Defining parameters
| Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 63.e (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 6 \) | ||
| Sturm bound: | \(48\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(63, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 88 | 36 | 52 |
| Cusp forms | 72 | 32 | 40 |
| Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(63, [\chi])\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(63, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(63, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)