Properties

Label 63.6.e.e.46.4
Level $63$
Weight $6$
Character 63.46
Analytic conductor $10.104$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,6,Mod(37,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 63.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1041806482\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 98x^{6} + 83x^{5} + 9122x^{4} - 91x^{3} + 28567x^{2} + 2058x + 86436 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 46.4
Root \(-4.61193 - 7.98809i\) of defining polynomial
Character \(\chi\) \(=\) 63.46
Dual form 63.6.e.e.37.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.11193 + 8.85412i) q^{2} +(-36.2636 + 62.8104i) q^{4} +(11.8764 + 20.5705i) q^{5} +(30.6840 + 125.958i) q^{7} -414.344 q^{8} +O(q^{10})\) \(q+(5.11193 + 8.85412i) q^{2} +(-36.2636 + 62.8104i) q^{4} +(11.8764 + 20.5705i) q^{5} +(30.6840 + 125.958i) q^{7} -414.344 q^{8} +(-121.423 + 210.310i) q^{10} +(232.763 - 403.157i) q^{11} -1019.30 q^{13} +(-958.395 + 915.570i) q^{14} +(-957.660 - 1658.72i) q^{16} +(280.878 - 486.496i) q^{17} +(693.789 + 1201.68i) q^{19} -1722.72 q^{20} +4759.47 q^{22} +(2056.81 + 3562.50i) q^{23} +(1280.40 - 2217.72i) q^{25} +(-5210.59 - 9025.00i) q^{26} +(-9024.20 - 2640.42i) q^{28} +2381.37 q^{29} +(-1475.33 + 2555.34i) q^{31} +(3161.47 - 5475.84i) q^{32} +5743.32 q^{34} +(-2226.61 + 2127.12i) q^{35} +(4954.48 + 8581.40i) q^{37} +(-7093.20 + 12285.8i) q^{38} +(-4920.92 - 8523.28i) q^{40} +4477.13 q^{41} +5181.48 q^{43} +(16881.6 + 29239.9i) q^{44} +(-21028.5 + 36422.5i) q^{46} +(-1560.80 - 2703.38i) q^{47} +(-14924.0 + 7729.82i) q^{49} +26181.3 q^{50} +(36963.5 - 64022.6i) q^{52} +(570.499 - 988.133i) q^{53} +11057.6 q^{55} +(-12713.7 - 52190.0i) q^{56} +(12173.4 + 21085.0i) q^{58} +(13748.5 - 23813.2i) q^{59} +(10551.8 + 18276.2i) q^{61} -30167.1 q^{62} +3354.67 q^{64} +(-12105.6 - 20967.6i) q^{65} +(27794.2 - 48141.0i) q^{67} +(20371.3 + 35284.2i) q^{68} +(-30216.0 - 8841.02i) q^{70} +6076.90 q^{71} +(8389.82 - 14531.6i) q^{73} +(-50653.8 + 87735.0i) q^{74} -100637. q^{76} +(57923.1 + 16947.9i) q^{77} +(2422.63 + 4196.12i) q^{79} +(22747.1 - 39399.2i) q^{80} +(22886.7 + 39641.0i) q^{82} -60145.4 q^{83} +13343.3 q^{85} +(26487.4 + 45877.5i) q^{86} +(-96443.9 + 167046. i) q^{88} +(-31248.7 - 54124.4i) q^{89} +(-31276.2 - 128389. i) q^{91} -298349. q^{92} +(15957.4 - 27639.0i) q^{94} +(-16479.4 + 28543.2i) q^{95} -63653.8 q^{97} +(-144731. - 92624.4i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{2} - 69 q^{4} + 258 q^{7} - 246 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 3 q^{2} - 69 q^{4} + 258 q^{7} - 246 q^{8} - 283 q^{10} + 402 q^{11} + 924 q^{13} - 1926 q^{14} - 3273 q^{16} + 276 q^{17} - 510 q^{19} - 9438 q^{20} + 2750 q^{22} + 6900 q^{23} - 2814 q^{25} - 15138 q^{26} - 26221 q^{28} - 1080 q^{29} + 6410 q^{31} + 15519 q^{32} + 42288 q^{34} + 33108 q^{35} - 15250 q^{37} - 41250 q^{38} + 8547 q^{40} - 8616 q^{41} + 58396 q^{43} + 70743 q^{44} - 61800 q^{46} - 15060 q^{47} - 64252 q^{49} + 14604 q^{50} + 47476 q^{52} + 13692 q^{53} + 146248 q^{55} + 15921 q^{56} - 52309 q^{58} + 34830 q^{59} + 5364 q^{61} - 32058 q^{62} - 146974 q^{64} + 66864 q^{65} + 5994 q^{67} - 58272 q^{68} - 4307 q^{70} - 178536 q^{71} - 59638 q^{73} - 185442 q^{74} + 42616 q^{76} + 75660 q^{77} + 44062 q^{79} - 33381 q^{80} - 57596 q^{82} + 416892 q^{83} + 72648 q^{85} - 136968 q^{86} - 87597 q^{88} - 77520 q^{89} + 104722 q^{91} - 316512 q^{92} + 73722 q^{94} - 221376 q^{95} - 377260 q^{97} - 382479 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.11193 + 8.85412i 0.903669 + 1.56520i 0.822693 + 0.568485i \(0.192470\pi\)
0.0809760 + 0.996716i \(0.474196\pi\)
\(3\) 0 0
\(4\) −36.2636 + 62.8104i −1.13324 + 1.96282i
\(5\) 11.8764 + 20.5705i 0.212452 + 0.367977i 0.952481 0.304597i \(-0.0985219\pi\)
−0.740030 + 0.672574i \(0.765189\pi\)
\(6\) 0 0
\(7\) 30.6840 + 125.958i 0.236683 + 0.971587i
\(8\) −414.344 −2.28895
\(9\) 0 0
\(10\) −121.423 + 210.310i −0.383972 + 0.665059i
\(11\) 232.763 403.157i 0.580006 1.00460i −0.415472 0.909606i \(-0.636384\pi\)
0.995478 0.0949934i \(-0.0302830\pi\)
\(12\) 0 0
\(13\) −1019.30 −1.67280 −0.836399 0.548121i \(-0.815343\pi\)
−0.836399 + 0.548121i \(0.815343\pi\)
\(14\) −958.395 + 915.570i −1.30685 + 1.24845i
\(15\) 0 0
\(16\) −957.660 1658.72i −0.935215 1.61984i
\(17\) 280.878 486.496i 0.235720 0.408279i −0.723762 0.690050i \(-0.757589\pi\)
0.959482 + 0.281771i \(0.0909219\pi\)
\(18\) 0 0
\(19\) 693.789 + 1201.68i 0.440903 + 0.763667i 0.997757 0.0669438i \(-0.0213248\pi\)
−0.556853 + 0.830611i \(0.687991\pi\)
\(20\) −1722.72 −0.963032
\(21\) 0 0
\(22\) 4759.47 2.09653
\(23\) 2056.81 + 3562.50i 0.810727 + 1.40422i 0.912356 + 0.409397i \(0.134261\pi\)
−0.101630 + 0.994822i \(0.532406\pi\)
\(24\) 0 0
\(25\) 1280.40 2217.72i 0.409729 0.709671i
\(26\) −5210.59 9025.00i −1.51166 2.61827i
