Properties

Label 63.6.e.d.46.2
Level $63$
Weight $6$
Character 63.46
Analytic conductor $10.104$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,6,Mod(37,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 63.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1041806482\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{37})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 10x^{2} + 9x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 46.2
Root \(1.77069 + 3.06693i\) of defining polynomial
Character \(\chi\) \(=\) 63.46
Dual form 63.6.e.d.37.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.54138 + 6.13385i) q^{2} +(-9.08276 + 15.7318i) q^{4} +(-39.9138 - 69.1328i) q^{5} +(43.1587 - 122.247i) q^{7} +97.9863 q^{8} +O(q^{10})\) \(q+(3.54138 + 6.13385i) q^{2} +(-9.08276 + 15.7318i) q^{4} +(-39.9138 - 69.1328i) q^{5} +(43.1587 - 122.247i) q^{7} +97.9863 q^{8} +(282.700 - 489.651i) q^{10} +(175.952 - 304.757i) q^{11} -291.683 q^{13} +(902.686 - 168.194i) q^{14} +(637.655 + 1104.45i) q^{16} +(-185.038 + 320.495i) q^{17} +(-752.463 - 1303.30i) q^{19} +1450.11 q^{20} +2492.45 q^{22} +(-212.855 - 368.676i) q^{23} +(-1623.72 + 2812.37i) q^{25} +(-1032.96 - 1789.14i) q^{26} +(1531.17 + 1789.30i) q^{28} +7783.93 q^{29} +(1287.59 - 2230.17i) q^{31} +(-2948.58 + 5107.09i) q^{32} -2621.16 q^{34} +(-10173.9 + 1895.67i) q^{35} +(-369.809 - 640.528i) q^{37} +(5329.51 - 9230.99i) q^{38} +(-3911.01 - 6774.06i) q^{40} -7029.84 q^{41} +1835.23 q^{43} +(3196.26 + 5536.08i) q^{44} +(1507.60 - 2611.25i) q^{46} +(-766.342 - 1327.34i) q^{47} +(-13081.7 - 10552.0i) q^{49} -23000.9 q^{50} +(2649.28 - 4588.69i) q^{52} +(-4768.73 + 8259.68i) q^{53} -28091.6 q^{55} +(4228.96 - 11978.5i) q^{56} +(27565.9 + 47745.5i) q^{58} +(-14837.0 + 25698.5i) q^{59} +(23255.4 + 40279.5i) q^{61} +18239.4 q^{62} -958.246 q^{64} +(11642.2 + 20164.8i) q^{65} +(-13373.0 + 23162.8i) q^{67} +(-3361.31 - 5821.95i) q^{68} +(-47657.4 - 55691.9i) q^{70} +14388.8 q^{71} +(35047.6 - 60704.2i) q^{73} +(2619.27 - 4536.71i) q^{74} +27337.8 q^{76} +(-29661.8 - 34662.5i) q^{77} +(13542.9 + 23457.0i) q^{79} +(50902.5 - 88165.7i) q^{80} +(-24895.3 - 43120.0i) q^{82} +79755.4 q^{83} +29542.2 q^{85} +(6499.26 + 11257.0i) q^{86} +(17240.9 - 29862.1i) q^{88} +(21788.7 + 37739.1i) q^{89} +(-12588.6 + 35657.3i) q^{91} +7733.26 q^{92} +(5427.82 - 9401.25i) q^{94} +(-60067.3 + 104040. i) q^{95} +103374. q^{97} +(18397.5 - 117610. i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 12 q^{4} - 38 q^{5} - 168 q^{7} - 192 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} - 12 q^{4} - 38 q^{5} - 168 q^{7} - 192 q^{8} + 778 q^{10} + 424 q^{11} - 1848 q^{13} + 2674 q^{14} + 2064 q^{16} - 2346 q^{17} + 360 q^{19} + 3416 q^{20} + 4252 q^{22} - 12 q^{23} - 1872 q^{25} + 1148 q^{26} + 2548 q^{28} + 14104 q^{29} - 3548 q^{31} - 8096 q^{32} + 14844 q^{34} - 27496 q^{35} - 11090 q^{37} + 20138 q^{38} - 15936 q^{40} - 7000 q^{41} - 25360 q^{43} + 5948 q^{44} + 5118 q^{46} - 22956 q^{47} + 4900 q^{49} - 59984 q^{50} + 1400 q^{52} + 3042 q^{53} - 50152 q^{55} + 57792 q^{56} + 58852 q^{58} - 65808 q^{59} + 42486 q^{61} + 98724 q^{62} + 70912 q^{64} - 3164 q^{65} - 42312 q^{67} + 5460 q^{68} - 113050 q^{70} + 4416 q^{71} + 50506 q^{73} - 47370 q^{74} + 77672 q^{76} - 65338 q^{77} - 9004 q^{79} + 68816 q^{80} - 67732 q^{82} + 208656 q^{83} - 106212 q^{85} + 86776 q^{86} + 20496 q^{88} - 26666 q^{89} + 135632 q^{91} + 20568 q^{92} - 98034 q^{94} - 198140 q^{95} + 418264 q^{97} - 98686 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.54138 + 6.13385i 0.626034 + 1.08432i 0.988340 + 0.152263i \(0.0486561\pi\)
−0.362306 + 0.932059i \(0.618011\pi\)
\(3\) 0 0
\(4\) −9.08276 + 15.7318i −0.283836 + 0.491619i
\(5\) −39.9138 69.1328i −0.714000 1.23668i −0.963344 0.268269i \(-0.913548\pi\)
0.249344 0.968415i \(-0.419785\pi\)
\(6\) 0 0
\(7\) 43.1587 122.247i 0.332907 0.942960i
\(8\) 97.9863 0.541303
\(9\) 0 0
\(10\) 282.700 489.651i 0.893976 1.54841i
\(11\) 175.952 304.757i 0.438442 0.759403i −0.559128 0.829082i \(-0.688864\pi\)
0.997570 + 0.0696781i \(0.0221972\pi\)
\(12\) 0 0
\(13\) −291.683 −0.478688 −0.239344 0.970935i \(-0.576932\pi\)
−0.239344 + 0.970935i \(0.576932\pi\)
\(14\) 902.686 168.194i 1.23088 0.229346i
\(15\) 0 0
\(16\) 637.655 + 1104.45i 0.622710 + 1.07857i
\(17\) −185.038 + 320.495i −0.155288 + 0.268967i −0.933164 0.359451i \(-0.882964\pi\)
0.777876 + 0.628418i \(0.216297\pi\)
\(18\) 0 0
\(19\) −752.463 1303.30i −0.478190 0.828250i 0.521497 0.853253i \(-0.325374\pi\)
−0.999687 + 0.0250030i \(0.992040\pi\)
\(20\) 1450.11 0.810637
\(21\) 0 0
\(22\) 2492.45 1.09792
\(23\) −212.855 368.676i −0.0839006 0.145320i 0.821022 0.570897i \(-0.193404\pi\)
−0.904922 + 0.425577i \(0.860071\pi\)
\(24\) 0 0
\(25\) −1623.72 + 2812.37i −0.519592 + 0.899960i
\(26\) −1032.96 1789.14i −0.299675 0.519052i
