Properties

Label 63.6.e.e.37.1
Level $63$
Weight $6$
Character 63.37
Analytic conductor $10.104$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,6,Mod(37,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 63.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1041806482\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 98x^{6} + 83x^{5} + 9122x^{4} - 91x^{3} + 28567x^{2} + 2058x + 86436 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(5.09061 - 8.81720i\) of defining polynomial
Character \(\chi\) \(=\) 63.37
Dual form 63.6.e.e.46.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.59061 + 7.95118i) q^{2} +(-26.1475 - 45.2888i) q^{4} +(11.0358 - 19.1146i) q^{5} +(126.882 - 26.6059i) q^{7} +186.333 q^{8} +O(q^{10})\) \(q+(-4.59061 + 7.95118i) q^{2} +(-26.1475 - 45.2888i) q^{4} +(11.0358 - 19.1146i) q^{5} +(126.882 - 26.6059i) q^{7} +186.333 q^{8} +(101.322 + 175.495i) q^{10} +(208.355 + 360.881i) q^{11} +797.918 q^{13} +(-370.920 + 1131.00i) q^{14} +(-18.6623 + 32.3240i) q^{16} +(-687.775 - 1191.26i) q^{17} +(-1156.51 + 2003.14i) q^{19} -1154.23 q^{20} -3825.91 q^{22} +(-477.701 + 827.402i) q^{23} +(1318.92 + 2284.44i) q^{25} +(-3662.93 + 6344.39i) q^{26} +(-4522.60 - 5050.67i) q^{28} +7035.29 q^{29} +(-630.596 - 1092.22i) q^{31} +(2809.98 + 4867.03i) q^{32} +12629.2 q^{34} +(891.689 - 2718.92i) q^{35} +(-4888.22 + 8466.65i) q^{37} +(-10618.2 - 18391.3i) q^{38} +(2056.33 - 3561.67i) q^{40} +5400.95 q^{41} +19686.6 q^{43} +(10895.9 - 18872.3i) q^{44} +(-4385.88 - 7596.57i) q^{46} +(1028.28 - 1781.04i) q^{47} +(15391.3 - 6751.63i) q^{49} -24218.7 q^{50} +(-20863.5 - 36136.7i) q^{52} +(9011.37 + 15608.2i) q^{53} +9197.45 q^{55} +(23642.3 - 4957.54i) q^{56} +(-32296.3 + 55938.8i) q^{58} +(3717.84 + 6439.49i) q^{59} +(-1747.69 + 3027.09i) q^{61} +11579.3 q^{62} -52792.5 q^{64} +(8805.67 - 15251.9i) q^{65} +(-7928.21 - 13732.1i) q^{67} +(-35967.2 + 62297.0i) q^{68} +(17525.2 + 19571.5i) q^{70} -58133.5 q^{71} +(-19555.3 - 33870.8i) q^{73} +(-44879.9 - 77734.2i) q^{74} +120960. q^{76} +(36038.1 + 40246.0i) q^{77} +(-4880.35 + 8453.01i) q^{79} +(411.906 + 713.442i) q^{80} +(-24793.7 + 42943.9i) q^{82} +70395.7 q^{83} -30360.6 q^{85} +(-90373.4 + 156531. i) q^{86} +(38823.3 + 67243.9i) q^{88} +(72153.1 - 124973. i) q^{89} +(101242. - 21229.3i) q^{91} +49962.7 q^{92} +(9440.90 + 16352.1i) q^{94} +(25526.1 + 44212.5i) q^{95} -79328.7 q^{97} +(-16971.9 + 153373. i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{2} - 69 q^{4} + 258 q^{7} - 246 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 3 q^{2} - 69 q^{4} + 258 q^{7} - 246 q^{8} - 283 q^{10} + 402 q^{11} + 924 q^{13} - 1926 q^{14} - 3273 q^{16} + 276 q^{17} - 510 q^{19} - 9438 q^{20} + 2750 q^{22} + 6900 q^{23} - 2814 q^{25} - 15138 q^{26} - 26221 q^{28} - 1080 q^{29} + 6410 q^{31} + 15519 q^{32} + 42288 q^{34} + 33108 q^{35} - 15250 q^{37} - 41250 q^{38} + 8547 q^{40} - 8616 q^{41} + 58396 q^{43} + 70743 q^{44} - 61800 q^{46} - 15060 q^{47} - 64252 q^{49} + 14604 q^{50} + 47476 q^{52} + 13692 q^{53} + 146248 q^{55} + 15921 q^{56} - 52309 q^{58} + 34830 q^{59} + 5364 q^{61} - 32058 q^{62} - 146974 q^{64} + 66864 q^{65} + 5994 q^{67} - 58272 q^{68} - 4307 q^{70} - 178536 q^{71} - 59638 q^{73} - 185442 q^{74} + 42616 q^{76} + 75660 q^{77} + 44062 q^{79} - 33381 q^{80} - 57596 q^{82} + 416892 q^{83} + 72648 q^{85} - 136968 q^{86} - 87597 q^{88} - 77520 q^{89} + 104722 q^{91} - 316512 q^{92} + 73722 q^{94} - 221376 q^{95} - 377260 q^{97} - 382479 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.59061 + 7.95118i −0.811514 + 1.40558i 0.100291 + 0.994958i \(0.468023\pi\)
−0.911804 + 0.410625i \(0.865311\pi\)
\(3\) 0 0
\(4\) −26.1475 45.2888i −0.817109 1.41527i
\(5\) 11.0358 19.1146i 0.197414 0.341932i −0.750275 0.661126i \(-0.770079\pi\)
0.947689 + 0.319194i \(0.103412\pi\)
\(6\) 0 0
\(7\) 126.882 26.6059i 0.978715 0.205226i
\(8\) 186.333 1.02935
\(9\) 0 0
\(10\) 101.322 + 175.495i 0.320409 + 0.554965i
\(11\) 208.355 + 360.881i 0.519184 + 0.899254i 0.999751 + 0.0222959i \(0.00709758\pi\)
−0.480567 + 0.876958i \(0.659569\pi\)
\(12\) 0 0
\(13\) 797.918 1.30948 0.654742 0.755853i \(-0.272777\pi\)
0.654742 + 0.755853i \(0.272777\pi\)
\(14\) −370.920 + 1131.00i −0.505778 + 1.54221i
\(15\) 0 0
\(16\) −18.6623 + 32.3240i −0.0182249 + 0.0315664i
\(17\) −687.775 1191.26i −0.577197 0.999735i −0.995799 0.0915652i \(-0.970813\pi\)
0.418602 0.908170i \(-0.362520\pi\)
\(18\) 0 0
\(19\) −1156.51 + 2003.14i −0.734965 + 1.27300i 0.219774 + 0.975551i \(0.429468\pi\)
−0.954739 + 0.297446i \(0.903865\pi\)
\(20\) −1154.23 −0.645236
\(21\) 0 0
\(22\) −3825.91 −1.68530
\(23\) −477.701 + 827.402i −0.188294 + 0.326135i −0.944682 0.327989i \(-0.893629\pi\)
0.756388 + 0.654124i \(0.226962\pi\)
\(24\) 0 0
\(25\) 1318.92 + 2284.44i 0.422055 + 0.731021i
\(26\) −3662.93 + 6344.39i −1.06266 + 1.84059i
