Properties

Label 63.6.c.b
Level $63$
Weight $6$
Character orbit 63.c
Analytic conductor $10.104$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,6,Mod(62,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.62");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 63.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1041806482\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 456x^{6} - 612x^{5} + 66744x^{4} + 32004x^{3} + 3729464x^{2} + 2503804x + 66026577 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} - \beta_{2}) q^{2} - 2 \beta_1 q^{4} + \beta_{6} q^{5} + (\beta_{5} + 2 \beta_1 - 14) q^{7} + (4 \beta_{4} + 4 \beta_{2}) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{4} - \beta_{2}) q^{2} - 2 \beta_1 q^{4} + \beta_{6} q^{5} + (\beta_{5} + 2 \beta_1 - 14) q^{7} + (4 \beta_{4} + 4 \beta_{2}) q^{8} + (2 \beta_{5} + \beta_{3} - \beta_1) q^{10} + (4 \beta_{4} + 53 \beta_{2}) q^{11} + (4 \beta_{5} + \beta_{3} - 2 \beta_1) q^{13} + ( - \beta_{7} - 8 \beta_{6} + 21 \beta_{4} - 31 \beta_{2}) q^{14} + ( - 64 \beta_1 - 16) q^{16} + ( - 2 \beta_{7} + 13 \beta_{6}) q^{17} + (6 \beta_{5} - 6 \beta_{3} - 3 \beta_1) q^{19} + ( - 4 \beta_{7} - 4 \beta_{6}) q^{20} + (49 \beta_1 + 670) q^{22} + (158 \beta_{4} + 845 \beta_{2}) q^{23} + (20 \beta_1 + 1171) q^{25} + ( - 6 \beta_{7} - 52 \beta_{6}) q^{26} + ( - 14 \beta_{3} + 28 \beta_1 - 1260) q^{28} + (143 \beta_{4} - 850 \beta_{2}) q^{29} + (4 \beta_{5} + 24 \beta_{3} - 2 \beta_1) q^{31} + ( - 784 \beta_{4} + 1296 \beta_{2}) q^{32} + ( - 6 \beta_{5} + \beta_{3} + 3 \beta_1) q^{34} + (5 \beta_{7} - 9 \beta_{6} + 140 \beta_{4} - 2148 \beta_{2}) q^{35} + ( - 526 \beta_1 - 4288) q^{37} + (6 \beta_{7} + 72 \beta_{6}) q^{38} + ( - 8 \beta_{5} + 4 \beta_{3} + 4 \beta_1) q^{40} + (26 \beta_{7} + 111 \beta_{6}) q^{41} + (613 \beta_1 + 4052) q^{43} + (1484 \beta_{4} + 144 \beta_{2}) q^{44} + (687 \beta_1 + 8986) q^{46} + (38 \beta_{7} + 82 \beta_{6}) q^{47} + ( - 28 \beta_{5} + 35 \beta_{3} - 126 \beta_1 - 13265) q^{49} + (1451 \beta_{4} - 1531 \beta_{2}) q^{50} + ( - 72 \beta_{5} - 56 \beta_{3} + 36 \beta_1) q^{52} + ( - 6091 \beta_{4} + 326 \beta_{2}) q^{53} + ( - 106 \beta_{5} + 4 \beta_{3} + 53 \beta_1) q^{55} + ( - 4 \beta_{7} + 24 \beta_{6} - 196 \beta_{4} - 236 \beta_{2}) q^{56} + ( - 993 \beta_1 - 14474) q^{58} + (28 \beta_{7} - 328 \beta_{6}) q^{59} + ( - 172 \beta_{5} - 2 \beta_{3} + 86 \beta_1) q^{61} + ( - 52 \beta_{7} - 512 \beta_{6}) q^{62} + (32 \beta_1 + 31744) q^{64} + (4856 \beta_{4} - 8952 \beta_{2}) q^{65} + (2548 \beta_1 + 19076) q^{67} + ( - 60 \beta_{7} + 444 \beta_{6}) q^{68} + (62 \beta_{5} + 21 \beta_{3} - 2319 \beta_1 - 32592) q^{70} + (7634 \beta_{4} + 11765 \beta_{2}) q^{71} + (36 \beta_{5} - 151 \beta_{3} - 18 \beta_1) q^{73} + ( - 11652 \beta_{4} + 13756 \beta_{2}) q^{74} + (432 \beta_{5} - 84 \beta_{3} - 216 \beta_1) q^{76} + ( - 4 \beta_{7} + 367 \beta_{6} - 1911 \beta_{4} - 922 \beta_{2}) q^{77} + (1708 \beta_1 - 11824) q^{79} + ( - 128 \beta_{7} - 144 \beta_{6}) q^{80} + (638 \beta_{5} + 267 \beta_{3} - 319 \beta_1) q^{82} + (22 \beta_{7} + 798 \beta_{6}) q^{83} + ( - 3996 \beta_1 + 59400) q^{85} + (12634 \beta_{4} - 15086 \beta_{2}) q^{86} + (228 \beta_1 - 3256) q^{88} + ( - 54 \beta_{7} - 1155 \beta_{6}) q^{89} + (34 \beta_{5} + 56 \beta_{3} - 2445 \beta_1 - 62664) q^{91} + (23660 \beta_{4} + 5688 \beta_{2}) q^{92} + (772 \beta_{5} + 310 \beta_{3} - 386 \beta_1) q^{94} + ( - 24936 \beta_{4} - 10728 \beta_{2}) q^{95} + ( - 484 \beta_{5} + 163 \beta_{3} + 242 \beta_1) q^{97} + ( - 42 \beta_{7} - 476 \beta_{6} - 15225 \beta_{4} + \cdots + 15785 \beta_{2}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 112 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 112 q^{7} - 128 q^{16} + 5360 q^{22} + 9368 q^{25} - 10080 q^{28} - 34304 q^{37} + 32416 q^{43} + 71888 q^{46} - 106120 q^{49} - 115792 q^{58} + 253952 q^{64} + 152608 q^{67} - 260736 q^{70} - 94592 q^{79} + 475200 q^{85} - 26048 q^{88} - 501312 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} + 456x^{6} - 612x^{5} + 66744x^{4} + 32004x^{3} + 3729464x^{2} + 2503804x + 66026577 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 7276 \nu^{7} - 6016 \nu^{6} - 2355636 \nu^{5} - 9413506 \nu^{4} - 185550156 \nu^{3} - 611944144 \nu^{2} - 3939559436 \nu + 62846012472 ) / 4466767135 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 106 \nu^{7} - 597 \nu^{6} + 49014 \nu^{5} - 159684 \nu^{4} + 6374124 \nu^{3} - 8686185 \nu^{2} + 195744008 \nu - 314036202 ) / 51360255 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 136314924 \nu^{7} + 13885773036 \nu^{6} + 99207113184 \nu^{5} + 4638877777212 \nu^{4} + 40666053647532 \nu^{3} + \cdots + 87\!\cdots\!64 ) / 46771518670585 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 4026892 \nu^{7} + 41326635 \nu^{6} - 1675985952 \nu^{5} + 10635929286 \nu^{4} - 189591871494 \nu^{3} + 683245379841 \nu^{2} + \cdots + 17714021093796 ) / 1287289504695 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 603178436 \nu^{7} - 2349790824 \nu^{6} + 303972103626 \nu^{5} - 442753391709 \nu^{4} + 52921024233816 \nu^{3} + \cdots + 26\!\cdots\!78 ) / 140314556011755 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 174176 \nu^{7} - 1612878 \nu^{6} - 68934144 \nu^{5} - 1127164206 \nu^{4} - 7806037224 \nu^{3} - 184380040050 \nu^{2} + \cdots - 5955704489118 ) / 13400301405 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 3252328 \nu^{7} - 23469492 \nu^{6} - 1033111860 \nu^{5} - 12230717712 \nu^{4} - 98965955544 \nu^{3} - 1566104155968 \nu^{2} + \cdots - 45975274320660 ) / 13400301405 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 6\beta_{5} + 12\beta_{4} - \beta_{3} - 9\beta _1 + 36 ) / 72 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{7} + 2\beta_{6} + 6\beta_{5} + 6\beta_{4} - 4\beta_{3} + 18\beta_{2} + 153\beta _1 - 4032 ) / 36 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{7} + 33\beta_{6} - 402\beta_{5} - 2010\beta_{4} + 142\beta_{3} - 1404\beta_{2} + 1458\beta _1 - 16074 ) / 36 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 133 \beta_{7} - 716 \beta_{6} - 1302 \beta_{5} - 5352 \beta_{4} + 634 \beta_{3} - 7524 \beta_{2} - 15660 \beta _1 + 291960 ) / 18 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 4320 \beta_{7} - 33480 \beta_{6} + 121326 \beta_{5} + 959808 \beta_{4} - 50539 \beta_{3} + 969300 \beta_{2} - 761877 \beta _1 + 10552716 ) / 72 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 59335 \beta_{7} + 387032 \beta_{6} + 727620 \beta_{5} + 5222850 \beta_{4} - 328975 \beta_{3} + 6235722 \beta_{2} + 4954770 \beta _1 - 87159168 ) / 36 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 833784 \beta_{7} + 5942559 \beta_{6} - 8749824 \beta_{5} - 98335740 \beta_{4} + 3798511 \beta_{3} - 108304182 \beta_{2} + 90041283 \beta _1 - 1341413874 ) / 36 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
62.1
−0.822876 + 5.87982i
−0.822876 7.29403i
1.82288 14.2575i
1.82288 + 12.8433i
1.82288 + 14.2575i
1.82288 12.8433i
−0.822876 5.87982i