\(27\) 0 0
\(28\) 1531.17 + 1789.30i 0.369086 + 0.431310i
\(29\) 7783.93 1.71872 0.859358 0.511374i \(-0.170863\pi\)
0.859358 + 0.511374i \(0.170863\pi\)
\(30\) 0 0
\(31\) 1287.59 2230.17i 0.240643 0.416805i −0.720255 0.693710i \(-0.755975\pi\)
0.960898 + 0.276904i \(0.0893085\pi\)
\(32\) −2948.58 + 5107.09i −0.509024 + 0.881655i
\(33\) 0 0
\(34\) −2621.16 −0.388862
\(35\) −10173.9 + 1895.67i −1.40384 + 0.261572i
\(36\) 0 0
\(37\) −369.809 640.528i −0.0444092 0.0769190i 0.842966 0.537966i \(-0.180807\pi\)
−0.887376 + 0.461047i \(0.847474\pi\)
\(38\) 5329.51 9230.99i 0.598727 1.03703i
\(39\) 0 0
\(40\) −3911.01 6774.06i −0.386490 0.669421i
\(41\) −7029.84 −0.653109 −0.326554 0.945178i \(-0.605888\pi\)
−0.326554 + 0.945178i \(0.605888\pi\)
\(42\) 0 0
\(43\) 1835.23 0.151363 0.0756816 0.997132i \(-0.475887\pi\)
0.0756816 + 0.997132i \(0.475887\pi\)
\(44\) 3196.26 + 5536.08i 0.248891 + 0.431093i
\(45\) 0 0
\(46\) 1507.60 2611.25i 0.105049 0.181950i
\(47\) −766.342 1327.34i −0.0506032 0.0876473i 0.839614 0.543183i \(-0.182781\pi\)
−0.890217 + 0.455536i \(0.849448\pi\)
\(48\) 0 0
\(49\) −13081.7 10552.0i −0.778346 0.627836i
\(50\) −23000.9 −1.30113
\(51\) 0 0
\(52\) 2649.28 4588.69i 0.135869 0.235332i
\(53\) −4768.73 + 8259.68i −0.233192 + 0.403900i −0.958746 0.284265i \(-0.908250\pi\)
0.725554 + 0.688165i \(0.241584\pi\)
\(54\) 0 0
\(55\) −28091.6 −1.25219
\(56\) 4228.96 11978.5i 0.180204 0.510427i
\(57\) 0 0
\(58\) 27565.9 + 47745.5i 1.07597 + 1.86364i
\(59\) −14837.0 + 25698.5i −0.554903 + 0.961120i 0.443008 + 0.896517i \(0.353911\pi\)
−0.997911 + 0.0646022i \(0.979422\pi\)
\(60\) 0 0
\(61\) 23255.4 + 40279.5i 0.800201 + 1.38599i 0.919483 + 0.393129i \(0.128607\pi\)
−0.119282 + 0.992860i \(0.538059\pi\)
\(62\) 18239.4 0.602602
\(63\) 0 0
\(64\) −958.246 −0.0292434
\(65\) 11642.2 + 20164.8i 0.341783 + 0.591985i
\(66\) 0 0
\(67\) −13373.0 + 23162.8i −0.363951 + 0.630381i −0.988607 0.150518i \(-0.951906\pi\)
0.624656 + 0.780900i \(0.285239\pi\)
\(68\) −3361.31 5821.95i −0.0881527 0.152685i
\(69\) 0 0
\(70\) −47657.4 55691.9i −1.16248 1.35846i
\(71\) 14388.8 0.338748 0.169374 0.985552i \(-0.445825\pi\)
0.169374 + 0.985552i \(0.445825\pi\)
\(72\) 0 0
\(73\) 35047.6 60704.2i 0.769752 1.33325i −0.167946 0.985796i \(-0.553713\pi\)
0.937697 0.347453i \(-0.112953\pi\)
\(74\) 2619.27 4536.71i 0.0556033 0.0963078i
\(75\) 0 0
\(76\) 27337.8 0.542911
\(77\) −29661.8 34662.5i −0.570126 0.666244i
\(78\) 0 0
\(79\) 13542.9 + 23457.0i 0.244143 + 0.422868i 0.961890 0.273436i \(-0.0881601\pi\)
−0.717748 + 0.696303i \(0.754827\pi\)
\(80\) 50902.5 88165.7i 0.889230 1.54019i
\(81\) 0 0
\(82\) −24895.3 43120.0i −0.408868 0.708181i
\(83\) 79755.4 1.27076 0.635382 0.772198i \(-0.280843\pi\)
0.635382 + 0.772198i \(0.280843\pi\)
\(84\) 0 0
\(85\) 29542.2 0.443502
\(86\) 6499.26 + 11257.0i 0.0947584 + 0.164126i
\(87\) 0 0
\(88\) 17240.9 29862.1i 0.237330 0.411067i
\(89\) 21788.7 + 37739.1i 0.291579 + 0.505029i 0.974183 0.225759i \(-0.0724862\pi\)
−0.682605 + 0.730788i \(0.739153\pi\)
\(90\) 0 0
\(91\) −12588.6 + 35657.3i −0.159358 + 0.451383i
\(92\) 7733.26 0.0952561
\(93\) 0 0
\(94\) 5427.82 9401.25i 0.0633586 0.109740i
\(95\) −60067.3 + 104040.i −0.682856 + 1.18274i
\(96\) 0 0
\(97\) 103374. 1.11553 0.557765 0.829999i \(-0.311659\pi\)
0.557765 + 0.829999i \(0.311659\pi\)
\(98\) 18397.5 117610.i 0.193506 1.23702i
\(99\) 0 0
\(100\) −29495.8 51088.3i −0.294958 0.510883i
\(101\) 14350.1 24855.1i 0.139975 0.242444i −0.787512 0.616300i \(-0.788631\pi\)
0.927487 + 0.373855i \(0.121964\pi\)
\(102\) 0 0
\(103\) −14614.0 25312.1i −0.135730 0.235091i 0.790146 0.612918i \(-0.210005\pi\)
−0.925876 + 0.377828i \(0.876671\pi\)
\(104\) −28580.9 −0.259115
\(105\) 0 0
\(106\) −67551.6 −0.583944
\(107\) 43929.2 + 76087.6i 0.370932 + 0.642472i 0.989709 0.143094i \(-0.0457051\pi\)
−0.618778 + 0.785566i \(0.712372\pi\)
\(108\) 0 0
\(109\) −110314. + 191069.i −0.889333 + 1.54037i −0.0486678 + 0.998815i \(0.515498\pi\)
−0.840665 + 0.541555i \(0.817836\pi\)
\(110\) −99483.2 172310.i −0.783913 1.35778i
\(111\) 0 0
\(112\) 162536. 30284.8i 1.22435 0.228128i
\(113\) −39665.6 −0.292225 −0.146113 0.989268i \(-0.546676\pi\)
−0.146113 + 0.989268i \(0.546676\pi\)
\(114\) 0 0
\(115\) −16991.7 + 29430.5i −0.119810 + 0.207517i
\(116\) −70699.6 + 122455.i −0.487834 + 0.844953i
\(117\) 0 0
\(118\) −210174. −1.38955
\(119\) 31193.5 + 36452.4i 0.201928 + 0.235971i
\(120\) 0 0
\(121\) 18607.4 + 32229.0i 0.115538 + 0.200117i
\(122\) −164712. + 285290.i −1.00191 + 1.73535i
\(123\) 0 0
\(124\) 23389.7 + 40512.2i 0.136606 + 0.236609i
\(125\) 9774.87 0.0559546
\(126\) 0 0
\(127\) 51740.3 0.284655 0.142328 0.989820i \(-0.454541\pi\)
0.142328 + 0.989820i \(0.454541\pi\)
\(128\) 90961.0 + 157549.i 0.490716 + 0.849946i
\(129\) 0 0
\(130\) −82458.7 + 142823.i −0.427935 + 0.741206i