\(27\) 0 0
\(28\) −4522.60 5050.67i −1.09017 1.21746i
\(29\) 7035.29 1.55341 0.776707 0.629862i \(-0.216889\pi\)
0.776707 + 0.629862i \(0.216889\pi\)
\(30\) 0 0
\(31\) −630.596 1092.22i −0.117855 0.204130i 0.801063 0.598581i \(-0.204268\pi\)
−0.918917 + 0.394450i \(0.870935\pi\)
\(32\) 2809.98 + 4867.03i 0.485097 + 0.840212i
\(33\) 0 0
\(34\) 12629.2 1.87361
\(35\) 891.689 2718.92i 0.123039 0.375168i
\(36\) 0 0
\(37\) −4888.22 + 8466.65i −0.587012 + 1.01673i 0.407610 + 0.913156i \(0.366362\pi\)
−0.994621 + 0.103578i \(0.966971\pi\)
\(38\) −10618.2 18391.3i −1.19287 2.06611i
\(39\) 0 0
\(40\) 2056.33 3561.67i 0.203209 0.351968i
\(41\) 5400.95 0.501777 0.250888 0.968016i \(-0.419277\pi\)
0.250888 + 0.968016i \(0.419277\pi\)
\(42\) 0 0
\(43\) 19686.6 1.62367 0.811837 0.583885i \(-0.198468\pi\)
0.811837 + 0.583885i \(0.198468\pi\)
\(44\) 10895.9 18872.3i 0.848460 1.46958i
\(45\) 0 0
\(46\) −4385.88 7596.57i −0.305606 0.529326i
\(47\) 1028.28 1781.04i 0.0678997 0.117606i −0.830077 0.557649i \(-0.811704\pi\)
0.897977 + 0.440043i \(0.145037\pi\)
\(48\) 0 0
\(49\) 15391.3 6751.63i 0.915765 0.401715i
\(50\) −24218.7 −1.37001
\(51\) 0 0
\(52\) −20863.5 36136.7i −1.06999 1.85328i
\(53\) 9011.37 + 15608.2i 0.440658 + 0.763241i 0.997738 0.0672170i \(-0.0214120\pi\)
−0.557081 + 0.830458i \(0.688079\pi\)
\(54\) 0 0
\(55\) 9197.45 0.409978
\(56\) 23642.3 4957.54i 1.00744 0.211250i
\(57\) 0 0
\(58\) −32296.3 + 55938.8i −1.26062 + 2.18345i
\(59\) 3717.84 + 6439.49i 0.139047 + 0.240836i 0.927136 0.374725i \(-0.122263\pi\)
−0.788089 + 0.615561i \(0.788930\pi\)
\(60\) 0 0
\(61\) −1747.69 + 3027.09i −0.0601368 + 0.104160i −0.894526 0.447015i \(-0.852487\pi\)
0.834390 + 0.551175i \(0.185820\pi\)
\(62\) 11579.3 0.382563
\(63\) 0 0
\(64\) −52792.5 −1.61110
\(65\) 8805.67 15251.9i 0.258511 0.447754i
\(66\) 0 0
\(67\) −7928.21 13732.1i −0.215769 0.373722i 0.737741 0.675083i \(-0.235892\pi\)
−0.953510 + 0.301361i \(0.902559\pi\)
\(68\) −35967.2 + 62297.0i −0.943266 + 1.63378i
\(69\) 0 0
\(70\) 17525.2 + 19571.5i 0.427482 + 0.477396i
\(71\) −58133.5 −1.36861 −0.684306 0.729195i \(-0.739895\pi\)
−0.684306 + 0.729195i \(0.739895\pi\)
\(72\) 0 0
\(73\) −19555.3 33870.8i −0.429495 0.743907i 0.567334 0.823488i \(-0.307975\pi\)
−0.996828 + 0.0795812i \(0.974642\pi\)
\(74\) −44879.9 77734.2i −0.952736 1.65019i
\(75\) 0 0
\(76\) 120960. 2.40218
\(77\) 36038.1 + 40246.0i 0.692684 + 0.773563i
\(78\) 0 0
\(79\) −4880.35 + 8453.01i −0.0879798 + 0.152385i −0.906657 0.421868i \(-0.861374\pi\)
0.818677 + 0.574254i \(0.194708\pi\)
\(80\) 411.906 + 713.442i 0.00719570 + 0.0124633i
\(81\) 0 0
\(82\) −24793.7 + 42943.9i −0.407199 + 0.705289i
\(83\) 70395.7 1.12163 0.560816 0.827940i \(-0.310487\pi\)
0.560816 + 0.827940i \(0.310487\pi\)
\(84\) 0 0
\(85\) −30360.6 −0.455788
\(86\) −90373.4 + 156531.i −1.31763 + 2.28221i
\(87\) 0 0
\(88\) 38823.3 + 67243.9i 0.534424 + 0.925649i
\(89\) 72153.1 124973.i 0.965562 1.67240i 0.257464 0.966288i \(-0.417113\pi\)
0.708098 0.706115i \(-0.249554\pi\)
\(90\) 0 0
\(91\) 101242. 21229.3i 1.28161 0.268740i
\(92\) 49962.7 0.615427
\(93\) 0 0
\(94\) 9440.90 + 16352.1i 0.110203 + 0.190877i
\(95\) 25526.1 + 44212.5i 0.290185 + 0.502616i
\(96\) 0 0
\(97\) −79328.7 −0.856053 −0.428027 0.903766i \(-0.640791\pi\)
−0.428027 + 0.903766i \(0.640791\pi\)
\(98\) −16971.9 + 153373.i −0.178511 + 1.61318i
\(99\) 0 0
\(100\) 68973.0 119465.i 0.689730 1.19465i
\(101\) −42416.9 73468.2i −0.413747 0.716631i 0.581549 0.813512i \(-0.302447\pi\)
−0.995296 + 0.0968802i \(0.969114\pi\)
\(102\) 0 0
\(103\) −10166.1 + 17608.3i −0.0944197 + 0.163540i −0.909366 0.415996i \(-0.863433\pi\)
0.814947 + 0.579536i \(0.196766\pi\)
\(104\) 148678. 1.34792
\(105\) 0 0
\(106\) −165471. −1.43040
\(107\) 3481.09 6029.43i 0.0293938 0.0509116i −0.850954 0.525240i \(-0.823976\pi\)
0.880348 + 0.474328i \(0.157309\pi\)
\(108\) 0 0
\(109\) −56325.7 97559.0i −0.454088 0.786504i 0.544547 0.838730i \(-0.316702\pi\)
−0.998635 + 0.0522262i \(0.983368\pi\)
\(110\) −42221.9 + 73130.5i −0.332703 + 0.576258i
\(111\) 0 0
\(112\) −1507.90 + 4597.87i −0.0113587 + 0.0346347i
\(113\) −112005. −0.825167 −0.412583 0.910920i \(-0.635373\pi\)
−0.412583 + 0.910920i \(0.635373\pi\)
\(114\) 0 0
\(115\) 10543.6 + 18262.1i 0.0743439 + 0.128767i
\(116\) −183955. 318620.i −1.26931 2.19851i
\(117\) 0 0
\(118\) −68268.7 −0.451353
\(119\) −118961. 132851.i −0.770083 0.860000i
\(120\) 0 0
\(121\) −6297.91 + 10908.3i −0.0391051 + 0.0677320i
\(122\) −16046.0 27792.4i −0.0976037 0.169055i
\(123\) 0 0
\(124\) −32977.0 + 57117.8i −0.192600 + 0.333593i
\(125\) 127195. 0.728108
\(126\) 0 0
\(127\) 82224.5 0.452368 0.226184 0.974085i \(-0.427375\pi\)
0.226184 + 0.974085i \(0.427375\pi\)
\(128\) 152431. 264018.i 0.822333 1.42432i
\(129\) 0 0
\(130\) 80846.8 + 140031.i 0.419570 + 0.726717i
