Newspace parameters
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(10.1041806482\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 4x^{7} + 456x^{6} - 612x^{5} + 66744x^{4} + 32004x^{3} + 3729464x^{2} + 2503804x + 66026577 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{10}\cdot 3^{6} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 4x^{7} + 456x^{6} - 612x^{5} + 66744x^{4} + 32004x^{3} + 3729464x^{2} + 2503804x + 66026577 \)
:
\(\beta_{1}\) | \(=\) |
\( ( - 7276 \nu^{7} - 6016 \nu^{6} - 2355636 \nu^{5} - 9413506 \nu^{4} - 185550156 \nu^{3} - 611944144 \nu^{2} - 3939559436 \nu + 62846012472 ) / 4466767135 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 106 \nu^{7} - 597 \nu^{6} + 49014 \nu^{5} - 159684 \nu^{4} + 6374124 \nu^{3} - 8686185 \nu^{2} + 195744008 \nu - 314036202 ) / 51360255 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 136314924 \nu^{7} + 13885773036 \nu^{6} + 99207113184 \nu^{5} + 4638877777212 \nu^{4} + 40666053647532 \nu^{3} + \cdots + 87\!\cdots\!64 ) / 46771518670585 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 4026892 \nu^{7} + 41326635 \nu^{6} - 1675985952 \nu^{5} + 10635929286 \nu^{4} - 189591871494 \nu^{3} + 683245379841 \nu^{2} + \cdots + 17714021093796 ) / 1287289504695 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 603178436 \nu^{7} - 2349790824 \nu^{6} + 303972103626 \nu^{5} - 442753391709 \nu^{4} + 52921024233816 \nu^{3} + \cdots + 26\!\cdots\!78 ) / 140314556011755 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 174176 \nu^{7} - 1612878 \nu^{6} - 68934144 \nu^{5} - 1127164206 \nu^{4} - 7806037224 \nu^{3} - 184380040050 \nu^{2} + \cdots - 5955704489118 ) / 13400301405 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 3252328 \nu^{7} - 23469492 \nu^{6} - 1033111860 \nu^{5} - 12230717712 \nu^{4} - 98965955544 \nu^{3} - 1566104155968 \nu^{2} + \cdots - 45975274320660 ) / 13400301405 \)
|
\(\nu\) | \(=\) |
\( ( 6\beta_{5} + 12\beta_{4} - \beta_{3} - 9\beta _1 + 36 ) / 72 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -\beta_{7} + 2\beta_{6} + 6\beta_{5} + 6\beta_{4} - 4\beta_{3} + 18\beta_{2} + 153\beta _1 - 4032 ) / 36 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -3\beta_{7} + 33\beta_{6} - 402\beta_{5} - 2010\beta_{4} + 142\beta_{3} - 1404\beta_{2} + 1458\beta _1 - 16074 ) / 36 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 133 \beta_{7} - 716 \beta_{6} - 1302 \beta_{5} - 5352 \beta_{4} + 634 \beta_{3} - 7524 \beta_{2} - 15660 \beta _1 + 291960 ) / 18 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 4320 \beta_{7} - 33480 \beta_{6} + 121326 \beta_{5} + 959808 \beta_{4} - 50539 \beta_{3} + 969300 \beta_{2} - 761877 \beta _1 + 10552716 ) / 72 \)
|
\(\nu^{6}\) | \(=\) |
\( ( - 59335 \beta_{7} + 387032 \beta_{6} + 727620 \beta_{5} + 5222850 \beta_{4} - 328975 \beta_{3} + 6235722 \beta_{2} + 4954770 \beta _1 - 87159168 ) / 36 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 833784 \beta_{7} + 5942559 \beta_{6} - 8749824 \beta_{5} - 98335740 \beta_{4} + 3798511 \beta_{3} - 108304182 \beta_{2} + 90041283 \beta _1 - 1341413874 ) / 36 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).