\(131\) −83336.9 144344.i −0.424286 0.734885i 0.572067 0.820207i \(-0.306142\pi\)
−0.996353 + 0.0853215i \(0.972808\pi\)
\(132\) 0 0
\(133\) −191800. + 35737.4i −0.940200 + 0.175184i
\(134\) −189436. −0.911382
\(135\) 0 0
\(136\) −18131.2 + 31404.1i −0.0840578 + 0.145592i
\(137\) 14129.7 24473.4i 0.0643178 0.111402i −0.832073 0.554666i \(-0.812846\pi\)
0.896391 + 0.443264i \(0.146180\pi\)
\(138\) 0 0
\(139\) 336393. 1.47676 0.738380 0.674384i \(-0.235591\pi\)
0.738380 + 0.674384i \(0.235591\pi\)
\(140\) 62584.9 177272.i 0.269867 0.764398i
\(141\) 0 0
\(142\) 50956.1 + 88258.5i 0.212068 + 0.367312i
\(143\) −51322.1 + 88892.4i −0.209877 + 0.363517i
\(144\) 0 0
\(145\) −310686. 538125.i −1.22716 2.12551i
\(146\) 496467. 1.92756
\(147\) 0 0
\(148\) 13435.5 0.0504198
\(149\) −177691. 307769.i −0.655691 1.13569i −0.981720 0.190330i \(-0.939044\pi\)
0.326030 0.945360i \(-0.394289\pi\)
\(150\) 0 0
\(151\) 179399. 310727.i 0.640290 1.10901i −0.345078 0.938574i \(-0.612148\pi\)
0.985368 0.170441i \(-0.0545191\pi\)
\(152\) −73731.0 127706.i −0.258846 0.448334i
\(153\) 0 0
\(154\) 107571. 304694.i 0.365504 1.03529i
\(155\) −205570. −0.687275
\(156\) 0 0
\(157\) −229455. + 397428.i −0.742932 + 1.28680i 0.208223 + 0.978081i \(0.433232\pi\)
−0.951155 + 0.308714i \(0.900101\pi\)
\(158\) −95921.1 + 166140.i −0.305683 + 0.529459i
\(159\) 0 0
\(160\) 470756. 1.45377
\(161\) −54256.1 + 10109.3i −0.164962 + 0.0307368i
\(162\) 0 0
\(163\) −251220. 435126.i −0.740603 1.28276i −0.952221 0.305410i \(-0.901206\pi\)
0.211618 0.977353i \(-0.432127\pi\)
\(164\) 63850.3 110592.i 0.185376 0.321081i
\(165\) 0 0
\(166\) 282444. + 489208.i 0.795541 + 1.37792i
\(167\) 676652. 1.87748 0.938738 0.344632i \(-0.111996\pi\)
0.938738 + 0.344632i \(0.111996\pi\)
\(168\) 0 0
\(169\) −286214. −0.770858
\(170\) 104620. + 181208.i 0.277647 + 0.480900i
\(171\) 0 0
\(172\) −16669.0 + 28871.5i −0.0429623 + 0.0744130i
\(173\) −124580. 215779.i −0.316470 0.548143i 0.663279 0.748373i \(-0.269164\pi\)
−0.979749 + 0.200230i \(0.935831\pi\)
\(174\) 0 0
\(175\) 273726. + 319874.i 0.675650 + 0.789557i
\(176\) 448786. 1.09209
\(177\) 0 0
\(178\) −154324. + 267297.i −0.365076 + 0.632330i
\(179\) 69628.9 120601.i 0.162427 0.281331i −0.773312 0.634026i \(-0.781401\pi\)
0.935738 + 0.352695i \(0.114735\pi\)
\(180\) 0 0
\(181\) 306246. 0.694823 0.347412 0.937713i \(-0.387061\pi\)
0.347412 + 0.937713i \(0.387061\pi\)
\(182\) −263298. + 49059.4i −0.589209 + 0.109785i
\(183\) 0 0
\(184\) −20856.9 36125.2i −0.0454156 0.0786622i
\(185\) −29521.0 + 51131.8i −0.0634163 + 0.109840i
\(186\) 0 0
\(187\) 65115.4 + 112783.i 0.136169 + 0.235852i
\(188\) 27842.0 0.0574521
\(189\) 0 0
\(190\) −850885. −1.70996
\(191\) 113747. + 197015.i 0.225609 + 0.390766i 0.956502 0.291726i \(-0.0942295\pi\)
−0.730893 + 0.682492i \(0.760896\pi\)
\(192\) 0 0
\(193\) 336187. 582293.i 0.649663 1.12525i −0.333541 0.942736i \(-0.608244\pi\)
0.983203 0.182513i \(-0.0584231\pi\)
\(194\) 366086. + 634079.i 0.698359 + 1.20959i
\(195\) 0 0
\(196\) 284820. 109956.i 0.529579 0.204447i
\(197\) 1282.76 0.00235493 0.00117747 0.999999i \(-0.499625\pi\)
0.00117747 + 0.999999i \(0.499625\pi\)
\(198\) 0 0
\(199\) −184449. + 319475.i −0.330175 + 0.571879i −0.982546 0.186020i \(-0.940441\pi\)
0.652371 + 0.757900i \(0.273774\pi\)
\(200\) −159103. + 275574.i −0.281257 + 0.487151i
\(201\) 0 0
\(202\) 203277. 0.350517
\(203\) 335944. 951563.i 0.572173 1.62068i
\(204\) 0 0
\(205\) 280588. + 485992.i 0.466320 + 0.807690i
\(206\) 103507. 179280.i 0.169943 0.294349i
\(207\) 0 0
\(208\) −185993. 322149.i −0.298084 0.516296i
\(209\) −529589. −0.838635
\(210\) 0 0
\(211\) 502168. 0.776503 0.388251 0.921553i \(-0.373079\pi\)
0.388251 + 0.921553i \(0.373079\pi\)
\(212\) −86626.5 150042.i −0.132377 0.229283i
\(213\) 0 0
\(214\) −311140. + 538910.i −0.464431 + 0.804419i
\(215\) −73251.1 126875.i −0.108073 0.187188i
\(216\) 0 0
\(217\) −217061. 253655.i −0.312919 0.365674i
\(218\) −1.56266e6 −2.22701
\(219\) 0 0
\(220\) 255150. 441932.i 0.355417 0.615600i
\(221\) 53972.3 93482.7i 0.0743344 0.128751i
\(222\) 0 0
\(223\) −1.17328e6 −1.57993 −0.789967 0.613149i \(-0.789902\pi\)
−0.789967 + 0.613149i \(0.789902\pi\)
\(224\) 497070. + 580870.i 0.661907 + 0.773498i
\(225\) 0 0
\(226\) −140471. 243303.i −0.182943 0.316867i
\(227\) −455079. + 788220.i −0.586168 + 1.01527i 0.408560 + 0.912731i \(0.366031\pi\)
−0.994729 + 0.102542i \(0.967302\pi\)
\(228\) 0 0
\(229\) −260962. 452000.i −0.328843 0.569573i 0.653439 0.756979i \(-0.273325\pi\)
−0.982283 + 0.187406i \(0.939992\pi\)
\(230\) −240697. −0.300020
\(231\) 0 0
\(232\) 762719. 0.930346
\(233\) −521394. 903081.i −0.629182 1.08977i −0.987716 0.156258i \(-0.950057\pi\)
0.358535 0.933516i \(-0.383277\pi\)
\(234\) 0 0
\(235\) −61175.2 + 105959.i −0.0722613 + 0.125160i
\(236\) −269522. 466826.i −0.315003 0.545601i
\(237\) 0 0
\(238\) −113126. + 320428.i −0.129455 + 0.366681i