\(131\) −87905.9 + 152258.i −0.447548 + 0.775176i −0.998226 0.0595417i \(-0.981036\pi\)
0.550677 + 0.834718i \(0.314369\pi\)
\(132\) 0 0
\(133\) −93445.8 + 284933.i −0.458069 + 1.39673i
\(134\) 145581. 0.700397
\(135\) 0 0
\(136\) −128155. 221971.i −0.594140 1.02908i
\(137\) 15665.2 + 27132.9i 0.0713072 + 0.123508i 0.899474 0.436973i \(-0.143950\pi\)
−0.828167 + 0.560481i \(0.810616\pi\)
\(138\) 0 0
\(139\) 152234. 0.668305 0.334152 0.942519i \(-0.391550\pi\)
0.334152 + 0.942519i \(0.391550\pi\)
\(140\) −146452. + 30709.4i −0.631502 + 0.132419i
\(141\) 0 0
\(142\) 266868. 462229.i 1.11065 1.92370i
\(143\) 166250. + 287953.i 0.679863 + 1.17756i
\(144\) 0 0
\(145\) 77640.1 134477.i 0.306666 0.531162i
\(146\) 359084. 1.39416
\(147\) 0 0
\(148\) 511259. 1.91861
\(149\) 181430. 314246.i 0.669489 1.15959i −0.308558 0.951206i \(-0.599846\pi\)
0.978047 0.208384i \(-0.0668203\pi\)
\(150\) 0 0
\(151\) −102563. 177644.i −0.366056 0.634027i 0.622889 0.782310i \(-0.285959\pi\)
−0.988945 + 0.148283i \(0.952625\pi\)
\(152\) −215496. + 373250.i −0.756538 + 1.31036i
\(153\) 0 0
\(154\) −485440. + 101792.i −1.64943 + 0.345868i
\(155\) −27836.5 −0.0930648
\(156\) 0 0
\(157\) 38636.0 + 66919.5i 0.125096 + 0.216672i 0.921770 0.387736i \(-0.126743\pi\)
−0.796675 + 0.604409i \(0.793409\pi\)
\(158\) −44807.6 77609.0i −0.142794 0.247326i
\(159\) 0 0
\(160\) 124042. 0.383060
\(161\) −38598.1 + 117692.i −0.117355 + 0.357836i
\(162\) 0 0
\(163\) −92465.7 + 160155.i −0.272591 + 0.472141i −0.969525 0.244994i \(-0.921214\pi\)
0.696934 + 0.717136i \(0.254547\pi\)
\(164\) −141221. 244602.i −0.410006 0.710152i
\(165\) 0 0
\(166\) −323159. + 559728.i −0.910220 + 1.57655i
\(167\) −129262. −0.358657 −0.179329 0.983789i \(-0.557393\pi\)
−0.179329 + 0.983789i \(0.557393\pi\)
\(168\) 0 0
\(169\) 265380. 0.714746
\(170\) 139374. 241403.i 0.369878 0.640648i
\(171\) 0 0
\(172\) −514754. 891580.i −1.32672 2.29794i
\(173\) −253934. + 439826.i −0.645067 + 1.11729i 0.339219 + 0.940707i \(0.389837\pi\)
−0.984286 + 0.176582i \(0.943496\pi\)
\(174\) 0 0
\(175\) 228127. + 254764.i 0.563096 + 0.628844i
\(176\) −15553.5 −0.0378483
\(177\) 0 0
\(178\) 662454. + 1.14740e6i 1.56713 + 2.71435i
\(179\) −66294.5 114825.i −0.154648 0.267859i 0.778283 0.627914i \(-0.216091\pi\)
−0.932931 + 0.360056i \(0.882758\pi\)
\(180\) 0 0
\(181\) −740060. −1.67908 −0.839538 0.543301i \(-0.817174\pi\)
−0.839538 + 0.543301i \(0.817174\pi\)
\(182\) −295964. + 902446.i −0.662308 + 2.01950i
\(183\) 0 0
\(184\) −89011.3 + 154172.i −0.193821 + 0.335708i
\(185\) 107891. + 186873.i 0.231769 + 0.401436i
\(186\) 0 0
\(187\) 286603. 496410.i 0.599344 1.03809i
\(188\) −107548. −0.221926
\(189\) 0 0
\(190\) −468722. −0.941957
\(191\) −291366. + 504661.i −0.577904 + 1.00096i 0.417815 + 0.908532i \(0.362796\pi\)
−0.995719 + 0.0924273i \(0.970537\pi\)
\(192\) 0 0
\(193\) 200452. + 347193.i 0.387362 + 0.670931i 0.992094 0.125498i \(-0.0400529\pi\)
−0.604731 + 0.796429i \(0.706720\pi\)
\(194\) 364167. 630756.i 0.694699 1.20325i
\(195\) 0 0
\(196\) −708216. 520513.i −1.31682 0.967813i
\(197\) −671589. −1.23293 −0.616464 0.787383i \(-0.711436\pi\)
−0.616464 + 0.787383i \(0.711436\pi\)
\(198\) 0 0
\(199\) 227511. + 394060.i 0.407258 + 0.705391i 0.994581 0.103961i \(-0.0331518\pi\)
−0.587324 + 0.809352i \(0.699818\pi\)
\(200\) 245758. + 425666.i 0.434443 + 0.752478i
\(201\) 0 0
\(202\) 778878. 1.34305
\(203\) 892654. 187180.i 1.52035 0.318801i
\(204\) 0 0
\(205\) 59603.8 103237.i 0.0990580 0.171573i
\(206\) −93337.6 161665.i −0.153246 0.265430i
\(207\) 0 0
\(208\) −14891.0 + 25791.9i −0.0238652 + 0.0413357i
\(209\) −963860. −1.52633
\(210\) 0 0
\(211\) −1.19545e6 −1.84852 −0.924260 0.381764i \(-0.875317\pi\)
−0.924260 + 0.381764i \(0.875317\pi\)
\(212\) 471249. 816228.i 0.720130 1.24730i
\(213\) 0 0
\(214\) 31960.7 + 55357.6i 0.0477070 + 0.0826310i
\(215\) 217257. 376300.i 0.320537 0.555186i
\(216\) 0 0
\(217\) −109071. 121806.i −0.157239 0.175598i
\(218\) 1.03428e6 1.47400
\(219\) 0 0
\(220\) −240490. 416541.i −0.334997 0.580231i
\(221\) −548788. 950529.i −0.755830 1.30914i
\(222\) 0 0
\(223\) 296529. 0.399305 0.199653 0.979867i \(-0.436019\pi\)
0.199653 + 0.979867i \(0.436019\pi\)
\(224\) 486029. + 542778.i 0.647205 + 0.722774i
\(225\) 0 0
\(226\) 514172. 890573.i 0.669634 1.15984i
\(227\) 109073. + 188920.i 0.140492 + 0.243340i 0.927682 0.373371i \(-0.121798\pi\)
−0.787190 + 0.616711i \(0.788465\pi\)
\(228\) 0 0
\(229\) 614602. 1.06452e6i 0.774471 1.34142i −0.160620 0.987016i \(-0.551349\pi\)
0.935091 0.354407i \(-0.115317\pi\)
\(230\) −193607. −0.241324
\(231\) 0 0
\(232\) 1.31090e6 1.59901
\(233\) −31472.1 + 54511.3i −0.0379784 + 0.0657805i −0.884390 0.466749i \(-0.845425\pi\)
0.846411 + 0.532530i \(0.178758\pi\)
\(234\) 0 0
\(235\) −22695.8 39310.4i −0.0268088 0.0464341i
\(236\) 194424. 336753.i 0.227233 0.393578i
\(237\) 0 0