\(27\) 0 0
\(28\) −9024.20 2640.42i −2.17527 0.636471i
\(29\) 2381.37 0.525814 0.262907 0.964821i \(-0.415319\pi\)
0.262907 + 0.964821i \(0.415319\pi\)
\(30\) 0 0
\(31\) −1475.33 + 2555.34i −0.275730 + 0.477579i −0.970319 0.241828i \(-0.922253\pi\)
0.694589 + 0.719407i \(0.255586\pi\)
\(32\) 3161.47 5475.84i 0.545776 0.945313i
\(33\) 0 0
\(34\) 5743.32 0.852051
\(35\) −2226.61 + 2127.12i −0.307238 + 0.293509i
\(36\) 0 0
\(37\) 4954.48 + 8581.40i 0.594968 + 1.03051i 0.993551 + 0.113382i \(0.0361685\pi\)
−0.398584 + 0.917132i \(0.630498\pi\)
\(38\) −7093.20 + 12285.8i −0.796862 + 1.38021i
\(39\) 0 0
\(40\) −4920.92 8523.28i −0.486291 0.842280i
\(41\) 4477.13 0.415949 0.207974 0.978134i \(-0.433313\pi\)
0.207974 + 0.978134i \(0.433313\pi\)
\(42\) 0 0
\(43\) 5181.48 0.427349 0.213675 0.976905i \(-0.431457\pi\)
0.213675 + 0.976905i \(0.431457\pi\)
\(44\) 16881.6 + 29239.9i 1.31457 + 2.27690i
\(45\) 0 0
\(46\) −21028.5 + 36422.5i −1.46526 + 2.53790i
\(47\) −1560.80 2703.38i −0.103063 0.178510i 0.809882 0.586592i \(-0.199531\pi\)
−0.912945 + 0.408082i \(0.866198\pi\)
\(48\) 0 0
\(49\) −14924.0 + 7729.82i −0.887962 + 0.459917i
\(50\) 26181.3 1.48104
\(51\) 0 0
\(52\) 36963.5 64022.6i 1.89568 3.28341i
\(53\) 570.499 988.133i 0.0278975 0.0483198i −0.851740 0.523965i \(-0.824452\pi\)
0.879637 + 0.475645i \(0.157785\pi\)
\(54\) 0 0
\(55\) 11057.6 0.492893
\(56\) −12713.7 52190.0i −0.541755 2.22391i
\(57\) 0 0
\(58\) 12173.4 + 21085.0i 0.475162 + 0.823005i
\(59\) 13748.5 23813.2i 0.514194 0.890610i −0.485671 0.874142i \(-0.661425\pi\)
0.999864 0.0164678i \(-0.00524209\pi\)
\(60\) 0 0
\(61\) 10551.8 + 18276.2i 0.363078 + 0.628870i 0.988466 0.151444i \(-0.0483924\pi\)
−0.625387 + 0.780314i \(0.715059\pi\)
\(62\) −30167.1 −0.996676
\(63\) 0 0
\(64\) 3354.67 0.102376
\(65\) −12105.6 20967.6i −0.355389 0.615551i
\(66\) 0 0
\(67\) 27794.2 48141.0i 0.756428 1.31017i −0.188234 0.982124i \(-0.560276\pi\)
0.944661 0.328047i \(-0.106390\pi\)
\(68\) 20371.3 + 35284.2i 0.534253 + 0.925353i
\(69\) 0 0
\(70\) −30216.0 8841.02i −0.737043 0.215654i
\(71\) 6076.90 0.143066 0.0715330 0.997438i \(-0.477211\pi\)
0.0715330 + 0.997438i \(0.477211\pi\)
\(72\) 0 0
\(73\) 8389.82 14531.6i 0.184266 0.319158i −0.759063 0.651017i \(-0.774343\pi\)
0.943329 + 0.331859i \(0.107676\pi\)
\(74\) −50653.8 + 87735.0i −1.07531 + 1.86249i
\(75\) 0 0
\(76\) −100637. −1.99859
\(77\) 57923.1 + 16947.9i 1.11333 + 0.325754i
\(78\) 0 0
\(79\) 2422.63 + 4196.12i 0.0436737 + 0.0756450i 0.887036 0.461700i \(-0.152760\pi\)
−0.843362 + 0.537345i \(0.819427\pi\)
\(80\) 22747.1 39399.2i 0.397376 0.688275i
\(81\) 0 0
\(82\) 22886.7 + 39641.0i 0.375880 + 0.651043i
\(83\) −60145.4 −0.958313 −0.479156 0.877730i \(-0.659057\pi\)
−0.479156 + 0.877730i \(0.659057\pi\)
\(84\) 0 0
\(85\) 13343.3 0.200316
\(86\) 26487.4 + 45877.5i 0.386183 + 0.668888i
\(87\) 0 0
\(88\) −96443.9 + 167046.i −1.32760 + 2.29947i
\(89\) −31248.7 54124.4i −0.418174 0.724299i 0.577582 0.816333i \(-0.303996\pi\)
−0.995756 + 0.0920340i \(0.970663\pi\)
\(90\) 0 0
\(91\) −31276.2 128389.i −0.395923 1.62527i
\(92\) −298349. −3.67498
\(93\) 0 0
\(94\) 15957.4 27639.0i 0.186269 0.322628i
\(95\) −16479.4 + 28543.2i −0.187341 + 0.324485i
\(96\) 0 0
\(97\) −63653.8 −0.686903 −0.343451 0.939170i \(-0.611596\pi\)
−0.343451 + 0.939170i \(0.611596\pi\)
\(98\) −144731. 92624.4i −1.52229 0.974227i
\(99\) 0 0
\(100\) 92863.9 + 160845.i 0.928639 + 1.60845i
\(101\) 92311.4 159888.i 0.900434 1.55960i 0.0735022 0.997295i \(-0.476582\pi\)
0.826932 0.562302i \(-0.190084\pi\)
\(102\) 0 0
\(103\) −26021.9 45071.2i −0.241683 0.418607i 0.719511 0.694481i \(-0.244366\pi\)
−0.961194 + 0.275874i \(0.911033\pi\)
\(104\) 422341. 3.82895
\(105\) 0 0
\(106\) 11665.4 0.100840
\(107\) 24088.9 + 41723.2i 0.203403 + 0.352304i 0.949623 0.313395i \(-0.101466\pi\)
−0.746220 + 0.665700i \(0.768133\pi\)
\(108\) 0 0
\(109\) 18217.8 31554.1i 0.146869 0.254384i −0.783200 0.621770i \(-0.786414\pi\)
0.930069 + 0.367386i \(0.119747\pi\)
\(110\) 56525.4 + 97904.9i 0.445412 + 0.771476i
\(111\) 0 0
\(112\) 179544. 171521.i 1.35247 1.29203i
\(113\) 96711.1 0.712492 0.356246 0.934392i \(-0.384056\pi\)
0.356246 + 0.934392i \(0.384056\pi\)
\(114\) 0 0
\(115\) −48855.0 + 84619.4i −0.344480 + 0.596658i
\(116\) −86357.1 + 149575.i −0.595872 + 1.03208i
\(117\) 0 0
\(118\) 281126. 1.85864
\(119\) 69896.6 + 20451.3i 0.452469 + 0.132390i
\(120\) 0 0
\(121\) −27831.7 48206.0i −0.172813 0.299321i
\(122\) −107880. + 186853.i −0.656206 + 1.13658i
\(123\) 0 0
\(124\) −107001. 185332.i −0.624935 1.08242i
\(125\) 135054. 0.773093
\(126\) 0 0
\(127\) 23322.9 0.128314 0.0641568 0.997940i \(-0.479564\pi\)
0.0641568 + 0.997940i \(0.479564\pi\)
\(128\) −84018.4 145524.i −0.453262 0.785073i
\(129\) 0 0
\(130\) 123766. 214369.i 0.642308 1.11251i