\(239\) 1.53447e6 1.73766 0.868830 0.495110i \(-0.164872\pi\)
0.868830 + 0.495110i \(0.164872\pi\)
\(240\) 0 0
\(241\) 503789. 872588.i 0.558735 0.967758i −0.438867 0.898552i \(-0.644620\pi\)
0.997602 0.0692059i \(-0.0220465\pi\)
\(242\) −131792. + 228271.i −0.144661 + 0.250560i
\(243\) 0 0
\(244\) −844893. −0.908505
\(245\) −207353. + 1.32554e6i −0.220696 + 1.41084i
\(246\) 0 0
\(247\) 219480. + 380151.i 0.228904 + 0.396473i
\(248\) 126166. 218526.i 0.130261 0.225618i
\(249\) 0 0
\(250\) 34616.6 + 59957.6i 0.0350295 + 0.0606729i
\(251\) −8511.89 −0.00852789 −0.00426394 0.999991i \(-0.501357\pi\)
−0.00426394 + 0.999991i \(0.501357\pi\)
\(252\) 0 0
\(253\) −149809. −0.147142
\(254\) 183232. + 317367.i 0.178204 + 0.308658i
\(255\) 0 0
\(256\) −659587. + 1.14244e6i −0.629032 + 1.08951i
\(257\) −263766. 456856.i −0.249107 0.431466i 0.714171 0.699971i \(-0.246804\pi\)
−0.963278 + 0.268505i \(0.913470\pi\)
\(258\) 0 0
\(259\) −94263.0 + 17563.7i −0.0873156 + 0.0162692i
\(260\) −422972. −0.388042
\(261\) 0 0
\(262\) 590255. 1.02235e6i 0.531235 0.920126i
\(263\) −176042. + 304914.i −0.156938 + 0.271824i −0.933763 0.357892i \(-0.883496\pi\)
0.776825 + 0.629716i \(0.216829\pi\)
\(264\) 0 0
\(265\) 761353. 0.665996
\(266\) −898446. 1.04991e6i −0.778552 0.909808i
\(267\) 0 0
\(268\) −242928. 420764.i −0.206605 0.357850i
\(269\) 239770. 415294.i 0.202029 0.349925i −0.747153 0.664652i \(-0.768580\pi\)
0.949182 + 0.314727i \(0.101913\pi\)
\(270\) 0 0
\(271\) 488805. + 846636.i 0.404308 + 0.700283i 0.994241 0.107170i \(-0.0341789\pi\)
−0.589932 + 0.807453i \(0.700846\pi\)
\(272\) −471961. −0.386798
\(273\) 0 0
\(274\) 200155. 0.161061
\(275\) 571395. + 989684.i 0.455622 + 0.789160i
\(276\) 0 0
\(277\) −484362. + 838939.i −0.379289 + 0.656948i −0.990959 0.134165i \(-0.957165\pi\)
0.611670 + 0.791113i \(0.290498\pi\)
\(278\) 1.19130e6 + 2.06339e6i 0.924502 + 1.60128i
\(279\) 0 0
\(280\) −996903. + 185749.i −0.759902 + 0.141590i
\(281\) 318333. 0.240501 0.120250 0.992744i \(-0.461630\pi\)
0.120250 + 0.992744i \(0.461630\pi\)
\(282\) 0 0
\(283\) −886051. + 1.53468e6i −0.657646 + 1.13908i 0.323577 + 0.946202i \(0.395115\pi\)
−0.981223 + 0.192875i \(0.938219\pi\)
\(284\) −130690. + 226361.i −0.0961491 + 0.166535i
\(285\) 0 0
\(286\) −727004. −0.525559
\(287\) −303398. + 859377.i −0.217425 + 0.615855i
\(288\) 0 0
\(289\) 641451. + 1.11103e6i 0.451771 + 0.782491i
\(290\) 2.20052e6 3.81141e6i 1.53649 2.66128i
\(291\) 0 0
\(292\) 636657. + 1.10272e6i 0.436967 + 0.756849i
\(293\) −1.64148e6 −1.11703 −0.558516 0.829494i \(-0.688629\pi\)
−0.558516 + 0.829494i \(0.688629\pi\)
\(294\) 0 0
\(295\) 2.36881e6 1.58480
\(296\) −36236.2 62762.9i −0.0240388 0.0416365i
\(297\) 0 0
\(298\) 1.25854e6 2.17986e6i 0.820969 1.42196i
\(299\) 62086.2 + 107536.i 0.0401622 + 0.0695629i
\(300\) 0 0
\(301\) 79206.2 224352.i 0.0503898 0.142729i
\(302\) 2.54128e6 1.60337
\(303\) 0 0
\(304\) 959623. 1.66212e6i 0.595548 1.03152i
\(305\) 1.85642e6 3.21542e6i 1.14269 1.97919i
\(306\) 0 0
\(307\) −466930. −0.282752 −0.141376 0.989956i \(-0.545153\pi\)
−0.141376 + 0.989956i \(0.545153\pi\)
\(308\) 814715. 151803.i 0.489361 0.0911808i
\(309\) 0 0
\(310\) −728002. 1.26094e6i −0.430257 0.745228i
\(311\) −1.21898e6 + 2.11134e6i −0.714654 + 1.23782i 0.248439 + 0.968647i \(0.420082\pi\)
−0.963093 + 0.269169i \(0.913251\pi\)
\(312\) 0 0
\(313\) −1.21047e6 2.09659e6i −0.698381 1.20963i −0.969028 0.246953i \(-0.920571\pi\)
0.270646 0.962679i \(-0.412763\pi\)
\(314\) −3.25035e6 −1.86040
\(315\) 0 0
\(316\) −492028. −0.277186
\(317\) 938057. + 1.62476e6i 0.524301 + 0.908116i 0.999600 + 0.0282918i \(0.00900675\pi\)
−0.475298 + 0.879825i \(0.657660\pi\)
\(318\) 0 0
\(319\) 1.36960e6 2.37221e6i 0.753557 1.30520i
\(320\) 38247.3 + 66246.2i 0.0208798 + 0.0361648i
\(321\) 0 0
\(322\) −254151. 296998.i −0.136600 0.159630i
\(323\) 556936. 0.297029
\(324\) 0 0
\(325\) 473612. 820321.i 0.248722 0.430800i
\(326\) 1.77933e6 3.08190e6i 0.927285 1.60611i
\(327\) 0 0
\(328\) −688828. −0.353530
\(329\) −195338. + 36396.6i −0.0994940 + 0.0185384i
\(330\) 0 0
\(331\) 541549. + 937990.i 0.271686 + 0.470575i 0.969294 0.245906i \(-0.0790853\pi\)
−0.697607 + 0.716480i \(0.745752\pi\)
\(332\) −724399. + 1.25470e6i −0.360689 + 0.624732i
\(333\) 0 0
\(334\) 2.39628e6 + 4.15048e6i 1.17536 + 2.03579i
\(335\) 2.13507e6 1.03944
\(336\) 0 0
\(337\) −2.59465e6 −1.24453 −0.622263 0.782809i \(-0.713786\pi\)
−0.622263 + 0.782809i \(0.713786\pi\)
\(338\) −1.01359e6 1.75560e6i −0.482583 0.835859i
\(339\) 0 0
\(340\) −268325. + 464753.i −0.125882 + 0.218034i
\(341\) −453107. 784804.i −0.211016 0.365490i
\(342\) 0 0
\(343\) −1.85454e6 + 1.14378e6i −0.851141 + 0.524938i
\(344\) 179828. 0.0819333
\(345\) 0 0
\(346\) 882371. 1.52831e6i 0.396242 0.686312i
\(347\) −935255. + 1.61991e6i −0.416972 + 0.722216i −0.995633 0.0933518i \(-0.970242\pi\)