\(238\) 1.60243e6 336012.i 1.83373 0.384514i
\(239\) −219330. −0.248372 −0.124186 0.992259i \(-0.539632\pi\)
−0.124186 + 0.992259i \(0.539632\pi\)
\(240\) 0 0
\(241\) −216932. 375737.i −0.240592 0.416717i 0.720291 0.693672i \(-0.244008\pi\)
−0.960883 + 0.276955i \(0.910675\pi\)
\(242\) −57822.6 100152.i −0.0634686 0.109931i
\(243\) 0 0
\(244\) 182791. 0.196553
\(245\) 40800.4 368707.i 0.0434259 0.392433i
\(246\) 0 0
\(247\) −922803. + 1.59834e6i −0.962424 + 1.66697i
\(248\) −117501. 203517.i −0.121314 0.210122i
\(249\) 0 0
\(250\) −583904. + 1.01135e6i −0.590870 + 1.02342i
\(251\) 1.71109e6 1.71431 0.857155 0.515059i \(-0.172230\pi\)
0.857155 + 0.515059i \(0.172230\pi\)
\(252\) 0 0
\(253\) −398125. −0.391037
\(254\) −377461. + 653782.i −0.367103 + 0.635841i
\(255\) 0 0
\(256\) 554822. + 960979.i 0.529119 + 0.916461i
\(257\) 492029. 852219.i 0.464684 0.804856i −0.534503 0.845166i \(-0.679501\pi\)
0.999187 + 0.0403103i \(0.0128346\pi\)
\(258\) 0 0
\(259\) −394967. + 1.20432e6i −0.365857 + 1.11556i
\(260\) −920984. −0.844926
\(261\) 0 0
\(262\) −807084. 1.39791e6i −0.726383 1.25813i
\(263\) 273548. + 473799.i 0.243862 + 0.422381i 0.961811 0.273714i \(-0.0882523\pi\)
−0.717949 + 0.696096i \(0.754919\pi\)
\(264\) 0 0
\(265\) 397791. 0.347969
\(266\) −1.83658e6 2.05102e6i −1.59150 1.77732i
\(267\) 0 0
\(268\) −414605. + 718118.i −0.352613 + 0.610743i
\(269\) −320556. 555219.i −0.270099 0.467825i 0.698788 0.715329i \(-0.253723\pi\)
−0.968887 + 0.247504i \(0.920390\pi\)
\(270\) 0 0
\(271\) 274006. 474593.i 0.226640 0.392552i −0.730170 0.683265i \(-0.760559\pi\)
0.956810 + 0.290713i \(0.0938925\pi\)
\(272\) 51341.8 0.0420774
\(273\) 0 0
\(274\) −287651. −0.231467
\(275\) −549607. + 951948.i −0.438249 + 0.759069i
\(276\) 0 0
\(277\) −837070. 1.44985e6i −0.655485 1.13533i −0.981772 0.190062i \(-0.939131\pi\)
0.326287 0.945271i \(-0.394202\pi\)
\(278\) −698847. + 1.21044e6i −0.542338 + 0.939358i
\(279\) 0 0
\(280\) 166151. 506623.i 0.126651 0.386180i
\(281\) −1.81078e6 −1.36804 −0.684021 0.729462i \(-0.739770\pi\)
−0.684021 + 0.729462i \(0.739770\pi\)
\(282\) 0 0
\(283\) −1.25657e6 2.17645e6i −0.932657 1.61541i −0.778759 0.627323i \(-0.784151\pi\)
−0.153898 0.988087i \(-0.549183\pi\)
\(284\) 1.52004e6 + 2.63279e6i 1.11830 + 1.93696i
\(285\) 0 0
\(286\) −3.05276e6 −2.20687
\(287\) 685285. 143697.i 0.491096 0.102978i
\(288\) 0 0
\(289\) −236142. + 409009.i −0.166314 + 0.288064i
\(290\) 712831. + 1.23466e6i 0.497728 + 0.862090i
\(291\) 0 0
\(292\) −1.02265e6 + 1.77127e6i −0.701888 + 1.21571i
\(293\) −107228. −0.0729691 −0.0364845 0.999334i \(-0.511616\pi\)
−0.0364845 + 0.999334i \(0.511616\pi\)
\(294\) 0 0
\(295\) 164117. 0.109799
\(296\) −910836. + 1.57761e6i −0.604242 + 1.04658i
\(297\) 0 0
\(298\) 1.66575e6 + 2.88517e6i 1.08660 + 1.88205i
\(299\) −381166. + 660199.i −0.246568 + 0.427068i
\(300\) 0 0
\(301\) 2.49788e6 523778.i 1.58911 0.333220i
\(302\) 1.88330e6 1.18824
\(303\) 0 0
\(304\) −43166.3 74766.2i −0.0267893 0.0464004i
\(305\) 38574.4 + 66812.8i 0.0237437 + 0.0411254i
\(306\) 0 0
\(307\) 1.49622e6 0.906042 0.453021 0.891500i \(-0.350346\pi\)
0.453021 + 0.891500i \(0.350346\pi\)
\(308\) 880385. 2.68445e6i 0.528805 1.61242i
\(309\) 0 0
\(310\) 127787. 221333.i 0.0755234 0.130810i
\(311\) 430601. + 745823.i 0.252449 + 0.437255i 0.964200 0.265178i \(-0.0854306\pi\)
−0.711750 + 0.702433i \(0.752097\pi\)
\(312\) 0 0
\(313\) 251969. 436422.i 0.145374 0.251794i −0.784139 0.620586i \(-0.786895\pi\)
0.929512 + 0.368791i \(0.120228\pi\)
\(314\) −709452. −0.406068
\(315\) 0 0
\(316\) 510435. 0.287556
\(317\) −240004. + 415700.i −0.134144 + 0.232344i −0.925270 0.379309i \(-0.876162\pi\)
0.791126 + 0.611653i \(0.209495\pi\)
\(318\) 0 0
\(319\) 1.46584e6 + 2.53890e6i 0.806508 + 1.39691i
\(320\) −582608. + 1.00911e6i −0.318055 + 0.550887i
\(321\) 0 0
\(322\) −758604. 847180.i −0.407733 0.455340i
\(323\) 3.18168e6 1.69688
\(324\) 0 0
\(325\) 1.05239e6 + 1.82280e6i 0.552674 + 0.957259i
\(326\) −848948. 1.47042e6i −0.442423 0.766298i
\(327\) 0 0
\(328\) 1.00637e6 0.516505
\(329\) 83084.8 253341.i 0.0423187 0.129037i
\(330\) 0 0
\(331\) 1.09961e6 1.90458e6i 0.551656 0.955497i −0.446499 0.894784i \(-0.647329\pi\)
0.998155 0.0607125i \(-0.0193373\pi\)
\(332\) −1.84067e6 3.18813e6i −0.916496 1.58742i
\(333\) 0 0
\(334\) 593392. 1.02778e6i 0.291055 0.504122i
\(335\) −349977. −0.170383
\(336\) 0 0
\(337\) −1.35725e6 −0.651008 −0.325504 0.945541i \(-0.605534\pi\)
−0.325504 + 0.945541i \(0.605534\pi\)
\(338\) −1.21826e6 + 2.11008e6i −0.580026 + 1.00463i
\(339\) 0 0
\(340\) 793854. + 1.37499e6i 0.372429 + 0.645065i
\(341\) 262775. 455140.i 0.122377 0.211963i
\(342\) 0 0
\(343\) 1.77325e6 1.26616e6i 0.813830 0.581103i
\(344\) 3.66825e6 1.67133
\(345\) 0 0
\(346\) −2.33142e6 4.03814e6i −1.04696 1.81339i
\(347\) 1.89970e6 + 3.29038e6i 0.846959 + 1.46698i 0.883909 + 0.467658i \(0.154902\pi\)