\(131\) −169379. 293373.i −0.862345 1.49363i −0.869659 0.493653i \(-0.835661\pi\)
0.00731374 0.999973i \(-0.497672\pi\)
\(132\) 0 0
\(133\) −130073. + 124261.i −0.637614 + 0.609123i
\(134\) 568328. 2.73424
\(135\) 0 0
\(136\) −116380. + 201576.i −0.539550 + 0.934528i
\(137\) −31438.4 + 54452.9i −0.143106 + 0.247867i −0.928665 0.370920i \(-0.879042\pi\)
0.785559 + 0.618787i \(0.212376\pi\)
\(138\) 0 0
\(139\) 211927. 0.930356 0.465178 0.885217i \(-0.345990\pi\)
0.465178 + 0.885217i \(0.345990\pi\)
\(140\) −52860.2 216991.i −0.227934 0.935669i
\(141\) 0 0
\(142\) 31064.7 + 53805.6i 0.129284 + 0.223927i
\(143\) −237255. + 410938.i −0.970233 + 1.68049i
\(144\) 0 0
\(145\) 28282.2 + 48986.1i 0.111710 + 0.193488i
\(146\) 171553. 0.666062
\(147\) 0 0
\(148\) −718668. −2.69696
\(149\) 70136.4 + 121480.i 0.258808 + 0.448269i 0.965923 0.258830i \(-0.0833369\pi\)
−0.707115 + 0.707099i \(0.750004\pi\)
\(150\) 0 0
\(151\) 81995.7 142021.i 0.292650 0.506885i −0.681785 0.731552i \(-0.738796\pi\)
0.974436 + 0.224667i \(0.0721296\pi\)
\(152\) −287467. 497908.i −1.00920 1.74799i
\(153\) 0 0
\(154\) 146040. + 599495.i 0.496214 + 2.03696i
\(155\) −70086.4 −0.234317
\(156\) 0 0
\(157\) −278272. + 481981.i −0.900990 + 1.56056i −0.0747781 + 0.997200i \(0.523825\pi\)
−0.826212 + 0.563360i \(0.809508\pi\)
\(158\) −24768.6 + 42900.5i −0.0789331 + 0.136716i
\(159\) 0 0
\(160\) 150188. 0.463804
\(161\) −385615. + 368384.i −1.17244 + 1.12005i
\(162\) 0 0
\(163\) 9863.32 + 17083.8i 0.0290773 + 0.0503634i 0.880198 0.474607i \(-0.157410\pi\)
−0.851121 + 0.524970i \(0.824076\pi\)
\(164\) −162357. + 281210.i −0.471368 + 0.816434i
\(165\) 0 0
\(166\) −307459. 532534.i −0.865998 1.49995i
\(167\) −94776.2 −0.262971 −0.131486 0.991318i \(-0.541975\pi\)
−0.131486 + 0.991318i \(0.541975\pi\)
\(168\) 0 0
\(169\) 667679. 1.79825
\(170\) 68210.0 + 118143.i 0.181020 + 0.313535i
\(171\) 0 0
\(172\) −187899. + 325451.i −0.484288 + 0.838812i
\(173\) 169420. + 293445.i 0.430379 + 0.745437i 0.996906 0.0786055i \(-0.0250468\pi\)
−0.566527 + 0.824043i \(0.691713\pi\)
\(174\) 0 0
\(175\) 318628. + 93228.6i 0.786483 + 0.230120i
\(176\) −891631. −2.16972
\(177\) 0 0
\(178\) 319482. 553360.i 0.755782 1.30905i
\(179\) 388096. 672203.i 0.905330 1.56808i 0.0848573 0.996393i \(-0.472957\pi\)
0.820473 0.571685i \(-0.193710\pi\)
\(180\) 0 0
\(181\) −132697. −0.301067 −0.150534 0.988605i \(-0.548099\pi\)
−0.150534 + 0.988605i \(0.548099\pi\)
\(182\) 976892. 933240.i 2.18609 2.08841i
\(183\) 0 0
\(184\) −852226. 1.47610e6i −1.85571 3.21418i
\(185\) −117683. + 203833.i −0.252804 + 0.437869i
\(186\) 0 0
\(187\) −130756. 226476.i −0.273438 0.473608i
\(188\) 226400. 0.467178
\(189\) 0 0
\(190\) −336967. −0.677178
\(191\) 3318.71 + 5748.17i 0.00658242 + 0.0114011i 0.869298 0.494289i \(-0.164571\pi\)
−0.862715 + 0.505690i \(0.831238\pi\)
\(192\) 0 0
\(193\) −226295. + 391954.i −0.437302 + 0.757430i −0.997480 0.0709425i \(-0.977399\pi\)
0.560178 + 0.828372i \(0.310733\pi\)
\(194\) −325394. 563598.i −0.620733 1.07514i
\(195\) 0 0
\(196\) 55684.1 1.21769e6i 0.103536 2.26411i
\(197\) −816952. −1.49979 −0.749896 0.661556i \(-0.769896\pi\)
−0.749896 + 0.661556i \(0.769896\pi\)
\(198\) 0 0
\(199\) −403208. + 698378.i −0.721767 + 1.25014i 0.238524 + 0.971137i \(0.423336\pi\)
−0.960291 + 0.279000i \(0.909997\pi\)
\(200\) −530526. + 918899.i −0.937847 + 1.62440i
\(201\) 0 0
\(202\) 1.88756e6 3.25478
\(203\) 73070.2 + 299954.i 0.124451 + 0.510874i
\(204\) 0 0
\(205\) 53172.2 + 92096.9i 0.0883690 + 0.153060i
\(206\) 266044. 460801.i 0.436802 0.756564i
\(207\) 0 0
\(208\) 976143. + 1.69073e6i 1.56443 + 2.70966i
\(209\) 645954. 1.02291
\(210\) 0 0
\(211\) 68773.9 0.106345 0.0531726 0.998585i \(-0.483067\pi\)
0.0531726 + 0.998585i \(0.483067\pi\)
\(212\) 41376.6 + 71666.5i 0.0632289 + 0.109516i
\(213\) 0 0
\(214\) −246281. + 426572.i −0.367618 + 0.636734i
\(215\) 61537.4 + 106586.i 0.0907911 + 0.157255i
\(216\) 0 0
\(217\) −367136. 107421.i −0.529270 0.154861i
\(218\) 372512. 0.530883
\(219\) 0 0
\(220\) −400987. + 694529.i −0.558564 + 0.967461i
\(221\) −286299. + 495885.i −0.394312 + 0.682968i
\(222\) 0 0
\(223\) −620227. −0.835196 −0.417598 0.908632i \(-0.637128\pi\)
−0.417598 + 0.908632i \(0.637128\pi\)
\(224\) 786734. + 230193.i 1.04763 + 0.306530i
\(225\) 0 0
\(226\) 494380. + 856291.i 0.643857 + 1.11519i
\(227\) 501116. 867959.i 0.645467 1.11798i −0.338727 0.940885i \(-0.609996\pi\)
0.984193 0.177096i \(-0.0566705\pi\)
\(228\) 0 0
\(229\) −442931. 767178.i −0.558145 0.966735i −0.997651 0.0684960i \(-0.978180\pi\)
0.439506 0.898239i \(-0.355153\pi\)
\(230\) −998973. −1.24519
\(231\) 0 0
\(232\) −986707. −1.20356
\(233\) 298082. + 516293.i 0.359704 + 0.623026i 0.987911 0.155020i \(-0.0495443\pi\)
−0.628207 + 0.778046i \(0.716211\pi\)
\(234\) 0 0
\(235\) 37073.3 64212.9i 0.0437917 0.0758495i
\(236\) 997143. + 1.72710e6i 1.16541 + 2.01854i
