Properties

Label 63.6.a.a.1.1
Level $63$
Weight $6$
Character 63.1
Self dual yes
Analytic conductor $10.104$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [63,6,Mod(1,63)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(63, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("63.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.1041806482\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 63.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.0000 q^{2} +68.0000 q^{4} +106.000 q^{5} -49.0000 q^{7} -360.000 q^{8} -1060.00 q^{10} -92.0000 q^{11} +670.000 q^{13} +490.000 q^{14} +1424.00 q^{16} +222.000 q^{17} -908.000 q^{19} +7208.00 q^{20} +920.000 q^{22} +1176.00 q^{23} +8111.00 q^{25} -6700.00 q^{26} -3332.00 q^{28} -1118.00 q^{29} +3696.00 q^{31} -2720.00 q^{32} -2220.00 q^{34} -5194.00 q^{35} +4182.00 q^{37} +9080.00 q^{38} -38160.0 q^{40} +6662.00 q^{41} -3700.00 q^{43} -6256.00 q^{44} -11760.0 q^{46} +7056.00 q^{47} +2401.00 q^{49} -81110.0 q^{50} +45560.0 q^{52} +37578.0 q^{53} -9752.00 q^{55} +17640.0 q^{56} +11180.0 q^{58} -32700.0 q^{59} -10802.0 q^{61} -36960.0 q^{62} -18368.0 q^{64} +71020.0 q^{65} +64996.0 q^{67} +15096.0 q^{68} +51940.0 q^{70} +61320.0 q^{71} +38922.0 q^{73} -41820.0 q^{74} -61744.0 q^{76} +4508.00 q^{77} -88096.0 q^{79} +150944. q^{80} -66620.0 q^{82} -71892.0 q^{83} +23532.0 q^{85} +37000.0 q^{86} +33120.0 q^{88} -111818. q^{89} -32830.0 q^{91} +79968.0 q^{92} -70560.0 q^{94} -96248.0 q^{95} -150846. q^{97} -24010.0 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −10.0000 −1.76777 −0.883883 0.467707i \(-0.845080\pi\)
−0.883883 + 0.467707i \(0.845080\pi\)
\(3\) 0 0
\(4\) 68.0000 2.12500
\(5\) 106.000 1.89619 0.948093 0.317994i \(-0.103009\pi\)
0.948093 + 0.317994i \(0.103009\pi\)
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) −360.000 −1.98874
\(9\) 0 0
\(10\) −1060.00 −3.35201
\(11\) −92.0000 −0.229248 −0.114624 0.993409i \(-0.536566\pi\)
−0.114624 + 0.993409i \(0.536566\pi\)
\(12\) 0 0
\(13\) 670.000 1.09955 0.549777 0.835312i \(-0.314713\pi\)
0.549777 + 0.835312i \(0.314713\pi\)
\(14\) 490.000 0.668153
\(15\) 0 0
\(16\) 1424.00 1.39062
\(17\) 222.000 0.186308 0.0931538 0.995652i \(-0.470305\pi\)
0.0931538 + 0.995652i \(0.470305\pi\)
\(18\) 0 0
\(19\) −908.000 −0.577035 −0.288517 0.957475i \(-0.593162\pi\)
−0.288517 + 0.957475i \(0.593162\pi\)
\(20\) 7208.00 4.02939
\(21\) 0 0
\(22\) 920.000 0.405258
\(23\) 1176.00 0.463541 0.231770 0.972771i \(-0.425548\pi\)
0.231770 + 0.972771i \(0.425548\pi\)
\(24\) 0 0
\(25\) 8111.00 2.59552
\(26\) −6700.00 −1.94375
\(27\) 0 0
\(28\) −3332.00 −0.803175
\(29\) −1118.00 −0.246858 −0.123429 0.992353i \(-0.539389\pi\)
−0.123429 + 0.992353i \(0.539389\pi\)