0.578662 + 0.815568i \(0.303575\pi\)
\(348\) 0 0
\(349\) −1.61685e6 −0.710568 −0.355284 0.934758i \(-0.615616\pi\)
−0.355284 + 0.934758i \(0.615616\pi\)
\(350\) −992689. + 2.81179e6i −0.433155 + 1.22691i
\(351\) 0 0
\(352\) 1.03762e6 + 1.79720e6i 0.446354 + 0.773109i
\(353\) −289153. + 500827.i −0.123507 + 0.213920i −0.921148 0.389212i \(-0.872747\pi\)
0.797642 + 0.603132i \(0.206081\pi\)
\(354\) 0 0
\(355\) −574310. 994734.i −0.241866 0.418925i
\(356\) −791605. −0.331042
\(357\) 0 0
\(358\) 986330. 0.406738
\(359\) −984090. 1.70449e6i −0.402994 0.698006i 0.591092 0.806604i \(-0.298697\pi\)
−0.994086 + 0.108598i \(0.965364\pi\)
\(360\) 0 0
\(361\) 105650. 182990.i 0.0426677 0.0739027i
\(362\) 1.08453e6 + 1.87847e6i 0.434983 + 0.753412i
\(363\) 0 0
\(364\) −446615. 521909.i −0.176677 0.206463i
\(365\) −5.59553e6 −2.19841
\(366\) 0 0
\(367\) −1.08726e6 + 1.88319e6i −0.421375 + 0.729842i −0.996074 0.0885223i \(-0.971786\pi\)
0.574700 + 0.818364i \(0.305119\pi\)
\(368\) 271457. 470177.i 0.104491 0.180985i
\(369\) 0 0
\(370\) −418180. −0.158803
\(371\) 803910. + 939440.i 0.303230 + 0.354352i
\(372\) 0 0
\(373\) −692379. 1.19924e6i −0.257675 0.446306i 0.707944 0.706269i \(-0.249623\pi\)
−0.965619 + 0.259963i \(0.916290\pi\)
\(374\) −461197. + 798817.i −0.170493 + 0.295303i
\(375\) 0 0
\(376\) −75091.0 130061.i −0.0273916 0.0474437i
\(377\) −2.27044e6 −0.822728
\(378\) 0 0
\(379\) 3.37190e6 1.20580 0.602902 0.797815i \(-0.294011\pi\)
0.602902 + 0.797815i \(0.294011\pi\)
\(380\) −1.09115e6 1.88993e6i −0.387639 0.671410i
\(381\) 0 0
\(382\) −805642. + 1.39541e6i −0.282478 + 0.489265i
\(383\) 1.64030e6 + 2.84108e6i 0.571382 + 0.989662i 0.996424 + 0.0844886i \(0.0269257\pi\)
−0.425043 + 0.905173i \(0.639741\pi\)
\(384\) 0 0
\(385\) −1.21240e6 + 3.43412e6i −0.416863 + 1.18076i
\(386\) 4.76227e6 1.62684
\(387\) 0 0
\(388\) −938919. + 1.62626e6i −0.316628 + 0.548415i
\(389\) −1.47405e6 + 2.55313e6i −0.493899 + 0.855457i −0.999975 0.00703108i \(-0.997762\pi\)
0.506077 + 0.862488i \(0.331095\pi\)
\(390\) 0 0
\(391\) 157545. 0.0521150
\(392\) −1.28182e6 1.03396e6i −0.421321 0.339849i
\(393\) 0 0
\(394\) 4542.73 + 7868.24i 0.00147427 + 0.00255351i
\(395\) 1.08110e6 1.87251e6i 0.348636 0.603855i
\(396\) 0 0
\(397\) 34635.1 + 59989.7i 0.0110291 + 0.0191030i 0.871487 0.490418i \(-0.163156\pi\)
−0.860458 + 0.509521i \(0.829823\pi\)
\(398\) −2.61282e6 −0.826802
\(399\) 0 0
\(400\) −4.14151e6 −1.29422
\(401\) −1.67393e6 2.89933e6i −0.519848 0.900404i −0.999734 0.0230725i \(-0.992655\pi\)
0.479886 0.877331i \(-0.340678\pi\)
\(402\) 0 0
\(403\) −375567. + 650501.i −0.115193 + 0.199520i
\(404\) 260677. + 451506.i 0.0794602 + 0.137629i
\(405\) 0 0
\(406\) 7.02645e6 1.30921e6i 2.11554 0.394181i
\(407\) −260274. −0.0778834
\(408\) 0 0
\(409\) −1.45608e6 + 2.52201e6i −0.430406 + 0.745485i −0.996908 0.0785754i \(-0.974963\pi\)
0.566502 + 0.824060i \(0.308296\pi\)
\(410\) −1.98734e6 + 3.44217e6i −0.583864 + 1.01128i
\(411\) 0 0
\(412\) 530940. 0.154100
\(413\) 2.50122e6 + 2.92289e6i 0.721566 + 0.843214i
\(414\) 0 0
\(415\) −3.18334e6 5.51371e6i −0.907326 1.57153i
\(416\) 860050. 1.48965e6i 0.243663 0.422037i
\(417\) 0 0
\(418\) −1.87547e6 3.24842e6i −0.525014 0.909350i
\(419\) 4.62361e6 1.28661 0.643304 0.765611i \(-0.277563\pi\)
0.643304 + 0.765611i \(0.277563\pi\)
\(420\) 0 0
\(421\) −2.63042e6 −0.723303 −0.361652 0.932313i \(-0.617787\pi\)
−0.361652 + 0.932313i \(0.617787\pi\)
\(422\) 1.77837e6 + 3.08023e6i 0.486117 + 0.841979i
\(423\) 0 0
\(424\) −467270. + 809336.i −0.126227 + 0.218632i
\(425\) −600901. 1.04079e6i −0.161373 0.279506i
\(426\) 0 0
\(427\) 5.92772e6 1.10449e6i 1.57332 0.293152i
\(428\) −1.59599e6 −0.421135
\(429\) 0 0
\(430\) 518820. 898623.i 0.135315 0.234372i
\(431\) 3.77064e6 6.53094e6i 0.977736 1.69349i 0.307144 0.951663i \(-0.400627\pi\)
0.670592 0.741826i \(-0.266040\pi\)
\(432\) 0 0
\(433\) 5.83558e6 1.49577 0.747883 0.663830i \(-0.231070\pi\)
0.747883 + 0.663830i \(0.231070\pi\)
\(434\) 787186. 2.22971e6i 0.200610 0.568229i
\(435\) 0 0
\(436\) −2.00391e6 3.47088e6i −0.504850 0.874426i
\(437\) −320331. + 554830.i −0.0802409 + 0.138981i
\(438\) 0 0
\(439\) −84051.9 145582.i −0.0208155 0.0360535i 0.855430 0.517918i \(-0.173293\pi\)
−0.876246 + 0.481865i \(0.839960\pi\)
\(440\) −2.75259e6 −0.677814
\(441\) 0 0
\(442\) 764546. 0.186143
\(443\) −1.42076e6 2.46082e6i −0.343962 0.595760i 0.641203 0.767372i \(-0.278436\pi\)
−0.985165 + 0.171612i \(0.945102\pi\)
\(444\) 0 0
\(445\) 1.73934e6 3.01262e6i 0.416374 0.721181i
\(446\) −4.15503e6 7.19672e6i −0.989092 1.71316i
\(447\) 0 0
\(448\) −41356.6 + 117143.i −0.00973532 + 0.0275753i
\(449\) 1.41567e6 0.331396 0.165698 0.986177i \(-0.447012\pi\)
0.165698 + 0.986177i \(0.447012\pi\)
\(450\) 0 0
\(451\) −1.23691e6 + 2.14240e6i −0.286350 + 0.495973i
\(452\) 360273. 624012.i 0.0829442 0.143664i