\(237\) 0 0
\(238\) 176228. + 723419.i 0.201666 + 0.827842i
\(239\) −743111. −0.841509 −0.420754 0.907175i \(-0.638235\pi\)
−0.420754 + 0.907175i \(0.638235\pi\)
\(240\) 0 0
\(241\) 587419. 1.01744e6i 0.651487 1.12841i −0.331276 0.943534i \(-0.607479\pi\)
0.982762 0.184874i \(-0.0591877\pi\)
\(242\) 284548. 492851.i 0.312332 0.540975i
\(243\) 0 0
\(244\) −1.53058e6 −1.64582
\(245\) −336250. 215192.i −0.357888 0.229040i
\(246\) 0 0
\(247\) −707179. 1.22487e6i −0.737542 1.27746i
\(248\) 611293. 1.05879e6i 0.631132 1.09315i
\(249\) 0 0
\(250\) 690385. + 1.19578e6i 0.698621 + 1.21005i
\(251\) −352992. −0.353655 −0.176828 0.984242i \(-0.556584\pi\)
−0.176828 + 0.984242i \(0.556584\pi\)
\(252\) 0 0
\(253\) 1.91500e6 1.88090
\(254\) 119225. + 206504.i 0.115953 + 0.200837i
\(255\) 0 0
\(256\) 912666. 1.58078e6i 0.870386 1.50755i
\(257\) 5006.34 + 8671.23i 0.00472811 + 0.00818932i 0.868380 0.495900i \(-0.165162\pi\)
−0.863652 + 0.504089i \(0.831828\pi\)
\(258\) 0 0
\(259\) −928875. + 887369.i −0.860415 + 0.821968i
\(260\) 1.75597e6 1.61096
\(261\) 0 0
\(262\) 1.73171e6 2.99940e6i 1.55855 2.69949i
\(263\) 840900. 1.45648e6i 0.749644 1.29842i −0.198349 0.980131i \(-0.563558\pi\)
0.947993 0.318290i \(-0.103109\pi\)
\(264\) 0 0
\(265\) 27101.9 0.0237075
\(266\) −1.76514e6 516469.i −1.52959 0.447549i
\(267\) 0 0
\(268\) 2.01584e6 + 3.49153e6i 1.71442 + 2.96947i
\(269\) −958587. + 1.66032e6i −0.807702 + 1.39898i 0.106750 + 0.994286i \(0.465955\pi\)
−0.914452 + 0.404694i \(0.867378\pi\)
\(270\) 0 0
\(271\) −1.14500e6 1.98320e6i −0.947069 1.64037i −0.751554 0.659672i \(-0.770695\pi\)
−0.195515 0.980701i \(-0.562638\pi\)
\(272\) −1.07594e6 −0.881795
\(273\) 0 0
\(274\) −642843. −0.517283
\(275\) −596060. 1.03241e6i −0.475290 0.823226i
\(276\) 0 0
\(277\) 197401. 341908.i 0.154579 0.267738i −0.778327 0.627859i \(-0.783931\pi\)
0.932906 + 0.360121i \(0.117265\pi\)
\(278\) 1.08335e6 + 1.87642e6i 0.840734 + 1.45619i
\(279\) 0 0
\(280\) 922584. 881359.i 0.703251 0.671827i
\(281\) 1.77699e6 1.34252 0.671259 0.741223i \(-0.265754\pi\)
0.671259 + 0.741223i \(0.265754\pi\)
\(282\) 0 0
\(283\) −607622. + 1.05243e6i −0.450991 + 0.781139i −0.998448 0.0556949i \(-0.982263\pi\)
0.547457 + 0.836834i \(0.315596\pi\)
\(284\) −220370. + 381693.i −0.162128 + 0.280813i
\(285\) 0 0
\(286\) −4.85133e6 −3.50708
\(287\) 137376. + 563931.i 0.0984481 + 0.404130i
\(288\) 0 0
\(289\) 552143. + 956340.i 0.388872 + 0.673547i
\(290\) −289153. + 500827.i −0.201898 + 0.349698i
\(291\) 0 0
\(292\) 608490. + 1.05393e6i 0.417634 + 0.723364i
\(293\) 1.48897e6 1.01325 0.506627 0.862165i \(-0.330892\pi\)
0.506627 + 0.862165i \(0.330892\pi\)
\(294\) 0 0
\(295\) 653133. 0.436965
\(296\) −2.05286e6 3.55565e6i −1.36185 2.35879i
\(297\) 0 0
\(298\) −717065. + 1.24199e6i −0.467754 + 0.810174i
\(299\) −2.09651e6 3.63125e6i −1.35618 2.34898i
\(300\) 0 0
\(301\) 158989. + 652651.i 0.101146 + 0.415207i
\(302\) 1.67662e6 1.05784
\(303\) 0 0
\(304\) 1.32883e6 2.30160e6i 0.824679 1.42839i
\(305\) −250634. + 434111.i −0.154273 + 0.267209i
\(306\) 0 0
\(307\) 2.03109e6 1.22994 0.614968 0.788552i \(-0.289169\pi\)
0.614968 + 0.788552i \(0.289169\pi\)
\(308\) −3.16501e6 + 3.02358e6i −1.90107 + 1.81612i
\(309\) 0 0
\(310\) −358276. 620553.i −0.211745 0.366754i
\(311\) 144892. 250961.i 0.0849463 0.147131i −0.820422 0.571758i \(-0.806261\pi\)
0.905368 + 0.424627i \(0.139595\pi\)
\(312\) 0 0
\(313\) −109105. 188976.i −0.0629484 0.109030i 0.832834 0.553523i \(-0.186717\pi\)
−0.895782 + 0.444493i \(0.853384\pi\)
\(314\) −5.69002e6 −3.25679
\(315\) 0 0
\(316\) −351413. −0.197970
\(317\) 645315. + 1.11772e6i 0.360681 + 0.624718i 0.988073 0.153985i \(-0.0492109\pi\)
−0.627392 + 0.778704i \(0.715878\pi\)
\(318\) 0 0
\(319\) 554296. 960068.i 0.304975 0.528233i
\(320\) 39841.4 + 69007.3i 0.0217500 + 0.0376721i
\(321\) 0 0
\(322\) −5.23295e6 1.53113e6i −2.81259 0.822947i
\(323\) 779481. 0.415719
\(324\) 0 0
\(325\) −1.30511e6 + 2.26052e6i −0.685393 + 1.18714i
\(326\) −100841. + 174662.i −0.0525526 + 0.0910237i
\(327\) 0 0
\(328\) −1.85507e6 −0.952084
\(329\) 292621. 279546.i 0.149045 0.142385i
\(330\) 0 0
\(331\) 1.74280e6 + 3.01862e6i 0.874336 + 1.51439i 0.857469 + 0.514536i \(0.172036\pi\)
0.0168673 + 0.999858i \(0.494631\pi\)
\(332\) 2.18109e6 3.77776e6i 1.08600 1.88100i
\(333\) 0 0
\(334\) −484489. 839160.i −0.237639 0.411603i
\(335\) 1.32038e6 0.642817
\(336\) 0 0
\(337\) 249198. 0.119528 0.0597641 0.998213i \(-0.480965\pi\)
0.0597641 + 0.998213i \(0.480965\pi\)
\(338\) 3.41313e6 + 5.91171e6i 1.62503 + 2.81463i
\(339\) 0 0
\(340\) −483876. + 838098.i −0.227006 + 0.393186i
\(341\) 686803. + 1.18958e6i 0.319850 + 0.553997i
\(342\) 0 0
\(343\) −1.43156e6 1.64262e6i −0.657015 0.753878i
\(344\) −2.14692e6 −0.978180
\(345\) 0 0
\(346\) −1.73213e6 + 3.00014e6i −0.777840 + 1.34726i