−0.0369507 + 0.999317i \(0.511764\pi\)
\(348\) 0 0
\(349\) −1.31753e6 −0.579024 −0.289512 0.957174i \(-0.593493\pi\)
−0.289512 + 0.957174i \(0.593493\pi\)
\(350\) −3.07292e6 + 644358.i −1.34085 + 0.281162i
\(351\) 0 0
\(352\) −1.17095e6 + 2.02814e6i −0.503710 + 0.872451i
\(353\) −1.71253e6 2.96618e6i −0.731477 1.26695i −0.956252 0.292544i \(-0.905498\pi\)
0.224775 0.974411i \(-0.427835\pi\)
\(354\) 0 0
\(355\) −641549. + 1.11120e6i −0.270184 + 0.467972i
\(356\) −7.54649e6 −3.15588
\(357\) 0 0
\(358\) 1.21733e6 0.501997
\(359\) 735419. 1.27378e6i 0.301161 0.521626i −0.675238 0.737600i \(-0.735959\pi\)
0.976399 + 0.215974i \(0.0692925\pi\)
\(360\) 0 0
\(361\) −1.43700e6 2.48895e6i −0.580347 1.00519i
\(362\) 3.39733e6 5.88435e6i 1.36259 2.36008i
\(363\) 0 0
\(364\) −3.60866e6 4.03002e6i −1.42756 1.59424i
\(365\) −863235. −0.339154
\(366\) 0 0
\(367\) 2.49039e6 + 4.31349e6i 0.965168 + 1.67172i 0.709163 + 0.705045i \(0.249073\pi\)
0.256006 + 0.966675i \(0.417593\pi\)
\(368\) −17830.0 30882.4i −0.00686326 0.0118875i
\(369\) 0 0
\(370\) −1.98114e6 −0.752335
\(371\) 1.55865e6 + 1.74064e6i 0.587915 + 0.656561i
\(372\) 0 0
\(373\) −1.98024e6 + 3.42987e6i −0.736962 + 1.27646i 0.216895 + 0.976195i \(0.430407\pi\)
−0.953857 + 0.300261i \(0.902926\pi\)
\(374\) 2.63136e6 + 4.55766e6i 0.972751 + 1.68485i
\(375\) 0 0
\(376\) 191603. 331866.i 0.0698927 0.121058i
\(377\) 5.61359e6 2.03417
\(378\) 0 0
\(379\) −1.75155e6 −0.626359 −0.313179 0.949694i \(-0.601394\pi\)
−0.313179 + 0.949694i \(0.601394\pi\)
\(380\) 1.33489e6 2.31209e6i 0.474226 0.821384i
\(381\) 0 0
\(382\) −2.67510e6 4.63341e6i −0.937954 1.62458i
\(383\) 1.56917e6 2.71788e6i 0.546604 0.946745i −0.451900 0.892068i \(-0.649254\pi\)
0.998504 0.0546771i \(-0.0174129\pi\)
\(384\) 0 0
\(385\) 1.16699e6 244706.i 0.401252 0.0841381i
\(386\) −3.68079e6 −1.25740
\(387\) 0 0
\(388\) 2.07425e6 + 3.59270e6i 0.699489 + 1.21155i
\(389\) −526262. 911512.i −0.176331 0.305414i 0.764290 0.644872i \(-0.223089\pi\)
−0.940621 + 0.339459i \(0.889756\pi\)
\(390\) 0 0
\(391\) 1.31420e6 0.434731
\(392\) 2.86789e6 1.25805e6i 0.942645 0.413507i
\(393\) 0 0
\(394\) 3.08301e6 5.33992e6i 1.00054 1.73298i
\(395\) 107717. + 186571.i 0.0347370 + 0.0601662i
\(396\) 0 0
\(397\) −227362. + 393803.i −0.0724005 + 0.125401i −0.899953 0.435987i \(-0.856399\pi\)
0.827552 + 0.561389i \(0.189733\pi\)
\(398\) −4.17766e6 −1.32198
\(399\) 0 0
\(400\) −98456.3 −0.0307676
\(401\) −1.44216e6 + 2.49789e6i −0.447870 + 0.775733i −0.998247 0.0591831i \(-0.981150\pi\)
0.550378 + 0.834916i \(0.314484\pi\)
\(402\) 0 0
\(403\) −503164. 871505.i −0.154329 0.267305i
\(404\) −2.21819e6 + 3.84202e6i −0.676153 + 1.17113i
\(405\) 0 0
\(406\) −2.60953e6 + 7.95692e6i −0.785683 + 2.39569i
\(407\) −4.07394e6 −1.21907
\(408\) 0 0
\(409\) 112957. + 195647.i 0.0333891 + 0.0578317i 0.882237 0.470805i \(-0.156037\pi\)
−0.848848 + 0.528637i \(0.822703\pi\)
\(410\) 547236. + 947841.i 0.160774 + 0.278468i
\(411\) 0 0
\(412\) 1.06328e6 0.308605
\(413\) 643056. + 718141.i 0.185513 + 0.207174i
\(414\) 0 0
\(415\) 776873. 1.34558e6i 0.221426 0.383522i
\(416\) 2.24213e6 + 3.88349e6i 0.635226 + 1.10024i
\(417\) 0 0
\(418\) 4.42471e6 7.66382e6i 1.23864 2.14538i
\(419\) −4.31027e6 −1.19941 −0.599707 0.800220i \(-0.704716\pi\)
−0.599707 + 0.800220i \(0.704716\pi\)
\(420\) 0 0
\(421\) 1.25088e6 0.343962 0.171981 0.985100i \(-0.444983\pi\)
0.171981 + 0.985100i \(0.444983\pi\)
\(422\) 5.48784e6 9.50521e6i 1.50010 2.59825i
\(423\) 0 0
\(424\) 1.67911e6 + 2.90831e6i 0.453592 + 0.785644i
\(425\) 1.81424e6 3.14236e6i 0.487218 0.843887i
\(426\) 0 0
\(427\) −141213. + 430583.i −0.0374804 + 0.114285i
\(428\) −364087. −0.0960719
\(429\) 0 0
\(430\) 1.99469e6 + 3.45490e6i 0.520240 + 0.901081i
\(431\) −2.20397e6 3.81738e6i −0.571494 0.989857i −0.996413 0.0846252i \(-0.973031\pi\)
0.424919 0.905231i \(-0.360303\pi\)
\(432\) 0 0
\(433\) −1.60951e6 −0.412549 −0.206274 0.978494i \(-0.566134\pi\)
−0.206274 + 0.978494i \(0.566134\pi\)
\(434\) 1.46921e6 308077.i 0.374420 0.0785118i
\(435\) 0 0
\(436\) −2.94555e6 + 5.10184e6i −0.742079 + 1.28532i
\(437\) −1.10493e6 1.91380e6i −0.276779 0.479395i
\(438\) 0 0
\(439\) 2.21226e6 3.83175e6i 0.547867 0.948933i −0.450554 0.892749i \(-0.648773\pi\)
0.998420 0.0561836i \(-0.0178932\pi\)
\(440\) 1.71379e6 0.422012
\(441\) 0 0
\(442\) 1.00771e7 2.45347
\(443\) −1.80719e6 + 3.13015e6i −0.437517 + 0.757801i −0.997497 0.0707044i \(-0.977475\pi\)
0.559980 + 0.828506i \(0.310809\pi\)
\(444\) 0 0
\(445\) −1.59254e6 2.75835e6i −0.381232 0.660313i
\(446\) −1.36125e6 + 2.35776e6i −0.324042 + 0.561257i
\(447\) 0 0
\(448\) −6.69844e6 + 1.40459e6i −1.57681 + 0.330640i
\(449\) 467024. 0.109326 0.0546630 0.998505i \(-0.482592\pi\)
0.0546630 + 0.998505i \(0.482592\pi\)
\(450\) 0 0
\(451\) 1.12531e6 + 1.94910e6i 0.260515 + 0.451225i