−0.822876 + 7.29403i
7.98430i 0 −31.7490 −67.9227 0 25.6863 + 127.072i 2.00393i 0 542.315i
62.2 7.98430i 0 −31.7490 67.9227 0 25.6863 127.072i 2.00393i 0 542.315i
62.3 0.500983i 0 31.7490 −63.0754 0 −53.6863 118.003i 31.9372i 0 31.5997i
62.4 0.500983i 0 31.7490 63.0754 0 −53.6863 + 118.003i 31.9372i 0 31.5997i
62.5 0.500983i 0 31.7490 −63.0754 0 −53.6863 + 118.003i 31.9372i 0 31.5997i
62.6 0.500983i 0 31.7490 63.0754 0 −53.6863 118.003i 31.9372i 0 31.5997i
62.7 7.98430i 0 −31.7490 −67.9227 0 25.6863 127.072i 2.00393i 0 542.315i
62.8 7.98430i 0 −31.7490 67.9227 0 25.6863 + 127.072i 2.00393i 0 542.315i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 62.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.6.c.b 8
3.b odd 2 1 inner 63.6.c.b 8
4.b odd 2 1 1008.6.k.b 8
7.b odd 2 1 inner 63.6.c.b 8
12.b even 2 1 1008.6.k.b 8
21.c even 2 1 inner 63.6.c.b 8
28.d even 2 1 1008.6.k.b 8
84.h odd 2 1 1008.6.k.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.6.c.b 8 1.a even 1 1 trivial
63.6.c.b 8 3.b odd 2 1 inner
63.6.c.b 8 7.b odd 2 1 inner
63.6.c.b 8 21.c even 2 1 inner
1008.6.k.b 8 4.b odd 2 1
1008.6.k.b 8 12.b even 2 1
1008.6.k.b 8 28.d even 2 1
1008.6.k.b 8 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 64T_{2}^{2} + 16 \) acting on \(S_{6}^{\mathrm{new}}(63, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 64 T^{2} + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - 8592 T^{2} + 18354816)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 56 T^{3} + 28098 T^{2} + \cdots + 282475249)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 79228 T^{2} + \cdots + 1523965444)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 676128 T^{2} + \cdots + 26504354304)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 3795984 T^{2} + \cdots + 13380660864)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 6287328 T^{2} + \cdots + 5001393682944)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 20891404 T^{2} + \cdots + 91145170812004)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 20966164 T^{2} + \cdots + 95002410498724)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 90530688 T^{2} + \cdots + 19\!\cdots\!04)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 8576 T - 51335408)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 450270096 T^{2} + \cdots + 22\!\cdots\!04)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 8104 T - 78275084)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} - 815119296 T^{2} + \cdots + 14\!\cdots\!36)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 1338585844 T^{2} + \cdots + 44\!\cdots\!36)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 1412814336 T^{2} + \cdots + 10\!\cdots\!76)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 893736192 T^{2} + \cdots + 19\!\cdots\!44)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 38152 T - 1272166832)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 5973632716 T^{2} + \cdots + 78\!\cdots\!64)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 3510489888 T^{2} + \cdots + 30\!\cdots\!84)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 23648 T - 595343552)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 5607969216 T^{2} + \cdots + 59\!\cdots\!96)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 12592946448 T^{2} + \cdots + 19\!\cdots\!84)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 10358370336 T^{2} + \cdots + 21\!\cdots\!56)^{2} \) Copy content Toggle raw display
show more
show less