\(453\) 0 0
\(454\) −6.44644e6 −1.46784
\(455\) 2.96755e6 552933.i 0.672000 0.125211i
\(456\) 0 0
\(457\) −778637. 1.34864e6i −0.174399 0.302068i 0.765554 0.643372i \(-0.222465\pi\)
−0.939953 + 0.341303i \(0.889132\pi\)
\(458\) 1.84833e6 3.20141e6i 0.411734 0.713144i
\(459\) 0 0
\(460\) −308664. 534621.i −0.0680129 0.117802i
\(461\) 4.45345e6 0.975987 0.487994 0.872847i \(-0.337729\pi\)
0.487994 + 0.872847i \(0.337729\pi\)
\(462\) 0 0
\(463\) 4.92263e6 1.06720 0.533599 0.845738i \(-0.320839\pi\)
0.533599 + 0.845738i \(0.320839\pi\)
\(464\) 4.96347e6 + 8.59698e6i 1.07026 + 1.85375i
\(465\) 0 0
\(466\) 3.69291e6 6.39631e6i 0.787778 1.36447i
\(467\) 2.54545e6 + 4.40885e6i 0.540098 + 0.935477i 0.998898 + 0.0469376i \(0.0149462\pi\)
−0.458800 + 0.888540i \(0.651720\pi\)
\(468\) 0 0
\(469\) 2.25442e6 + 2.63449e6i 0.473262 + 0.553049i
\(470\) −866579. −0.180952
\(471\) 0 0
\(472\) −1.45383e6 + 2.51810e6i −0.300370 + 0.520257i
\(473\) 322912. 559301.i 0.0663639 0.114946i
\(474\) 0 0
\(475\) 4.88717e6 0.993856
\(476\) −856786. + 159642.i −0.173322 + 0.0322946i
\(477\) 0 0
\(478\) 5.43416e6 + 9.41224e6i 1.08783 + 1.88418i
\(479\) −4.15042e6 + 7.18874e6i −0.826521 + 1.43158i 0.0742312 + 0.997241i \(0.476350\pi\)
−0.900752 + 0.434334i \(0.856984\pi\)
\(480\) 0 0
\(481\) 107867. + 186831.i 0.0212581 + 0.0368202i
\(482\) 7.13644e6 1.39915
\(483\) 0 0
\(484\) −676028. −0.131175
\(485\) −4.12604e6 7.14651e6i −0.796488 1.37956i
\(486\) 0 0
\(487\) −4.31701e6 + 7.47727e6i −0.824822 + 1.42863i 0.0772330 + 0.997013i \(0.475391\pi\)
−0.902055 + 0.431621i \(0.857942\pi\)
\(488\) 2.27871e6 + 3.94684e6i 0.433151 + 0.750240i
\(489\) 0 0
\(490\) −8.86500e6 + 3.42238e6i −1.66797 + 0.643930i
\(491\) −95039.5 −0.0177910 −0.00889550 0.999960i \(-0.502832\pi\)
−0.00889550 + 0.999960i \(0.502832\pi\)
\(492\) 0 0
\(493\) −1.44032e6 + 2.49471e6i −0.266896 + 0.462277i
\(494\) −1.55453e6 + 2.69252e6i −0.286603 + 0.496411i
\(495\) 0 0
\(496\) 3.28415e6 0.599402
\(497\) 621000. 1.75898e6i 0.112772 0.319426i
\(498\) 0 0
\(499\) −1.07102e6 1.85506e6i −0.192551 0.333507i 0.753544 0.657397i \(-0.228343\pi\)
−0.946095 + 0.323890i \(0.895009\pi\)
\(500\) −88782.9 + 153776.i −0.0158820 + 0.0275084i
\(501\) 0 0
\(502\) −30143.8 52210.7i −0.00533875 0.00924698i
\(503\) −5.24794e6 −0.924844 −0.462422 0.886660i \(-0.653019\pi\)
−0.462422 + 0.886660i \(0.653019\pi\)
\(504\) 0 0
\(505\) −2.29107e6 −0.399769
\(506\) −530531. 918907.i −0.0921159 0.159549i
\(507\) 0 0
\(508\) −469945. + 813968.i −0.0807956 + 0.139942i
\(509\) −5.29453e6 9.17040e6i −0.905802 1.56889i −0.819837 0.572596i \(-0.805936\pi\)
−0.0859643 0.996298i \(-0.527397\pi\)
\(510\) 0 0
\(511\) −5.90829e6 6.90437e6i −1.00094 1.16969i
\(512\) −3.52190e6 −0.593747
\(513\) 0 0
\(514\) 1.86819e6 3.23580e6i 0.311899 0.540225i
\(515\) −1.16660e6 + 2.02061e6i −0.193822 + 0.335709i
\(516\) 0 0
\(517\) −539357. −0.0887462
\(518\) −441554. 515996.i −0.0723036 0.0844932i
\(519\) 0 0
\(520\) 1.14077e6 + 1.97588e6i 0.185008 + 0.320443i
\(521\) −2.27232e6 + 3.93578e6i −0.366755 + 0.635238i −0.989056 0.147540i \(-0.952865\pi\)
0.622301 + 0.782778i \(0.286198\pi\)
\(522\) 0 0
\(523\) 2.63599e6 + 4.56566e6i 0.421394 + 0.729877i 0.996076 0.0885004i \(-0.0282075\pi\)
−0.574682 + 0.818377i \(0.694874\pi\)
\(524\) 3.02772e6 0.481711
\(525\) 0 0
\(526\) −2.49373e6 −0.392993
\(527\) 476504. + 825330.i 0.0747378 + 0.129450i
\(528\) 0 0
\(529\) 3.12756e6 5.41709e6i 0.485921 0.841641i
\(530\) 2.69624e6 + 4.67003e6i 0.416936 + 0.722154i
\(531\) 0 0
\(532\) 1.17986e6 3.34196e6i 0.180739 0.511943i
\(533\) 2.05048e6 0.312635
\(534\) 0 0
\(535\) 3.50676e6 6.07389e6i 0.529690 0.917451i
\(536\) −1.31037e6 + 2.26963e6i −0.197008 + 0.341227i
\(537\) 0 0
\(538\) 3.39647e6 0.505908
\(539\) −5.51755e6 + 2.13008e6i −0.818040 + 0.315809i
\(540\) 0 0
\(541\) −2.96723e6 5.13939e6i −0.435871 0.754950i 0.561496 0.827480i \(-0.310226\pi\)
−0.997366 + 0.0725298i \(0.976893\pi\)
\(542\) −3.46209e6 + 5.99652e6i −0.506221 + 0.876801i
\(543\) 0 0
\(544\) −1.09120e6 1.89001e6i −0.158091 0.273821i
\(545\) 1.76122e7 2.53994
\(546\) 0 0
\(547\) −8.82017e6 −1.26040 −0.630200 0.776433i \(-0.717027\pi\)
−0.630200 + 0.776433i \(0.717027\pi\)
\(548\) 256673. + 444571.i 0.0365115 + 0.0632397i
\(549\) 0 0
\(550\) −4.04705e6 + 7.00970e6i −0.570469 + 0.988081i
\(551\) −5.85712e6 1.01448e7i −0.821874 1.42353i
\(552\) 0 0
\(553\) 3.45204e6 643206.i 0.480024 0.0894411i
\(554\) −6.86124e6 −0.949791
\(555\) 0 0
\(556\) −3.05538e6 + 5.29207e6i −0.419158 + 0.726004i
\(557\) −591120. + 1.02385e6i −0.0807304 + 0.139829i −0.903564 0.428453i \(-0.859059\pi\)
0.822833 + 0.568283i \(0.192392\pi\)
\(558\) 0 0
\(559\) −535306. −0.0724556
\(560\) −8.58111e6 1.00278e7i −1.15631 1.35125i
\(561\) 0 0
\(562\) 1.12734e6 + 1.95261e6i 0.150561 + 0.260780i