\(347\) −753007. + 1.30425e6i −0.335719 + 0.581482i −0.983623 0.180240i \(-0.942312\pi\)
0.647904 + 0.761722i \(0.275646\pi\)
\(348\) 0 0
\(349\) 1.54370e6 0.678423 0.339212 0.940710i \(-0.389840\pi\)
0.339212 + 0.940710i \(0.389840\pi\)
\(350\) 803348. + 3.29775e6i 0.350537 + 1.43896i
\(351\) 0 0
\(352\) −1.47175e6 2.54914e6i −0.633107 1.09657i
\(353\) −838978. + 1.45315e6i −0.358355 + 0.620689i −0.987686 0.156448i \(-0.949996\pi\)
0.629331 + 0.777137i \(0.283329\pi\)
\(354\) 0 0
\(355\) 72171.8 + 125005.i 0.0303946 + 0.0526450i
\(356\) 4.53276e6 1.89556
\(357\) 0 0
\(358\) 7.93568e6 3.27248
\(359\) −1.24987e6 2.16483e6i −0.511832 0.886519i −0.999906 0.0137165i \(-0.995634\pi\)
0.488074 0.872802i \(-0.337700\pi\)
\(360\) 0 0
\(361\) 275363. 476943.i 0.111208 0.192619i
\(362\) −678335. 1.17491e6i −0.272065 0.471231i
\(363\) 0 0
\(364\) 9.19836e6 + 2.69138e6i 3.63879 + 1.06469i
\(365\) 398564. 0.156591
\(366\) 0 0
\(367\) 1.05371e6 1.82507e6i 0.408370 0.707318i −0.586337 0.810067i \(-0.699431\pi\)
0.994707 + 0.102749i \(0.0327639\pi\)
\(368\) 3.93945e6 6.82332e6i 1.51641 2.62649i
\(369\) 0 0
\(370\) −2.40634e6 −0.913804
\(371\) 141969. + 41539.1i 0.0535498 + 0.0156683i
\(372\) 0 0
\(373\) −1.36612e6 2.36619e6i −0.508414 0.880599i −0.999953 0.00974333i \(-0.996899\pi\)
0.491538 0.870856i \(-0.336435\pi\)
\(374\) 1.33683e6 2.31546e6i 0.494194 0.855970i
\(375\) 0 0
\(376\) 646706. + 1.12013e6i 0.235905 + 0.408600i
\(377\) −2.42733e6 −0.879581
\(378\) 0 0
\(379\) −2.04295e6 −0.730567 −0.365283 0.930896i \(-0.619028\pi\)
−0.365283 + 0.930896i \(0.619028\pi\)
\(380\) −1.19521e6 2.07016e6i −0.424604 0.735436i
\(381\) 0 0
\(382\) −33930.0 + 58768.4i −0.0118967 + 0.0206056i
\(383\) 754497. + 1.30683e6i 0.262821 + 0.455220i 0.966991 0.254812i \(-0.0820137\pi\)
−0.704169 + 0.710032i \(0.748680\pi\)
\(384\) 0 0
\(385\) 339290. + 1.39279e6i 0.116659 + 0.478888i
\(386\) −4.62721e6 −1.58071
\(387\) 0 0
\(388\) 2.30832e6 3.99812e6i 0.778423 1.34827i
\(389\) 2.25033e6 3.89768e6i 0.754000 1.30597i −0.191870 0.981420i \(-0.561455\pi\)
0.945870 0.324546i \(-0.105212\pi\)
\(390\) 0 0
\(391\) 2.31085e6 0.764417
\(392\) 6.18366e6 3.20280e6i 2.03250 1.05273i
\(393\) 0 0
\(394\) −4.17620e6 7.23339e6i −1.35532 2.34748i
\(395\) −57544.3 + 99669.7i −0.0185571 + 0.0321418i
\(396\) 0 0
\(397\) 1.76068e6 + 3.04958e6i 0.560665 + 0.971101i 0.997439 + 0.0715292i \(0.0227879\pi\)
−0.436773 + 0.899572i \(0.643879\pi\)
\(398\) −8.24469e6 −2.60895
\(399\) 0 0
\(400\) −4.90476e6 −1.53274
\(401\) −453554. 785578.i −0.140853 0.243965i 0.786965 0.616998i \(-0.211651\pi\)
−0.927818 + 0.373033i \(0.878318\pi\)
\(402\) 0 0
\(403\) 1.50380e6 2.60466e6i 0.461241 0.798893i
\(404\) 6.69508e6 + 1.15962e7i 2.04081 + 3.53479i
\(405\) 0 0
\(406\) −2.28230e6 + 2.18031e6i −0.687158 + 0.656453i
\(407\) 4.61287e6 1.38034
\(408\) 0 0
\(409\) −2.15927e6 + 3.73996e6i −0.638260 + 1.10550i 0.347554 + 0.937660i \(0.387012\pi\)
−0.985814 + 0.167839i \(0.946321\pi\)
\(410\) −543624. + 941585.i −0.159713 + 0.276630i
\(411\) 0 0
\(412\) 3.77458e6 1.09553
\(413\) 3.42133e6 + 1.00106e6i 0.987006 + 0.288791i
\(414\) 0 0
\(415\) −714311. 1.23722e6i −0.203595 0.352637i
\(416\) −3.22249e6 + 5.58152e6i −0.912974 + 1.58132i
\(417\) 0 0
\(418\) 3.30207e6 + 5.71935e6i 0.924369 + 1.60105i
\(419\) 1.52041e6 0.423083 0.211541 0.977369i \(-0.432152\pi\)
0.211541 + 0.977369i \(0.432152\pi\)
\(420\) 0 0
\(421\) −4.42050e6 −1.21553 −0.607766 0.794116i \(-0.707934\pi\)
−0.607766 + 0.794116i \(0.707934\pi\)
\(422\) 351567. + 608932.i 0.0961008 + 0.166452i
\(423\) 0 0
\(424\) −236383. + 409427.i −0.0638559 + 0.110602i
\(425\) −719274. 1.24582e6i −0.193162 0.334567i
\(426\) 0 0
\(427\) −1.97827e6 + 1.88987e6i −0.525068 + 0.501605i
\(428\) −3.49420e6 −0.922016
\(429\) 0 0
\(430\) −629150. + 1.08972e6i −0.164090 + 0.284213i
\(431\) −3.42393e6 + 5.93041e6i −0.887833 + 1.53777i −0.0454009 + 0.998969i \(0.514457\pi\)
−0.842432 + 0.538803i \(0.818877\pi\)
\(432\) 0 0
\(433\) −3.99328e6 −1.02355 −0.511777 0.859119i \(-0.671012\pi\)
−0.511777 + 0.859119i \(0.671012\pi\)
\(434\) −925648. 3.79979e6i −0.235896 0.968357i
\(435\) 0 0
\(436\) 1.32128e6 + 2.28853e6i 0.332874 + 0.576555i
\(437\) −2.85398e6 + 4.94324e6i −0.714904 + 1.23825i
\(438\) 0 0
\(439\) −742783. 1.28654e6i −0.183950 0.318611i 0.759272 0.650773i \(-0.225555\pi\)
−0.943222 + 0.332162i \(0.892222\pi\)
\(440\) −4.58163e6 −1.12821
\(441\) 0 0
\(442\) −5.85416e6 −1.42531
\(443\) −2.81097e6 4.86874e6i −0.680528 1.17871i −0.974820 0.222994i \(-0.928417\pi\)
0.294291 0.955716i \(-0.404916\pi\)
\(444\) 0 0
\(445\) 742245. 1.28561e6i 0.177684 0.307757i
\(446\) −3.17055e6 5.49156e6i −0.754741 1.30725i
\(447\) 0 0
\(448\) 102935. + 422548.i 0.0242308 + 0.0994675i
\(449\) −1.94883e6 −0.456202 −0.228101 0.973637i \(-0.573252\pi\)
−0.228101 + 0.973637i \(0.573252\pi\)
\(450\) 0 0