\(452\) 2.92865e6 + 5.07257e6i 0.674251 + 1.16784i
\(453\) 0 0
\(454\) −2.00285e6 −0.456046
\(455\) 711495. 2.16947e6i 0.161118 0.491276i
\(456\) 0 0
\(457\) 300626. 520699.i 0.0673342 0.116626i −0.830393 0.557178i \(-0.811884\pi\)
0.897727 + 0.440552i \(0.145217\pi\)
\(458\) 5.64280e6 + 9.77362e6i 1.25699 + 2.17717i
\(459\) 0 0
\(460\) 551379. 955016.i 0.121494 0.210434i
\(461\) −2.87193e6 −0.629392 −0.314696 0.949192i \(-0.601903\pi\)
−0.314696 + 0.949192i \(0.601903\pi\)
\(462\) 0 0
\(463\) −2.91502e6 −0.631959 −0.315979 0.948766i \(-0.602333\pi\)
−0.315979 + 0.948766i \(0.602333\pi\)
\(464\) −131294. + 227409.i −0.0283107 + 0.0490357i
\(465\) 0 0
\(466\) −288953. 500481.i −0.0616399 0.106763i
\(467\) −3.59688e6 + 6.22998e6i −0.763192 + 1.32189i 0.178006 + 0.984029i \(0.443035\pi\)
−0.941197 + 0.337857i \(0.890298\pi\)
\(468\) 0 0
\(469\) −1.37130e6 1.53142e6i −0.287873 0.321486i
\(470\) 416751. 0.0870227
\(471\) 0 0
\(472\) 692755. + 1.19989e6i 0.143128 + 0.247905i
\(473\) 4.10179e6 + 7.10451e6i 0.842986 + 1.46009i
\(474\) 0 0
\(475\) −6.10140e6 −1.24078
\(476\) −2.90614e6 + 8.86133e6i −0.587893 + 1.79259i
\(477\) 0 0
\(478\) 1.00686e6 1.74393e6i 0.201557 0.349108i
\(479\) −1.39824e6 2.42183e6i −0.278448 0.482286i 0.692551 0.721369i \(-0.256487\pi\)
−0.970999 + 0.239083i \(0.923153\pi\)
\(480\) 0 0
\(481\) −3.90040e6 + 6.75569e6i −0.768682 + 1.33140i
\(482\) 3.98340e6 0.780974
\(483\) 0 0
\(484\) 658698. 0.127812
\(485\) −875456. + 1.51633e6i −0.168997 + 0.292712i
\(486\) 0 0
\(487\) 1.46624e6 + 2.53960e6i 0.280144 + 0.485224i 0.971420 0.237367i \(-0.0762843\pi\)
−0.691276 + 0.722591i \(0.742951\pi\)
\(488\) −325652. + 564046.i −0.0619020 + 0.107217i
\(489\) 0 0
\(490\) 2.74436e6 + 2.01700e6i 0.516357 + 0.379504i
\(491\) 3.06121e6 0.573046 0.286523 0.958073i \(-0.407501\pi\)
0.286523 + 0.958073i \(0.407501\pi\)
\(492\) 0 0
\(493\) −4.83870e6 8.38087e6i −0.896626 1.55300i
\(494\) −8.47246e6 1.46747e7i −1.56204 2.70553i
\(495\) 0 0
\(496\) 47073.4 0.00859154
\(497\) −7.37611e6 + 1.54669e6i −1.33948 + 0.280875i
\(498\) 0 0
\(499\) 3.27577e6 5.67380e6i 0.588928 1.02005i −0.405445 0.914119i \(-0.632884\pi\)
0.994373 0.105934i \(-0.0337831\pi\)
\(500\) −3.32583e6 5.76052e6i −0.594943 1.03047i
\(501\) 0 0
\(502\) −7.85497e6 + 1.36052e7i −1.39119 + 2.40960i
\(503\) 1.58524e6 0.279367 0.139684 0.990196i \(-0.455391\pi\)
0.139684 + 0.990196i \(0.455391\pi\)
\(504\) 0 0
\(505\) −1.87242e6 −0.326719
\(506\) 1.82764e6 3.16556e6i 0.317332 0.549635i
\(507\) 0 0
\(508\) −2.14996e6 3.72385e6i −0.369634 0.640225i
\(509\) 3.38991e6 5.87149e6i 0.579953 1.00451i −0.415530 0.909579i \(-0.636404\pi\)
0.995484 0.0949297i \(-0.0302626\pi\)
\(510\) 0 0
\(511\) −3.38239e6 3.77732e6i −0.573022 0.639929i
\(512\) −432315. −0.0728829
\(513\) 0 0
\(514\) 4.51743e6 + 7.82441e6i 0.754195 + 1.30630i
\(515\) 224383. + 388643.i 0.0372796 + 0.0645702i
\(516\) 0 0
\(517\) 856990. 0.141010
\(518\) −7.76265e6 8.66903e6i −1.27112 1.41954i
\(519\) 0 0
\(520\) 1.64078e6 2.84192e6i 0.266099 0.460897i
\(521\) −5.06918e6 8.78008e6i −0.818170 1.41711i −0.907029 0.421067i \(-0.861656\pi\)
0.0888599 0.996044i \(-0.471678\pi\)
\(522\) 0 0
\(523\) −49998.6 + 86600.2i −0.00799289 + 0.0138441i −0.869994 0.493062i \(-0.835878\pi\)
0.862001 + 0.506906i \(0.169211\pi\)
\(524\) 9.19408e6 1.46278
\(525\) 0 0
\(526\) −5.02301e6 −0.791589
\(527\) −867416. + 1.50241e6i −0.136051 + 0.235647i
\(528\) 0 0
\(529\) 2.76178e6 + 4.78354e6i 0.429091 + 0.743207i
\(530\) −1.82610e6 + 3.16291e6i −0.282381 + 0.489099i
\(531\) 0 0
\(532\) 1.53476e7 3.21824e6i 2.35105 0.492991i
\(533\) 4.30952e6 0.657068
\(534\) 0 0
\(535\) −76833.3 133079.i −0.0116055 0.0201014i
\(536\) −1.47729e6 2.55873e6i −0.222102 0.384692i
\(537\) 0 0
\(538\) 5.88620e6 0.876756
\(539\) 5.64338e6 + 4.14768e6i 0.836695 + 0.614941i
\(540\) 0 0
\(541\) 59871.4 103700.i 0.00879481 0.0152331i −0.861595 0.507597i \(-0.830534\pi\)
0.870389 + 0.492364i \(0.163867\pi\)
\(542\) 2.51571e6 + 4.35734e6i 0.367843 + 0.637123i
\(543\) 0 0
\(544\) 3.86527e6 6.69485e6i 0.559993 0.969937i
\(545\) −2.48640e6 −0.358574
\(546\) 0 0
\(547\) 236568. 0.0338056 0.0169028 0.999857i \(-0.494619\pi\)
0.0169028 + 0.999857i \(0.494619\pi\)
\(548\) 819209. 1.41891e6i 0.116531 0.201838i
\(549\) 0 0
\(550\) −5.04607e6 8.74005e6i −0.711290 1.23199i
\(551\) −8.13641e6 + 1.40927e7i −1.14170 + 1.97749i
\(552\) 0 0
\(553\) −394330. + 1.20238e6i −0.0548336 + 0.167198i
\(554\) 1.53707e7 2.12774
\(555\) 0 0
\(556\) −3.98054e6 6.89449e6i −0.546078 0.945834i
\(557\) −2.41833e6 4.18867e6i −0.330277 0.572056i 0.652289 0.757970i \(-0.273809\pi\)
−0.982566 + 0.185914i \(0.940475\pi\)
\(558\) 0 0
\(559\) 1.57083e7 2.12617
\(560\) 71245.3 + 79564.1i 0.00960034 + 0.0107213i
\(561\) 0 0
\(562\) 8.31258e6 1.43978e7i 1.11018 1.92290i