\(563\) 2.03870e6 3.53114e6i 0.271071 0.469509i −0.698065 0.716034i \(-0.745955\pi\)
0.969136 + 0.246525i \(0.0792888\pi\)
\(564\) 0 0
\(565\) 1.58321e6 + 2.74219e6i 0.208649 + 0.361391i
\(566\) −1.25514e7 −1.64684
\(567\) 0 0
\(568\) 1.40990e6 0.183366
\(569\) 4.08807e6 + 7.08075e6i 0.529344 + 0.916851i 0.999414 + 0.0342216i \(0.0108952\pi\)
−0.470070 + 0.882629i \(0.655771\pi\)
\(570\) 0 0
\(571\) −1.65307e6 + 2.86321e6i −0.212179 + 0.367504i −0.952396 0.304863i \(-0.901389\pi\)
0.740217 + 0.672368i \(0.234723\pi\)
\(572\) −932292. 1.61478e6i −0.119141 0.206359i
\(573\) 0 0
\(574\) −6.34574e6 + 1.18238e6i −0.803901 + 0.149788i
\(575\) 1.38247e6 0.174376
\(576\) 0 0
\(577\) 3.57497e6 6.19203e6i 0.447026 0.774272i −0.551165 0.834396i \(-0.685816\pi\)
0.998191 + 0.0601245i \(0.0191498\pi\)
\(578\) −4.54324e6 + 7.86913e6i −0.565648 + 0.979731i
\(579\) 0 0
\(580\) 1.12876e7 1.39325
\(581\) 3.44214e6 9.74986e6i 0.423046 1.19828i
\(582\) 0 0
\(583\) 1.67813e6 + 2.90661e6i 0.204482 + 0.354173i
\(584\) 3.43418e6 5.94818e6i 0.416669 0.721692i
\(585\) 0 0
\(586\) −5.81309e6 1.00686e7i −0.699300 1.21122i
\(587\) −9.69191e6 −1.16095 −0.580476 0.814277i \(-0.697133\pi\)
−0.580476 + 0.814277i \(0.697133\pi\)
\(588\) 0 0
\(589\) −3.87545e6 −0.460292
\(590\) 8.38886e6 + 1.45299e7i 0.992139 + 1.71844i
\(591\) 0 0
\(592\) 471621. 816872.i 0.0553081 0.0957965i
\(593\) 3.31980e6 + 5.75006e6i 0.387682 + 0.671484i 0.992137 0.125154i \(-0.0399426\pi\)
−0.604456 + 0.796639i \(0.706609\pi\)
\(594\) 0 0
\(595\) 1.27500e6 3.61145e6i 0.147645 0.418205i
\(596\) 6.45569e6 0.744435
\(597\) 0 0
\(598\) −439742. + 761655.i −0.0502857 + 0.0870974i
\(599\) −1.62096e6 + 2.80758e6i −0.184588 + 0.319716i −0.943438 0.331550i \(-0.892428\pi\)
0.758849 + 0.651266i \(0.225762\pi\)
\(600\) 0 0
\(601\) −5.65076e6 −0.638147 −0.319074 0.947730i \(-0.603372\pi\)
−0.319074 + 0.947730i \(0.603372\pi\)
\(602\) 1.65664e6 308676.i 0.186310 0.0347145i
\(603\) 0 0
\(604\) 3.25887e6 + 5.64453e6i 0.363475 + 0.629557i
\(605\) 1.48539e6 2.57277e6i 0.164988 0.285767i
\(606\) 0 0
\(607\) −117837. 204100.i −0.0129811 0.0224839i 0.859462 0.511200i \(-0.170799\pi\)
−0.872443 + 0.488716i \(0.837465\pi\)
\(608\) 8.87478e6 0.973641
\(609\) 0 0
\(610\) 2.62972e7 2.86144
\(611\) 223529. + 387163.i 0.0242231 + 0.0419557i
\(612\) 0 0
\(613\) −394438. + 683187.i −0.0423963 + 0.0734325i −0.886445 0.462834i \(-0.846833\pi\)
0.844049 + 0.536267i \(0.180166\pi\)
\(614\) −1.65358e6 2.86408e6i −0.177012 0.306595i
\(615\) 0 0
\(616\) −2.90645e6 3.39645e6i −0.308611 0.360640i
\(617\) −1.67739e7 −1.77387 −0.886935 0.461894i \(-0.847170\pi\)
−0.886935 + 0.461894i \(0.847170\pi\)
\(618\) 0 0
\(619\) −4.11150e6 + 7.12132e6i −0.431294 + 0.747023i −0.996985 0.0775941i \(-0.975276\pi\)
0.565691 + 0.824617i \(0.308610\pi\)
\(620\) 1.86714e6 3.23399e6i 0.195074 0.337878i
\(621\) 0 0
\(622\) −1.72675e7 −1.78959
\(623\) 5.55386e6 1.03483e6i 0.573290 0.106819i
\(624\) 0 0
\(625\) 4.68399e6 + 8.11290e6i 0.479640 + 0.830761i
\(626\) 8.57346e6 1.48497e7i 0.874420 1.51454i
\(627\) 0 0
\(628\) −4.16818e6 7.21949e6i −0.421742 0.730479i
\(629\) 273714. 0.0275849
\(630\) 0 0
\(631\) −5.94507e6 −0.594406 −0.297203 0.954814i \(-0.596054\pi\)
−0.297203 + 0.954814i \(0.596054\pi\)
\(632\) 1.32702e6 + 2.29846e6i 0.132155 + 0.228899i
\(633\) 0 0
\(634\) −6.64403e6 + 1.15078e7i −0.656460 + 1.13702i
\(635\) −2.06515e6 3.57695e6i −0.203244 0.352029i
\(636\) 0 0
\(637\) 3.81569e6 + 3.07785e6i 0.372585 + 0.300537i
\(638\) 1.94011e7 1.88701
\(639\) 0 0
\(640\) 7.26120e6 1.25768e7i 0.700743 1.21372i
\(641\) −5.33804e6 + 9.24576e6i −0.513141 + 0.888786i 0.486743 + 0.873545i \(0.338185\pi\)
−0.999884 + 0.0152411i \(0.995148\pi\)
\(642\) 0 0
\(643\) −3.13159e6 −0.298701 −0.149351 0.988784i \(-0.547718\pi\)
−0.149351 + 0.988784i \(0.547718\pi\)
\(644\) 333757. 945367.i 0.0317114 0.0898227i
\(645\) 0 0
\(646\) 1.97232e6 + 3.41616e6i 0.185950 + 0.322075i
\(647\) −2.46728e6 + 4.27346e6i −0.231717 + 0.401346i −0.958314 0.285719i \(-0.907768\pi\)
0.726596 + 0.687065i \(0.241101\pi\)
\(648\) 0 0
\(649\) 5.22120e6 + 9.04339e6i 0.486585 + 0.842790i
\(650\) 6.70897e6 0.622834
\(651\) 0 0
\(652\) 9.12710e6 0.840841
\(653\) 2.86112e6 + 4.95561e6i 0.262575 + 0.454793i 0.966925 0.255059i \(-0.0820950\pi\)
−0.704351 + 0.709852i \(0.748762\pi\)
\(654\) 0 0
\(655\) −6.65258e6 + 1.15226e7i −0.605881 + 1.04942i
\(656\) −4.48261e6 7.76411e6i −0.406698 0.704421i
\(657\) 0 0
\(658\) −915018. 1.06928e6i −0.0823881 0.0962779i
\(659\) −362477. −0.0325137 −0.0162569 0.999868i \(-0.505175\pi\)
−0.0162569 + 0.999868i \(0.505175\pi\)
\(660\) 0 0
\(661\) 9.56053e6 1.65593e7i 0.851096 1.47414i −0.0291249 0.999576i \(-0.509272\pi\)
0.880220 0.474565i \(-0.157395\pi\)
\(662\) −3.83566e6 + 6.64356e6i −0.340170 + 0.589191i
\(663\) 0 0
\(664\) 7.81494e6 0.687868
\(665\) 1.01261e7 + 1.18333e7i 0.887950 + 1.03765i
\(666\) 0 0