\(30\) 0 0
\(31\) 3696.00 0.690761 0.345380 0.938463i \(-0.387750\pi\)
0.345380 + 0.938463i \(0.387750\pi\)
\(32\) −2720.00 −0.469563
\(33\) 0 0
\(34\) −2220.00 −0.329348
\(35\) −5194.00 −0.716691
\(36\) 0 0
\(37\) 4182.00 0.502203 0.251102 0.967961i \(-0.419207\pi\)
0.251102 + 0.967961i \(0.419207\pi\)
\(38\) 9080.00 1.02006
\(39\) 0 0
\(40\) −38160.0 −3.77102
\(41\) 6662.00 0.618935 0.309467 0.950910i \(-0.399849\pi\)
0.309467 + 0.950910i \(0.399849\pi\)
\(42\) 0 0
\(43\) −3700.00 −0.305162 −0.152581 0.988291i \(-0.548759\pi\)
−0.152581 + 0.988291i \(0.548759\pi\)
\(44\) −6256.00 −0.487153
\(45\) 0 0
\(46\) −11760.0 −0.819432
\(47\) 7056.00 0.465923 0.232961 0.972486i \(-0.425158\pi\)
0.232961 + 0.972486i \(0.425158\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) −81110.0 −4.58827
\(51\) 0 0
\(52\) 45560.0 2.33655
\(53\) 37578.0 1.83757 0.918785 0.394758i \(-0.129172\pi\)
0.918785 + 0.394758i \(0.129172\pi\)
\(54\) 0 0
\(55\) −9752.00 −0.434697
\(56\) 17640.0 0.751672
\(57\) 0 0
\(58\) 11180.0 0.436387
\(59\) −32700.0 −1.22298 −0.611488 0.791254i \(-0.709429\pi\)
−0.611488 + 0.791254i \(0.709429\pi\)
\(60\) 0 0
\(61\) −10802.0 −0.371689 −0.185844 0.982579i \(-0.559502\pi\)
−0.185844 + 0.982579i \(0.559502\pi\)
\(62\) −36960.0 −1.22110
\(63\) 0 0
\(64\) −18368.0 −0.560547
\(65\) 71020.0 2.08496
\(66\) 0 0
\(67\) 64996.0 1.76889 0.884443 0.466649i \(-0.154539\pi\)
0.884443 + 0.466649i \(0.154539\pi\)
\(68\) 15096.0 0.395904
\(69\) 0 0
\(70\) 51940.0 1.26694
\(71\) 61320.0 1.44363 0.721816 0.692085i \(-0.243308\pi\)
0.721816 + 0.692085i \(0.243308\pi\)
\(72\) 0 0
\(73\) 38922.0 0.854846 0.427423 0.904052i \(-0.359421\pi\)
0.427423 + 0.904052i \(0.359421\pi\)
\(74\) −41820.0 −0.887779
\(75\) 0 0
\(76\) −61744.0 −1.22620
\(77\) 4508.00 0.0866477
\(78\) 0 0
\(79\) −88096.0 −1.58814 −0.794069 0.607827i \(-0.792041\pi\)
−0.794069 + 0.607827i \(0.792041\pi\)
\(80\) 150944. 2.63688
\(81\) 0 0
\(82\) −66620.0 −1.09413
\(83\) −71892.0 −1.14547 −0.572737 0.819739i \(-0.694118\pi\)
−0.572737 + 0.819739i \(0.694118\pi\)
\(84\) 0 0
\(85\) 23532.0 0.353274
\(86\) 37000.0 0.539455
\(87\) 0 0
\(88\) 33120.0 0.455915
\(89\) −111818. −1.49636 −0.748181 0.663495i \(-0.769073\pi\)
−0.748181 + 0.663495i \(0.769073\pi\)
\(90\) 0 0
\(91\) −32830.0 −0.415592
\(92\) 79968.0 0.985024
\(93\) 0 0
\(94\) −70560.0 −0.823643
\(95\) −96248.0 −1.09416
\(96\) 0 0
\(97\) −150846. −1.62781 −0.813906 0.580996i \(-0.802663\pi\)
−0.813906 + 0.580996i \(0.802663\pi\)
\(98\) −24010.0 −0.252538
\(99\) 0 0
\(100\) 551548. 5.51548
\(101\) 137354. 1.33979 0.669897 0.742454i \(-0.266338\pi\)
0.669897 + 0.742454i \(0.266338\pi\)
\(102\) 0 0
\(103\) 28760.0 0.267113 0.133557 0.991041i \(-0.457360\pi\)
