\(724\) 3.78246e6 6.55142e6i 0.268181 0.464503i
\(725\) 6.68163e6 1.15729e7i 0.472104 0.817708i
\(726\) 0 0
\(727\) 1.63233e7 1.14544 0.572720 0.819751i \(-0.305888\pi\)
0.572720 + 0.819751i \(0.305888\pi\)
\(728\) 9.70671e6 5.54770e6i 0.678803 0.387958i
\(729\) 0 0
\(730\) −1.10568e7 1.91510e7i −0.767932 1.33010i
\(731\) −1.61296e6 + 2.79373e6i −0.111643 + 0.193371i
\(732\) 0 0
\(733\) −8.80166e6 1.52449e7i −0.605069 1.04801i −0.992041 0.125918i \(-0.959812\pi\)
0.386972 0.922091i \(-0.373521\pi\)
\(734\) −2.55216e7 −1.74851
\(735\) 0 0
\(736\) 1.65087e7 1.12336
\(737\) −5.18512e6 8.98090e6i −0.351634 0.609047i
\(738\) 0 0
\(739\) −3.46287e6 + 5.99787e6i −0.233252 + 0.404004i −0.958763 0.284206i \(-0.908270\pi\)
0.725511 + 0.688210i \(0.241603\pi\)
\(740\) −1.07235e7 1.85737e7i −0.719878 1.24687i
\(741\) 0 0
\(742\) 2.02585e7 1.15784e7i 1.35082 0.772037i
\(743\) 1.38786e7 0.922305 0.461153 0.887321i \(-0.347436\pi\)
0.461153 + 0.887321i \(0.347436\pi\)
\(744\) 0 0
\(745\) −1.62932e7 + 2.82206e7i −1.07551 + 1.86284i
\(746\) −6.69089e6 + 1.15890e7i −0.440187 + 0.762426i
\(747\) 0 0
\(748\) −2.73357e6 −0.178639
\(749\) 2.12578e7 + 1.23975e7i 1.38457 + 0.807475i
\(750\) 0 0
\(751\) 2.42409e6 + 4.19864e6i 0.156837 + 0.271650i 0.933726 0.357987i \(-0.116537\pi\)
−0.776889 + 0.629637i \(0.783204\pi\)
\(752\) 3.67703e6 6.36880e6i 0.237112 0.410689i
\(753\) 0 0
\(754\) −1.15438e7 1.99945e7i −0.739472 1.28080i
\(755\) 2.27246e7 1.45087
\(756\) 0 0
\(757\) −2.41206e7 −1.52985 −0.764926 0.644119i \(-0.777224\pi\)
−0.764926 + 0.644119i \(0.777224\pi\)
\(758\) −2.66958e6 4.62385e6i −0.168760 0.292301i
\(759\) 0 0
\(760\) −6.25586e6 + 1.08355e7i −0.392874 + 0.680477i
\(761\) 1.03215e6 + 1.78774e6i 0.0646074 + 0.111903i 0.896520 0.443004i \(-0.146087\pi\)
−0.831912 + 0.554907i \(0.812754\pi\)
\(762\) 0 0
\(763\) 129315. 2.95636e7i 0.00804153 1.83843i
\(764\) −1.87395e6 −0.116152
\(765\) 0 0
\(766\) −1.05722e6 + 1.83117e6i −0.0651021 + 0.112760i
\(767\) −1.91319e7 + 3.31374e7i −1.17427 + 2.03390i
\(768\) 0 0
\(769\) −1.80825e7 −1.10266 −0.551331 0.834287i \(-0.685880\pi\)
−0.551331 + 0.834287i \(0.685880\pi\)
\(770\) 2.29883e7 + 1.34067e7i 1.39727 + 0.814884i
\(771\) 0 0
\(772\) 2.92419e6 + 5.06484e6i 0.176588 + 0.305860i
\(773\) −6.87405e6 + 1.19062e7i −0.413775 + 0.716679i −0.995299 0.0968501i \(-0.969123\pi\)
0.581524 + 0.813529i \(0.302457\pi\)
\(774\) 0 0
\(775\) 6.52312e6 + 1.12984e7i 0.390122 + 0.675712i
\(776\) 9.50668e6 0.566728