\(451\) 1.04211e6 1.80499e6i 0.241253 0.417862i
\(452\) −3.50709e6 + 6.07446e6i −0.807422 + 1.39850i
\(453\) 0 0
\(454\) 1.02467e7 2.33315
\(455\) 2.26959e6 2.16817e6i 0.513947 0.490982i
\(456\) 0 0
\(457\) 1.33656e6 + 2.31499e6i 0.299363 + 0.518511i 0.975990 0.217814i \(-0.0698926\pi\)
−0.676628 + 0.736325i \(0.736559\pi\)
\(458\) 4.52846e6 7.84352e6i 1.00876 1.74722i
\(459\) 0 0
\(460\) −3.54332e6 6.13720e6i −0.780756 1.35231i
\(461\) 4.65262e6 1.01964 0.509819 0.860282i \(-0.329713\pi\)
0.509819 + 0.860282i \(0.329713\pi\)
\(462\) 0 0
\(463\) −5.18586e6 −1.12426 −0.562132 0.827047i \(-0.690019\pi\)
−0.562132 + 0.827047i \(0.690019\pi\)
\(464\) −2.28055e6 3.95002e6i −0.491749 0.851735i
\(465\) 0 0
\(466\) −3.04754e6 + 5.27850e6i −0.650107 + 1.12602i
\(467\) −2.52990e6 4.38192e6i −0.536799 0.929763i −0.999074 0.0430263i \(-0.986300\pi\)
0.462275 0.886737i \(-0.347033\pi\)
\(468\) 0 0
\(469\) 6.91660e6 + 2.02375e6i 1.45198 + 0.424840i
\(470\) 758064. 0.158293
\(471\) 0 0
\(472\) −5.69662e6 + 9.86684e6i −1.17696 + 2.03856i
\(473\) 1.20606e6 2.08895e6i 0.247865 0.429315i
\(474\) 0 0
\(475\) 3.55331e6 0.722603
\(476\) −3.81926e6 + 3.64860e6i −0.772612 + 0.738088i
\(477\) 0 0
\(478\) −3.79873e6 6.57959e6i −0.760446 1.31713i
\(479\) −2.77543e6 + 4.80718e6i −0.552702 + 0.957308i 0.445377 + 0.895343i \(0.353070\pi\)
−0.998078 + 0.0619642i \(0.980264\pi\)
\(480\) 0 0
\(481\) −5.05010e6 8.74702e6i −0.995261 1.72384i
\(482\) 1.20114e7 2.35491
\(483\) 0 0
\(484\) 4.03711e6 0.783353
\(485\) −755979. 1.30939e6i −0.145934 0.252764i
\(486\) 0 0
\(487\) 3.43905e6 5.95661e6i 0.657077 1.13809i −0.324292 0.945957i \(-0.605126\pi\)
0.981369 0.192133i \(-0.0615405\pi\)
\(488\) −4.37206e6 7.57262e6i −0.831067 1.43945i
\(489\) 0 0
\(490\) 186449. 4.07724e6i 0.0350809 0.767143i
\(491\) −7.44459e6 −1.39360 −0.696798 0.717267i \(-0.745393\pi\)
−0.696798 + 0.717267i \(0.745393\pi\)
\(492\) 0 0
\(493\) 668876. 1.15853e6i 0.123945 0.214679i
\(494\) 7.23009e6 1.25229e7i 1.33299 2.30880i
\(495\) 0 0
\(496\) 5.65145e6 1.03147
\(497\) 186464. + 765436.i 0.0338613 + 0.139001i
\(498\) 0 0
\(499\) −1.07665e6 1.86481e6i −0.193563 0.335261i 0.752866 0.658174i \(-0.228671\pi\)
−0.946428 + 0.322914i \(0.895338\pi\)
\(500\) −4.89754e6 + 8.48278e6i −0.876098 + 1.51745i
\(501\) 0 0
\(502\) −1.80447e6 3.12543e6i −0.319588 0.553542i
\(503\) −8.61012e6 −1.51736 −0.758681 0.651463i \(-0.774156\pi\)
−0.758681 + 0.651463i \(0.774156\pi\)
\(504\) 0 0
\(505\) 4.38531e6 0.765195
\(506\) 9.78932e6 + 1.69556e7i 1.69972 + 2.94399i
\(507\) 0 0
\(508\) −845771. + 1.46492e6i −0.145410 + 0.251857i
\(509\) 1.67100e6 + 2.89426e6i 0.285879 + 0.495157i 0.972822 0.231554i \(-0.0743810\pi\)
−0.686943 + 0.726712i \(0.741048\pi\)
\(510\) 0 0
\(511\) 2.08781e6 + 610879.i 0.353703 + 0.103491i
\(512\) 1.32848e7 2.23964
\(513\) 0 0
\(514\) −51184.1 + 88653.4i −0.00854529 + 0.0148009i
\(515\) 618093. 1.07057e6i 0.102692 0.177867i
\(516\) 0 0
\(517\) −1.45318e6 −0.239108
\(518\) −1.26052e7 3.68820e6i −2.06408 0.603936i
\(519\) 0 0
\(520\) 5.01589e6 + 8.68777e6i 0.813466 + 1.40896i
\(521\) −1.34152e6 + 2.32359e6i −0.216523 + 0.375029i −0.953743 0.300624i \(-0.902805\pi\)
0.737220 + 0.675653i \(0.236138\pi\)
\(522\) 0 0
\(523\) 2.71178e6 + 4.69694e6i 0.433511 + 0.750863i 0.997173 0.0751429i \(-0.0239413\pi\)
−0.563662 + 0.826005i \(0.690608\pi\)
\(524\) 2.45692e7 3.90897
\(525\) 0 0
\(526\) 1.71945e7 2.70972
\(527\) 828775. + 1.43548e6i 0.129990 + 0.225149i
\(528\) 0 0
\(529\) −5.24276e6 + 9.08072e6i −0.814555 + 1.41085i
\(530\) 138543. + 239963.i 0.0214237 + 0.0371070i
\(531\) 0 0
\(532\) −3.08795e6 1.26761e7i −0.473033 1.94181i
\(533\) −4.56353e6 −0.695798
\(534\) 0 0
\(535\) −572179. + 991044.i −0.0864266 + 0.149695i
\(536\) −1.15164e7 + 1.99469e7i −1.73142 + 2.99891i
\(537\) 0 0
\(538\) −1.96009e7 −2.91958
\(539\) −357417. + 7.81593e6i −0.0529911 + 1.15880i
\(540\) 0 0
\(541\) −1.09228e6 1.89188e6i −0.160450 0.277908i 0.774580 0.632476i \(-0.217961\pi\)
−0.935030 + 0.354568i \(0.884628\pi\)
\(542\) 1.17063e7 2.02759e7i 1.71168 2.96471i
\(543\) 0 0
\(544\) −1.77598e6 3.07609e6i −0.257301 0.445658i
\(545\) 865447. 0.124810
\(546\) 0 0
\(547\) −691437. −0.0988062 −0.0494031 0.998779i \(-0.515732\pi\)
−0.0494031 + 0.998779i \(0.515732\pi\)
\(548\) −2.28014e6 3.94931e6i −0.324347 0.561785i
\(549\) 0 0
\(550\) 6.09403e6 1.05552e7i 0.859010 1.48785i
\(551\) 1.65217e6 + 2.86164e6i 0.231833 + 0.401547i
\(552\) 0 0
\(553\) −454200. + 433904.i −0.0631589 + 0.0603367i
\(554\) 4.03639e6 0.558752
\(555\) 0 0
\(556\) −7.68523e6 + 1.33112e7i −1.05431 + 1.82612i
\(557\) 2.73828e6 4.74284e6i 0.373973 0.647740i −0.616200 0.787590i \(-0.711329\pi\)
0.990173 + 0.139850i \(0.0446620\pi\)
\(558\) 0 0
\(559\) −5.28149e6 −0.714869
\(560\) 5.66063e6 + 1.65626e6i 0.762771 + 0.223182i
\(561\) 0 0
\(562\) 9.08386e6 + 1.57337e7i 1.21319 + 2.10131i