\(563\) −2.74147e6 4.74837e6i −0.364513 0.631355i 0.624185 0.781277i \(-0.285431\pi\)
−0.988698 + 0.149922i \(0.952098\pi\)
\(564\) 0 0
\(565\) −1.23607e6 + 2.14093e6i −0.162900 + 0.282151i
\(566\) 2.30738e7 3.02746
\(567\) 0 0
\(568\) −1.08322e7 −1.40878
\(569\) −3.48830e6 + 6.04191e6i −0.451682 + 0.782336i −0.998491 0.0549213i \(-0.982509\pi\)
0.546809 + 0.837258i \(0.315843\pi\)
\(570\) 0 0
\(571\) 5.88573e6 + 1.01944e7i 0.755458 + 1.30849i 0.945146 + 0.326647i \(0.105919\pi\)
−0.189689 + 0.981844i \(0.560748\pi\)
\(572\) 8.69404e6 1.50585e7i 1.11104 1.92439i
\(573\) 0 0
\(574\) −2.00332e6 + 6.10848e6i −0.253788 + 0.773844i
\(575\) −2.52020e6 −0.317882
\(576\) 0 0
\(577\) −3.38646e6 5.86552e6i −0.423454 0.733444i 0.572820 0.819681i \(-0.305849\pi\)
−0.996275 + 0.0862365i \(0.972516\pi\)
\(578\) −2.16807e6 3.75521e6i −0.269932 0.467535i
\(579\) 0 0
\(580\) −8.12037e6 −1.00232
\(581\) 8.93197e6 1.87294e6i 1.09776 0.230188i
\(582\) 0 0
\(583\) −3.75512e6 + 6.50407e6i −0.457565 + 0.792526i
\(584\) −3.64380e6 6.31124e6i −0.442102 0.765743i
\(585\) 0 0
\(586\) 492242. 852588.i 0.0592154 0.102564i
\(587\) 1.05020e7 1.25799 0.628996 0.777408i \(-0.283466\pi\)
0.628996 + 0.777408i \(0.283466\pi\)
\(588\) 0 0
\(589\) 2.91717e6 0.346476
\(590\) −753400. + 1.30493e6i −0.0891036 + 0.154332i
\(591\) 0 0
\(592\) −182451. 316014.i −0.0213964 0.0370597i
\(593\) −3.79537e6 + 6.57378e6i −0.443218 + 0.767676i −0.997926 0.0643687i \(-0.979497\pi\)
0.554708 + 0.832045i \(0.312830\pi\)
\(594\) 0 0
\(595\) −3.85223e6 + 807770.i −0.446087 + 0.0935396i
\(596\) −1.89758e7 −2.18818
\(597\) 0 0
\(598\) −3.49957e6 6.06144e6i −0.400186 0.693143i
\(599\) −6.50992e6 1.12755e7i −0.741325 1.28401i −0.951892 0.306434i \(-0.900864\pi\)
0.210567 0.977580i \(-0.432469\pi\)
\(600\) 0 0
\(601\) 1.41821e7 1.60160 0.800801 0.598931i \(-0.204408\pi\)
0.800801 + 0.598931i \(0.204408\pi\)
\(602\) −7.30214e6 + 2.22655e7i −0.821219 + 2.50404i
\(603\) 0 0
\(604\) −5.36352e6 + 9.28988e6i −0.598215 + 1.03614i
\(605\) 139005. + 240764.i 0.0154398 + 0.0267426i
\(606\) 0 0
\(607\) −6.03862e6 + 1.04592e7i −0.665221 + 1.15220i 0.314004 + 0.949422i \(0.398329\pi\)
−0.979225 + 0.202775i \(0.935004\pi\)
\(608\) −1.29991e7 −1.42612
\(609\) 0 0
\(610\) −708320. −0.0770735
\(611\) 820485. 1.42112e6i 0.0889135 0.154003i
\(612\) 0 0
\(613\) 1.36265e6 + 2.36018e6i 0.146465 + 0.253684i 0.929918 0.367766i \(-0.119877\pi\)
−0.783454 + 0.621450i \(0.786544\pi\)
\(614\) −6.86855e6 + 1.18967e7i −0.735266 + 1.27352i
\(615\) 0 0
\(616\) 6.71508e6 + 7.49914e6i 0.713016 + 0.796269i
\(617\) −8.47094e6 −0.895816 −0.447908 0.894080i \(-0.647831\pi\)
−0.447908 + 0.894080i \(0.647831\pi\)
\(618\) 0 0
\(619\) −8.69174e6 1.50545e7i −0.911759 1.57921i −0.811578 0.584243i \(-0.801391\pi\)
−0.100180 0.994969i \(-0.531942\pi\)
\(620\) 727855. + 1.26068e6i 0.0760441 + 0.131712i
\(621\) 0 0
\(622\) −7.90690e6 −0.819464
\(623\) 5.82995e6 1.77765e7i 0.601789 1.83496i
\(624\) 0 0
\(625\) −2.71793e6 + 4.70759e6i −0.278316 + 0.482058i
\(626\) 2.31338e6 + 4.00689e6i 0.235945 + 0.408669i
\(627\) 0 0
\(628\) 2.02047e6 3.49955e6i 0.204434 0.354090i
\(629\) 1.34480e7 1.35529
\(630\) 0 0
\(631\) −6.45149e6 −0.645040 −0.322520 0.946563i \(-0.604530\pi\)
−0.322520 + 0.946563i \(0.604530\pi\)
\(632\) −909368. + 1.57507e6i −0.0905622 + 0.156858i
\(633\) 0 0
\(634\) −2.20353e6 3.81663e6i −0.217719 0.377101i
\(635\) 907413. 1.57169e6i 0.0893040 0.154679i
\(636\) 0 0
\(637\) 1.22810e7 5.38725e6i 1.19918 0.526039i
\(638\) −2.69164e7 −2.61797
\(639\) 0 0
\(640\) −3.36439e6 5.82730e6i −0.324681 0.562364i
\(641\) 8.88581e6 + 1.53907e7i 0.854185 + 1.47949i 0.877399 + 0.479761i \(0.159277\pi\)
−0.0232142 + 0.999731i \(0.507390\pi\)
\(642\) 0 0
\(643\) −9.34806e6 −0.891649 −0.445825 0.895120i \(-0.647090\pi\)
−0.445825 + 0.895120i \(0.647090\pi\)
\(644\) 6.33938e6 1.32930e6i 0.602327 0.126302i
\(645\) 0 0
\(646\) −1.46059e7 + 2.52981e7i −1.37704 + 2.38510i
\(647\) 2.67193e6 + 4.62792e6i 0.250937 + 0.434635i 0.963784 0.266684i \(-0.0859280\pi\)
−0.712847 + 0.701319i \(0.752595\pi\)
\(648\) 0 0
\(649\) −1.54926e6 + 2.68340e6i −0.144382 + 0.250077i
\(650\) −1.93245e7 −1.79401
\(651\) 0 0
\(652\) 9.67098e6 0.890946
\(653\) −598506. + 1.03664e6i −0.0549270 + 0.0951363i −0.892182 0.451677i \(-0.850826\pi\)
0.837255 + 0.546813i \(0.184159\pi\)
\(654\) 0 0
\(655\) 1.94022e6 + 3.36057e6i 0.176705 + 0.306062i
\(656\) −100794. + 174580.i −0.00914481 + 0.0158393i
\(657\) 0 0
\(658\) 1.63295e6 + 1.82361e6i 0.147030 + 0.164198i
\(659\) 1.17541e7 1.05433 0.527163 0.849764i \(-0.323256\pi\)
0.527163 + 0.849764i \(0.323256\pi\)
\(660\) 0 0
\(661\) 9.00573e6 + 1.55984e7i 0.801706 + 1.38860i 0.918493 + 0.395438i \(0.129407\pi\)
−0.116787 + 0.993157i \(0.537259\pi\)
\(662\) 1.00958e7 + 1.74864e7i 0.895353 + 1.55080i
\(663\) 0 0
\(664\) 1.31170e7 1.15456