\(n\) | \(10\) | \(29\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
62.1 |
|
− | 7.98430i | 0 | −31.7490 | −67.9227 | 0 | 25.6863 | + | 127.072i | − | 2.00393i | 0 | 542.315i | ||||||||||||||||||||||||||||||||||||||
62.2 | − | 7.98430i | 0 | −31.7490 | 67.9227 | 0 | 25.6863 | − | 127.072i | − | 2.00393i | 0 | − | 542.315i | ||||||||||||||||||||||||||||||||||||||
62.3 | − | 0.500983i | 0 | 31.7490 | −63.0754 | 0 | −53.6863 | − | 118.003i | − | 31.9372i | 0 | 31.5997i | |||||||||||||||||||||||||||||||||||||||
62.4 | − | 0.500983i | 0 | 31.7490 | 63.0754 | 0 | −53.6863 | + | 118.003i | − | 31.9372i | 0 | − | 31.5997i | ||||||||||||||||||||||||||||||||||||||
62.5 | 0.500983i | 0 | 31.7490 | −63.0754 | 0 | −53.6863 | + | 118.003i | 31.9372i | 0 | − | 31.5997i | ||||||||||||||||||||||||||||||||||||||||
62.6 | 0.500983i | 0 | 31.7490 | 63.0754 | 0 | −53.6863 | − | 118.003i | 31.9372i | 0 | 31.5997i | |||||||||||||||||||||||||||||||||||||||||
62.7 | 7.98430i | 0 | −31.7490 | −67.9227 | 0 | 25.6863 | − | 127.072i | 2.00393i | 0 | − | 542.315i | ||||||||||||||||||||||||||||||||||||||||
62.8 | 7.98430i | 0 | −31.7490 | 67.9227 | 0 | 25.6863 | + | 127.072i | 2.00393i | 0 | 542.315i | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 63.6.c.b | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 63.6.c.b | ✓ | 8 |
4.b | odd | 2 | 1 | 1008.6.k.b | 8 | ||
7.b | odd | 2 | 1 | inner | 63.6.c.b | ✓ | 8 |
12.b | even | 2 | 1 | 1008.6.k.b | 8 | ||
21.c | even | 2 | 1 | inner | 63.6.c.b | ✓ | 8 |
28.d | even | 2 | 1 | 1008.6.k.b | 8 | ||
84.h | odd | 2 | 1 | 1008.6.k.b | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.6.c.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
63.6.c.b | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
63.6.c.b | ✓ | 8 | 7.b | odd | 2 | 1 | inner |
63.6.c.b | ✓ | 8 | 21.c | even | 2 | 1 | inner |
1008.6.k.b | 8 | 4.b | odd | 2 | 1 | ||
1008.6.k.b | 8 | 12.b | even | 2 | 1 | ||
1008.6.k.b | 8 | 28.d | even | 2 | 1 | ||
1008.6.k.b | 8 | 84.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 64T_{2}^{2} + 16 \)
acting on \(S_{6}^{\mathrm{new}}(63, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} + 64 T^{2} + 16)^{2} \)
$3$
\( T^{8} \)
$5$
\( (T^{4} - 8592 T^{2} + 18354816)^{2} \)
$7$
\( (T^{4} + 56 T^{3} + 28098 T^{2} + \cdots + 282475249)^{2} \)
$11$
\( (T^{4} + 79228 T^{2} + \cdots + 1523965444)^{2} \)
$13$
\( (T^{4} + 676128 T^{2} + \cdots + 26504354304)^{2} \)
$17$
\( (T^{4} - 3795984 T^{2} + \cdots + 13380660864)^{2} \)
$19$
\( (T^{4} + 6287328 T^{2} + \cdots + 5001393682944)^{2} \)
$23$
\( (T^{4} + 20891404 T^{2} + \cdots + 91145170812004)^{2} \)
$29$
\( (T^{4} + 20966164 T^{2} + \cdots + 95002410498724)^{2} \)
$31$
\( (T^{4} + 90530688 T^{2} + \cdots + 19\!\cdots\!04)^{2} \)
$37$
\( (T^{2} + 8576 T - 51335408)^{4} \)
$41$
\( (T^{4} - 450270096 T^{2} + \cdots + 22\!\cdots\!04)^{2} \)
$43$
\( (T^{2} - 8104 T - 78275084)^{4} \)
$47$
\( (T^{4} - 815119296 T^{2} + \cdots + 14\!\cdots\!36)^{2} \)
$53$
\( (T^{4} + 1338585844 T^{2} + \cdots + 44\!\cdots\!36)^{2} \)
$59$
\( (T^{4} - 1412814336 T^{2} + \cdots + 10\!\cdots\!76)^{2} \)
$61$
\( (T^{4} + 893736192 T^{2} + \cdots + 19\!\cdots\!44)^{2} \)
$67$
\( (T^{2} - 38152 T - 1272166832)^{4} \)
$71$
\( (T^{4} + 5973632716 T^{2} + \cdots + 78\!\cdots\!64)^{2} \)
$73$
\( (T^{4} + 3510489888 T^{2} + \cdots + 30\!\cdots\!84)^{2} \)
$79$
\( (T^{2} + 23648 T - 595343552)^{4} \)
$83$
\( (T^{4} - 5607969216 T^{2} + \cdots + 59\!\cdots\!96)^{2} \)
$89$
\( (T^{4} - 12592946448 T^{2} + \cdots + 19\!\cdots\!84)^{2} \)
$97$
\( (T^{4} + 10358370336 T^{2} + \cdots + 21\!\cdots\!56)^{2} \)
show more
show less