\(667\) −1.65685e6 2.86975e6i −0.144201 0.249764i
\(668\) −6.14587e6 + 1.06450e7i −0.532896 + 0.923003i
\(669\) 0 0
\(670\) 7.56111e6 + 1.30962e7i 0.650727 + 1.12709i
\(671\) 1.63673e7 1.40337
\(672\) 0 0
\(673\) −573374. −0.0487978 −0.0243989 0.999702i \(-0.507767\pi\)
−0.0243989 + 0.999702i \(0.507767\pi\)
\(674\) −9.18864e6 1.59152e7i −0.779115 1.34947i
\(675\) 0 0
\(676\) 2.59962e6 4.50267e6i 0.218798 0.378968i
\(677\) 5.84516e6 + 1.01241e7i 0.490146 + 0.848957i 0.999936 0.0113419i \(-0.00361030\pi\)
−0.509790 + 0.860299i \(0.670277\pi\)
\(678\) 0 0
\(679\) 4.46148e6 1.26371e7i 0.371368 1.05190i
\(680\) 2.89473e6 0.240069
\(681\) 0 0
\(682\) 3.20925e6 5.55858e6i 0.264206 0.457618i
\(683\) 9.18370e6 1.59066e7i 0.753297 1.30475i −0.192920 0.981214i \(-0.561796\pi\)
0.946217 0.323534i \(-0.104871\pi\)
\(684\) 0 0
\(685\) −2.25588e6 −0.183692
\(686\) −1.35834e7 7.32492e6i −1.10204 0.594282i
\(687\) 0 0
\(688\) 1.17025e6 + 2.02693e6i 0.0942554 + 0.163255i
\(689\) 1.39096e6 2.40921e6i 0.111626 0.193342i
\(690\) 0 0
\(691\) −1.17806e7 2.04045e7i −0.938579 1.62567i −0.768125 0.640300i \(-0.778810\pi\)
−0.170454 0.985366i \(-0.554523\pi\)
\(692\) 4.52612e6 0.359303
\(693\) 0 0
\(694\) −1.32484e7 −1.04415
\(695\) −1.34267e7 2.32558e7i −1.05441 1.82629i
\(696\) 0 0
\(697\) 1.30078e6 2.25303e6i 0.101420 0.175665i
\(698\) −5.72587e6 9.91750e6i −0.444839 0.770484i
\(699\) 0 0
\(700\) −7.51839e6 + 1.40087e6i −0.579935 + 0.108057i
\(701\) −1.32980e7 −1.02210 −0.511048 0.859552i \(-0.670743\pi\)
−0.511048 + 0.859552i \(0.670743\pi\)
\(702\) 0 0
\(703\) −556535. + 963946.i −0.0424721 + 0.0735639i
\(704\) −168605. + 292033.i −0.0128215 + 0.0222075i
\(705\) 0 0
\(706\) −4.09600e6 −0.309277
\(707\) −2.41913e6 2.82697e6i −0.182016 0.212703i
\(708\) 0 0
\(709\) 3.42677e6 + 5.93533e6i 0.256017 + 0.443434i 0.965171 0.261619i \(-0.0842564\pi\)
−0.709154 + 0.705053i \(0.750923\pi\)
\(710\) 4.06770e6 7.04547e6i 0.302833 0.524522i
\(711\) 0 0
\(712\) 2.13499e6 + 3.69791e6i 0.157832 + 0.273374i
\(713\) −1.09628e6 −0.0807602
\(714\) 0 0
\(715\) 8.19384e6 0.599408
\(716\) 1.26485e6 + 2.19078e6i 0.0922051 + 0.159704i
\(717\) 0 0
\(718\) 6.97008e6 1.20725e7i 0.504576 0.873951i
\(719\) 1.32865e7 + 2.30128e7i 0.958490 + 1.66015i 0.726172 + 0.687513i \(0.241298\pi\)
0.232318 + 0.972640i \(0.425369\pi\)
\(720\) 0 0
\(721\) −3.72505e6 + 694075.i −0.266866 + 0.0497242i
\(722\) 1.49658e6 0.106846
\(723\) 0 0
\(724\) −2.78156e6 + 4.81781e6i −0.197216 + 0.341588i
\(725\) −1.26390e7 + 2.18913e7i −0.893031 + 1.54678i
\(726\) 0 0
\(727\) 2.16991e6 0.152267 0.0761335 0.997098i \(-0.475742\pi\)
0.0761335 + 0.997098i \(0.475742\pi\)
\(728\) −1.23351e6 + 3.49393e6i −0.0862612 + 0.244335i
\(729\) 0 0
\(730\) −1.98159e7 3.43221e7i −1.37628 2.38379i
\(731\) −339587. + 588182.i −0.0235049 + 0.0407116i
\(732\) 0 0
\(733\) 8.73265e6 + 1.51254e7i 0.600324 + 1.03979i 0.992772 + 0.120018i \(0.0382951\pi\)
−0.392447 + 0.919774i \(0.628372\pi\)
\(734\) −1.54016e7 −1.05518
\(735\) 0 0
\(736\) 2.51048e6 0.170829
\(737\) 4.70602e6 + 8.15106e6i 0.319143 + 0.552771i
\(738\) 0 0
\(739\) 6.82304e6 1.18178e7i 0.459586 0.796026i −0.539353 0.842080i \(-0.681331\pi\)
0.998939 + 0.0460536i \(0.0146645\pi\)
\(740\) −536264. 928836.i −0.0359997 0.0623533i
\(741\) 0 0
\(742\) −2.91544e6 + 8.25798e6i −0.194399 + 0.550635i
\(743\) −1.48965e7 −0.989944 −0.494972 0.868909i \(-0.664822\pi\)
−0.494972 + 0.868909i \(0.664822\pi\)
\(744\) 0 0
\(745\) −1.41846e7 + 2.45685e7i −0.936326 + 1.62176i
\(746\) 4.90396e6 8.49390e6i 0.322626 0.558805i
\(747\) 0 0
\(748\) −2.36571e6 −0.154599
\(749\) 1.11974e7 2.08637e6i 0.729311 0.135890i
\(750\) 0 0
\(751\) 1.26731e7 + 2.19505e7i 0.819944 + 1.42019i 0.905723 + 0.423871i \(0.139329\pi\)
−0.0857783 + 0.996314i \(0.527338\pi\)
\(752\) 977324. 1.69277e6i 0.0630222 0.109158i
\(753\) 0 0
\(754\) −8.04049e6 1.39265e7i −0.515056 0.892102i
\(755\) −2.86419e7 −1.82867
\(756\) 0 0
\(757\) −2.66725e7 −1.69170 −0.845852 0.533417i \(-0.820908\pi\)
−0.845852 + 0.533417i \(0.820908\pi\)
\(758\) 1.19412e7 + 2.06828e7i 0.754875 + 1.30748i
\(759\) 0 0
\(760\) −5.88577e6 + 1.01945e7i −0.369632 + 0.640221i
\(761\) 289914. + 502146.i 0.0181471 + 0.0314318i 0.874956 0.484202i \(-0.160890\pi\)
−0.856809 + 0.515634i \(0.827557\pi\)
\(762\) 0 0
\(763\) 1.85967e7 + 2.17319e7i 1.15644 + 1.35141i
\(764\) −4.13255e6 −0.256144
\(765\) 0 0
\(766\) −1.16179e7 + 2.01227e7i −0.715408 + 1.23912i
\(767\) 4.32770e6 7.49580e6i 0.265625 0.460076i
\(768\) 0 0
\(769\) 1.52438e7 0.929562 0.464781 0.885426i \(-0.346133\pi\)
0.464781 + 0.885426i \(0.346133\pi\)
\(770\) −2.53579e7 + 4.72485e6i −1.54130 + 0.287185i
\(771\) 0 0
\(772\) 6.10702e6 + 1.05777e7i 0.368796 + 0.638773i
\(773\) −9.74628e6 + 1.68810e7i −0.586665 + 1.01613i 0.408001 + 0.912982i \(0.366226\pi\)
−0.994666 + 0.103152i \(0.967107\pi\)
\(774\) 0 0