\(563\) 199488. 345523.i 0.0265244 0.0459416i −0.852459 0.522795i \(-0.824889\pi\)
0.878983 + 0.476853i \(0.158223\pi\)
\(564\) 0 0
\(565\) 1.14858e6 + 1.98940e6i 0.151370 + 0.262181i
\(566\) −1.24245e7 −1.63019
\(567\) 0 0
\(568\) −2.51793e6 −0.327471
\(569\) −2.11556e6 3.66426e6i −0.273934 0.474467i 0.695932 0.718108i \(-0.254992\pi\)
−0.969866 + 0.243641i \(0.921658\pi\)
\(570\) 0 0
\(571\) −4.37551e6 + 7.57861e6i −0.561615 + 0.972746i 0.435741 + 0.900072i \(0.356486\pi\)
−0.997356 + 0.0726734i \(0.976847\pi\)
\(572\) −1.72075e7 2.98042e7i −2.19901 3.80879i
\(573\) 0 0
\(574\) −4.29085e6 + 4.09912e6i −0.543581 + 0.519291i
\(575\) 1.05342e7 1.32871
\(576\) 0 0
\(577\) 883558. 1.53037e6i 0.110483 0.191362i −0.805482 0.592620i \(-0.798094\pi\)
0.915965 + 0.401258i \(0.131427\pi\)
\(578\) −5.64503e6 + 9.77748e6i −0.702824 + 1.21733i
\(579\) 0 0
\(580\) −4.10245e6 −0.506376
\(581\) −1.84550e6 7.57581e6i −0.226817 0.931084i
\(582\) 0 0
\(583\) −265582. 460001.i −0.0323614 0.0560516i
\(584\) −3.47627e6 + 6.02107e6i −0.421775 + 0.730536i
\(585\) 0 0
\(586\) 7.61153e6 + 1.31835e7i 0.915646 + 1.58595i
\(587\) 8.65009e6 1.03616 0.518078 0.855333i \(-0.326648\pi\)
0.518078 + 0.855333i \(0.326648\pi\)
\(588\) 0 0
\(589\) −4.09426e6 −0.486281
\(590\) 3.33877e6 + 5.78292e6i 0.394872 + 0.683939i
\(591\) 0 0
\(592\) 9.48941e6 1.64361e7i 1.11285 1.92750i
\(593\) 7.72568e6 + 1.33813e7i 0.902194 + 1.56265i 0.824640 + 0.565659i \(0.191378\pi\)
0.0775549 + 0.996988i \(0.475289\pi\)
\(594\) 0 0
\(595\) 409427. + 1.68070e6i 0.0474115 + 0.194625i
\(596\) −1.01736e7 −1.17316
\(597\) 0 0
\(598\) 2.14344e7 3.71254e7i 2.45108 4.24540i
\(599\) −1.92400e6 + 3.33247e6i −0.219098 + 0.379489i −0.954533 0.298107i \(-0.903645\pi\)
0.735434 + 0.677596i \(0.236978\pi\)
\(600\) 0 0
\(601\) 1.27578e7 1.44075 0.720376 0.693583i \(-0.243969\pi\)
0.720376 + 0.693583i \(0.243969\pi\)
\(602\) −4.96591e6 + 4.74401e6i −0.558480 + 0.533524i
\(603\) 0 0
\(604\) 5.94691e6 + 1.03004e7i 0.663284 + 1.14884i
\(605\) 661082. 1.14503e6i 0.0734289 0.127183i
\(606\) 0 0
\(607\) 6.81033e6 + 1.17958e7i 0.750233 + 1.29944i 0.947709 + 0.319135i \(0.103392\pi\)
−0.197476 + 0.980308i \(0.563274\pi\)
\(608\) 8.77359e6 0.962539
\(609\) 0 0
\(610\) −5.12489e6 −0.557648
\(611\) 1.59092e6 + 2.75555e6i 0.172403 + 0.298611i
\(612\) 0 0
\(613\) −7.67372e6 + 1.32913e7i −0.824812 + 1.42862i 0.0772508 + 0.997012i \(0.475386\pi\)
−0.902063 + 0.431605i \(0.857948\pi\)
\(614\) 1.03828e7 + 1.79835e7i 1.11145 + 1.92510i
\(615\) 0 0
\(616\) −2.40001e7 7.02227e6i −2.54836 0.745634i
\(617\) −1.18485e7 −1.25300 −0.626500 0.779421i \(-0.715513\pi\)
−0.626500 + 0.779421i \(0.715513\pi\)
\(618\) 0 0
\(619\) 437230. 757304.i 0.0458652 0.0794408i −0.842181 0.539194i \(-0.818729\pi\)
0.888047 + 0.459753i \(0.152062\pi\)
\(620\) 2.54158e6 4.40215e6i 0.265537 0.459924i
\(621\) 0 0
\(622\) 2.96272e6 0.307054
\(623\) 5.85858e6 5.59679e6i 0.604744 0.577722i
\(624\) 0 0
\(625\) −2.39730e6 4.15225e6i −0.245484 0.425190i
\(626\) 1.11548e6 1.93206e6i 0.113769 0.197054i
\(627\) 0 0
\(628\) −2.01823e7 3.49567e7i −2.04207 3.53697i
\(629\) 5.56642e6 0.560983
\(630\) 0 0
\(631\) −4.43859e6 −0.443784 −0.221892 0.975071i \(-0.571223\pi\)
−0.221892 + 0.975071i \(0.571223\pi\)
\(632\) −1.00380e6 1.73864e6i −0.0999667 0.173147i
\(633\) 0 0
\(634\) −6.59761e6 + 1.14274e7i −0.651873 + 1.12908i
\(635\) 276992. + 479764.i 0.0272605 + 0.0472165i
\(636\) 0 0
\(637\) 1.52120e7 7.87900e6i 1.48538 0.769348i
\(638\) 1.13341e7 1.10239
\(639\) 0 0
\(640\) 1.99567e6 3.45661e6i 0.192593 0.333580i
\(641\) 406276. 703690.i 0.0390549 0.0676451i −0.845837 0.533441i \(-0.820899\pi\)
0.884892 + 0.465796i \(0.154232\pi\)
\(642\) 0 0
\(643\) −1.17941e7 −1.12496 −0.562481 0.826810i \(-0.690153\pi\)
−0.562481 + 0.826810i \(0.690153\pi\)
\(644\) −9.15456e6 3.75795e7i −0.869806 3.57056i
\(645\) 0 0
\(646\) 3.98465e6 + 6.90162e6i 0.375672 + 0.650683i
\(647\) −1.21690e6 + 2.10773e6i −0.114286 + 0.197950i −0.917494 0.397749i \(-0.869791\pi\)
0.803208 + 0.595699i \(0.203125\pi\)
\(648\) 0 0
\(649\) −6.40031e6 1.10857e7i −0.596471 1.03312i
\(650\) −2.66866e7 −2.47748
\(651\) 0 0
\(652\) −1.43072e6 −0.131806
\(653\) −4.73332e6 8.19835e6i −0.434393 0.752391i 0.562853 0.826557i \(-0.309704\pi\)
−0.997246 + 0.0741664i \(0.976370\pi\)
\(654\) 0 0
\(655\) 4.02323e6 6.96843e6i 0.366413 0.634647i
\(656\) −4.28756e6 7.42628e6i −0.389001 0.673770i
\(657\) 0 0
\(658\) 3.97099e6 + 1.16189e6i 0.357548 + 0.104616i
\(659\) −1.40662e7 −1.26172 −0.630860 0.775896i \(-0.717298\pi\)
−0.630860 + 0.775896i \(0.717298\pi\)
\(660\) 0 0
\(661\) 8.58029e6 1.48615e7i 0.763832 1.32300i −0.177029 0.984206i \(-0.556649\pi\)
0.940862 0.338791i \(-0.110018\pi\)
\(662\) −1.78182e7 + 3.08620e7i −1.58022 + 2.73702i
\(663\) 0 0
\(664\) 2.49209e7 2.19353
\(665\) −4.10091e6 1.19990e6i −0.359606 0.105218i