\(665\) 4.41512e6 + 4.93064e6i 0.387158 + 0.432364i
\(666\) 0 0
\(667\) −3.36076e6 + 5.82102e6i −0.292498 + 0.506622i
\(668\) 3.37987e6 + 5.85411e6i 0.293062 + 0.507598i
\(669\) 0 0
\(670\) 1.60661e6 2.78273e6i 0.138268 0.239488i
\(671\) −1.45656e6 −0.124888
\(672\) 0 0
\(673\) 1.40977e7 1.19981 0.599904 0.800072i \(-0.295206\pi\)
0.599904 + 0.800072i \(0.295206\pi\)
\(674\) 6.23063e6 1.07918e7i 0.528302 0.915046i
\(675\) 0 0
\(676\) −6.93902e6 1.20187e7i −0.584025 1.01156i
\(677\) 3.82793e6 6.63018e6i 0.320991 0.555973i −0.659702 0.751527i \(-0.729317\pi\)
0.980693 + 0.195555i \(0.0626507\pi\)
\(678\) 0 0
\(679\) −1.00654e7 + 2.11061e6i −0.837832 + 0.175684i
\(680\) −5.65718e6 −0.469167
\(681\) 0 0
\(682\) 2.41260e6 + 4.17874e6i 0.198621 + 0.344021i
\(683\) −5.43378e6 9.41158e6i −0.445708 0.771988i 0.552394 0.833583i \(-0.313715\pi\)
−0.998101 + 0.0615953i \(0.980381\pi\)
\(684\) 0 0
\(685\) 691510. 0.0563083
\(686\) 1.92718e6 + 1.99118e7i 0.156355 + 1.61548i
\(687\) 0 0
\(688\) −367396. + 636348.i −0.0295912 + 0.0512535i
\(689\) 7.19034e6 + 1.24540e7i 0.577034 + 0.999452i
\(690\) 0 0
\(691\) 7.30588e6 1.26542e7i 0.582073 1.00818i −0.413160 0.910658i \(-0.635575\pi\)
0.995233 0.0975219i \(-0.0310916\pi\)
\(692\) 2.65589e7 2.10836
\(693\) 0 0
\(694\) −3.48832e7 −2.74927
\(695\) 1.68002e6 2.90989e6i 0.131933 0.228515i
\(696\) 0 0
\(697\) −3.71464e6 6.43395e6i −0.289624 0.501644i
\(698\) 6.04827e6 1.04759e7i 0.469886 0.813867i
\(699\) 0 0
\(700\) 5.57299e6 1.69930e7i 0.429876 1.31077i
\(701\) −1.90104e7 −1.46115 −0.730577 0.682830i \(-0.760749\pi\)
−0.730577 + 0.682830i \(0.760749\pi\)
\(702\) 0 0
\(703\) −1.13066e7 1.95836e7i −0.862866 1.49453i
\(704\) −1.09996e7 1.90518e7i −0.836458 1.44879i
\(705\) 0 0
\(706\) 3.14462e7 2.37441
\(707\) −7.33664e6 8.19328e6i −0.552012 0.616466i
\(708\) 0 0
\(709\) 5.79644e6 1.00397e7i 0.433058 0.750078i −0.564077 0.825722i \(-0.690768\pi\)
0.997135 + 0.0756440i \(0.0241013\pi\)
\(710\) −5.89021e6 1.02021e7i −0.438516 0.759531i
\(711\) 0 0
\(712\) 1.34445e7 2.32865e7i 0.993904 1.72149i
\(713\) 1.20494e6 0.0887653
\(714\) 0 0
\(715\) 7.33881e6 0.536859
\(716\) −3.46687e6 + 6.00479e6i −0.252729 + 0.437739i
\(717\) 0 0
\(718\) 6.75205e6 + 1.16949e7i 0.488792 + 0.846613i
\(719\) −5.14304e6 + 8.90800e6i −0.371020 + 0.642626i −0.989723 0.142999i \(-0.954325\pi\)
0.618703 + 0.785625i \(0.287659\pi\)
\(720\) 0 0
\(721\) −821420. + 2.50466e6i −0.0588474 + 0.179436i
\(722\) 2.63868e7 1.88384
\(723\) 0 0
\(724\) 1.93507e7 + 3.35164e7i 1.37199 + 2.37635i
\(725\) 9.27900e6 + 1.60717e7i 0.655626 + 1.13558i
\(726\) 0 0
\(727\) 1.00970e7 0.708526 0.354263 0.935146i \(-0.384732\pi\)
0.354263 + 0.935146i \(0.384732\pi\)
\(728\) 1.88646e7 3.95571e6i 1.31923 0.276628i
\(729\) 0 0
\(730\) 3.96278e6 6.86373e6i 0.275228 0.476709i
\(731\) −1.35399e7 2.34518e7i −0.937180 1.62324i
\(732\) 0 0
\(733\) −962010. + 1.66625e6i −0.0661332 + 0.114546i −0.897196 0.441632i \(-0.854400\pi\)
0.831063 + 0.556178i \(0.187733\pi\)
\(734\) −4.57298e7 −3.13299
\(735\) 0 0
\(736\) −5.36932e6 −0.365363
\(737\) 3.30376e6 5.72228e6i 0.224047 0.388061i
\(738\) 0 0
\(739\) −2.10136e6 3.63967e6i −0.141543 0.245161i 0.786535 0.617546i \(-0.211873\pi\)
−0.928078 + 0.372386i \(0.878540\pi\)
\(740\) 5.64215e6 9.77249e6i 0.378761 0.656034i
\(741\) 0 0
\(742\) −2.09953e7 + 4.40250e6i −1.39995 + 0.293555i
\(743\) 1.99659e7 1.32684 0.663418 0.748249i \(-0.269105\pi\)
0.663418 + 0.748249i \(0.269105\pi\)
\(744\) 0 0
\(745\) −4.00445e6 6.93592e6i −0.264334 0.457839i
\(746\) −1.81810e7 3.14904e7i −1.19611 2.07172i
\(747\) 0 0
\(748\) −2.99757e7 −1.95892
\(749\) 281271. 857646.i 0.0183198 0.0558603i
\(750\) 0 0
\(751\) 1.81988e6 3.15212e6i 0.117745 0.203940i −0.801129 0.598492i \(-0.795767\pi\)
0.918874 + 0.394552i \(0.129100\pi\)
\(752\) 38380.1 + 66476.4i 0.00247492 + 0.00428670i
\(753\) 0 0
\(754\) −2.57698e7 + 4.46346e7i −1.65076 + 2.85919i
\(755\) −4.52745e6 −0.289059
\(756\) 0 0
\(757\) 1.73429e7 1.09997 0.549986 0.835174i \(-0.314633\pi\)
0.549986 + 0.835174i \(0.314633\pi\)
\(758\) 8.04067e6 1.39268e7i 0.508299 0.880399i
\(759\) 0 0
\(760\) 4.75635e6 + 8.23824e6i 0.298703 + 0.517369i
\(761\) −5.17841e6 + 8.96927e6i −0.324142 + 0.561430i −0.981338 0.192289i \(-0.938409\pi\)
0.657196 + 0.753719i \(0.271742\pi\)
\(762\) 0 0
\(763\) −9.74238e6 1.08799e7i −0.605834 0.676572i
\(764\) 3.04740e7 1.88884
\(765\) 0 0
\(766\) 1.44069e7 + 2.49535e7i 0.887153 + 1.53659i
\(767\) 2.96653e6 + 5.13818e6i 0.182079 + 0.315371i
\(768\) 0 0
\(769\) −1.81548e7 −1.10707 −0.553534 0.832826i \(-0.686721\pi\)
−0.553534 + 0.832826i \(0.686721\pi\)
\(770\) −3.41152e6 + 1.04023e7i −0.207358 + 0.632272i
\(771\) 0 0
\(772\) 1.04826e7 1.81565e7i 0.633034 1.09645i
\(773\) −8.17830e6 1.41652e7i −0.492282 0.852658i 0.507678 0.861547i \(-0.330504\pi\)
−0.999960 + 0.00888861i \(0.997171\pi\)
\(774\) 0 0