\(666\) 0 0
\(667\) 4.89803e6 + 8.48364e6i 0.426292 + 0.738359i
\(668\) 3.43692e6 5.95293e6i 0.298009 0.516166i
\(669\) 0 0
\(670\) 6.74969e6 + 1.16908e7i 0.580894 + 1.00614i
\(671\) 9.82424e6 0.842350
\(672\) 0 0
\(673\) 5.87113e6 0.499671 0.249836 0.968288i \(-0.419623\pi\)
0.249836 + 0.968288i \(0.419623\pi\)
\(674\) 1.27388e6 + 2.20643e6i 0.108014 + 0.187086i
\(675\) 0 0
\(676\) −2.42124e7 + 4.19372e7i −2.03785 + 3.52966i
\(677\) 6.96368e6 + 1.20614e7i 0.583938 + 1.01141i 0.995007 + 0.0998062i \(0.0318223\pi\)
−0.411069 + 0.911604i \(0.634844\pi\)
\(678\) 0 0
\(679\) −1.95316e6 8.01773e6i −0.162578 0.667386i
\(680\) −5.52872e6 −0.458513
\(681\) 0 0
\(682\) −7.02178e6 + 1.21621e7i −0.578077 + 1.00126i
\(683\) 9.15503e6 1.58570e7i 0.750945 1.30067i −0.196421 0.980520i \(-0.562932\pi\)
0.947365 0.320155i \(-0.103735\pi\)
\(684\) 0 0
\(685\) −1.49350e6 −0.121613
\(686\) 7.22587e6 2.10722e7i 0.586246 1.70962i
\(687\) 0 0
\(688\) −4.96210e6 8.59461e6i −0.399663 0.692237i
\(689\) −581509. + 1.00720e6i −0.0466669 + 0.0808294i
\(690\) 0 0
\(691\) 8.83583e6 + 1.53041e7i 0.703967 + 1.21931i 0.967063 + 0.254537i \(0.0819230\pi\)
−0.263096 + 0.964770i \(0.584744\pi\)
\(692\) −2.45752e7 −1.95088
\(693\) 0 0
\(694\) −1.53973e7 −1.21351
\(695\) 2.51693e6 + 4.35945e6i 0.197656 + 0.342350i
\(696\) 0 0
\(697\) 1.25753e6 2.17810e6i 0.0980473 0.169823i
\(698\) 7.89131e6 + 1.36681e7i 0.613070 + 1.06187i
\(699\) 0 0
\(700\) −1.74103e7 + 1.66324e7i −1.34296 + 1.28295i
\(701\) −8.22993e6 −0.632559 −0.316279 0.948666i \(-0.602434\pi\)
−0.316279 + 0.948666i \(0.602434\pi\)
\(702\) 0 0
\(703\) −6.87472e6 + 1.19074e7i −0.524646 + 0.908714i
\(704\) 780843. 1.35246e6i 0.0593789 0.102847i
\(705\) 0 0
\(706\) −1.71552e7 −1.29534
\(707\) 2.29717e7 + 6.72137e6i 1.72840 + 0.505719i
\(708\) 0 0
\(709\) −1.23183e7 2.13360e7i −0.920314 1.59403i −0.798929 0.601426i \(-0.794600\pi\)
−0.121386 0.992605i \(-0.538734\pi\)
\(710\) −737874. + 1.27803e6i −0.0549334 + 0.0951474i
\(711\) 0 0
\(712\) 1.29477e7 + 2.24261e7i 0.957179 + 1.65788i
\(713\) −1.21379e7 −0.894167
\(714\) 0 0
\(715\) −1.12710e7 −0.824510
\(716\) 2.81475e7 + 4.87530e7i 2.05191 + 3.55401i
\(717\) 0 0
\(718\) 1.27784e7 2.21329e7i 0.925053 1.60224i
\(719\) −9.41269e6 1.63033e7i −0.679034 1.17612i −0.975272 0.221007i \(-0.929066\pi\)
0.296238 0.955114i \(-0.404268\pi\)
\(720\) 0 0
\(721\) 4.87863e6 4.66064e6i 0.349510 0.333893i
\(722\) 5.63055e6 0.401983
\(723\) 0 0
\(724\) 4.81205e6 8.33472e6i 0.341180 0.590942i
\(725\) 3.04911e6 5.28122e6i 0.215441 0.373155i
\(726\) 0 0
\(727\) 6.77607e6 0.475491 0.237745 0.971328i \(-0.423592\pi\)
0.237745 + 0.971328i \(0.423592\pi\)
\(728\) 1.29591e7 + 5.31973e7i 0.906248 + 3.72015i
\(729\) 0 0
\(730\) 2.03743e6 + 3.52893e6i 0.141506 + 0.245096i
\(731\) 1.45537e6 2.52077e6i 0.100735 0.174478i
\(732\) 0 0
\(733\) 8.61136e6 + 1.49153e7i 0.591986 + 1.02535i 0.993965 + 0.109701i \(0.0349894\pi\)
−0.401978 + 0.915649i \(0.631677\pi\)
\(734\) 2.15459e7 1.47613
\(735\) 0 0
\(736\) 2.60102e7 1.76990
\(737\) −1.29389e7 2.24109e7i −0.877465 1.51981i
\(738\) 0 0
\(739\) 8.82669e6 1.52883e7i 0.594548 1.02979i −0.399062 0.916924i \(-0.630664\pi\)
0.993610 0.112864i \(-0.0360023\pi\)
\(740\) −8.53520e6 1.47834e7i −0.572973 0.992418i
\(741\) 0 0
\(742\) 357941. + 1.46935e6i 0.0238672 + 0.0979752i
\(743\) 1.36977e7 0.910281 0.455141 0.890420i \(-0.349589\pi\)
0.455141 + 0.890420i \(0.349589\pi\)
\(744\) 0 0
\(745\) −1.66594e6 + 2.88549e6i −0.109968 + 0.190471i
\(746\) 1.39670e7 2.41916e7i 0.918877 1.59154i
\(747\) 0 0
\(748\) 1.89668e7 1.23948
\(749\) −4.51624e6 + 4.31443e6i −0.294152 + 0.281008i
\(750\) 0 0
\(751\) −5.80446e6 1.00536e7i −0.375545 0.650463i 0.614864 0.788633i \(-0.289211\pi\)
−0.990408 + 0.138171i \(0.955878\pi\)
\(752\) −2.98943e6 + 5.17784e6i −0.192772 + 0.333890i
\(753\) 0 0
\(754\) −1.24083e7 2.14919e7i −0.794851 1.37672i
\(755\) 3.89526e6 0.248696
\(756\) 0 0
\(757\) 6.25226e6 0.396550 0.198275 0.980146i \(-0.436466\pi\)
0.198275 + 0.980146i \(0.436466\pi\)
\(758\) −1.04434e7 1.80885e7i −0.660191 1.14348i
\(759\) 0 0
\(760\) 6.82815e6 1.18267e7i 0.428814 0.742728i
\(761\) −1.51063e7 2.61648e7i −0.945574 1.63778i −0.754597 0.656188i \(-0.772168\pi\)
−0.190977 0.981595i \(-0.561166\pi\)
\(762\) 0 0
\(763\) 4.53350e6 + 1.32647e6i 0.281918 + 0.0824873i
\(764\) −481393. −0.0298378
\(765\) 0 0
\(766\) −7.71386e6 + 1.33608e7i −0.475007 + 0.822736i
\(767\) −1.40139e7 + 2.42728e7i −0.860142 + 1.48981i
\(768\) 0 0
\(769\) −2.58756e7 −1.57788 −0.788940 0.614470i \(-0.789370\pi\)
−0.788940 + 0.614470i \(0.789370\pi\)
\(770\) −1.05975e7 + 1.01240e7i −0.644135 + 0.615352i
\(771\) 0 0
\(772\) −1.64125e7 2.84273e7i −0.991134 1.71669i
\(773\) 1.27705e7 2.21191e7i 0.768701 1.33143i −0.169566 0.985519i \(-0.554237\pi\)
0.938267 0.345911i \(-0.112430\pi\)
\(774\) 0 0