0.133557 + 0.991041i \(0.457360\pi\)
\(104\) −241200. −2.18672
\(105\) 0 0
\(106\) −375780. −3.24840
\(107\) −22556.0 −0.190460 −0.0952298 0.995455i \(-0.530359\pi\)
−0.0952298 + 0.995455i \(0.530359\pi\)
\(108\) 0 0
\(109\) 19998.0 0.161221 0.0806103 0.996746i \(-0.474313\pi\)
0.0806103 + 0.996746i \(0.474313\pi\)
\(110\) 97520.0 0.768444
\(111\) 0 0
\(112\) −69776.0 −0.525607
\(113\) −17906.0 −0.131918 −0.0659588 0.997822i \(-0.521011\pi\)
−0.0659588 + 0.997822i \(0.521011\pi\)
\(114\) 0 0
\(115\) 124656. 0.878959
\(116\) −76024.0 −0.524573
\(117\) 0 0
\(118\) 327000. 2.16194
\(119\) −10878.0 −0.0704177
\(120\) 0 0
\(121\) −152587. −0.947445
\(122\) 108020. 0.657059
\(123\) 0 0
\(124\) 251328. 1.46787
\(125\) 528516. 3.02540
\(126\) 0 0
\(127\) 66864.0 0.367860 0.183930 0.982939i \(-0.441118\pi\)
0.183930 + 0.982939i \(0.441118\pi\)
\(128\) 270720. 1.46048
\(129\) 0 0
\(130\) −710200. −3.68572
\(131\) −153764. −0.782846 −0.391423 0.920211i \(-0.628017\pi\)
−0.391423 + 0.920211i \(0.628017\pi\)
\(132\) 0 0
\(133\) 44492.0 0.218099
\(134\) −649960. −3.12698
\(135\) 0 0
\(136\) −79920.0 −0.370517
\(137\) −255978. −1.16520 −0.582601 0.812758i \(-0.697965\pi\)
−0.582601 + 0.812758i \(0.697965\pi\)
\(138\) 0 0
\(139\) 282924. 1.24203 0.621016 0.783798i \(-0.286720\pi\)
0.621016 + 0.783798i \(0.286720\pi\)
\(140\) −353192. −1.52297
\(141\) 0 0
\(142\) −613200. −2.55200
\(143\) −61640.0 −0.252071
\(144\) 0 0
\(145\) −118508. −0.468088
\(146\) −389220. −1.51117
\(147\) 0 0
\(148\) 284376. 1.06718
\(149\) −408054. −1.50575 −0.752873 0.658165i \(-0.771333\pi\)
−0.752873 + 0.658165i \(0.771333\pi\)
\(150\) 0 0
\(151\) 362504. 1.29381 0.646905 0.762571i \(-0.276063\pi\)
0.646905 + 0.762571i \(0.276063\pi\)
\(152\) 326880. 1.14757
\(153\) 0 0
\(154\) −45080.0 −0.153173
\(155\) 391776. 1.30981
\(156\) 0 0
\(157\) −152786. −0.494691 −0.247346 0.968927i \(-0.579558\pi\)
−0.247346 + 0.968927i \(0.579558\pi\)
\(158\) 880960. 2.80746
\(159\) 0 0
\(160\) −288320. −0.890379
\(161\) −57624.0 −0.175202
\(162\) 0 0
\(163\) −150428. −0.443465 −0.221733 0.975107i \(-0.571171\pi\)
−0.221733 + 0.975107i \(0.571171\pi\)
\(164\) 453016. 1.31524
\(165\) 0 0
\(166\) 718920. 2.02493
\(167\) 7288.00 0.0202217 0.0101108 0.999949i \(-0.496782\pi\)
0.0101108 + 0.999949i \(0.496782\pi\)
\(168\) 0 0
\(169\) 77607.0 0.209018
\(170\) −235320. −0.624506
\(171\) 0 0
\(172\) −251600. −0.648469
\(173\) 289154. 0.734537 0.367269 0.930115i \(-0.380293\pi\)
0.367269 + 0.930115i \(0.380293\pi\)
\(174\) 0 0
\(175\) −397439. −0.981014
\(176\) −131008. −0.318798
\(177\) 0 0
\(178\) 1.11818e6 2.64522
\(179\) −199492. −0.465364 −0.232682 0.972553i \(-0.574750\pi\)
−0.232682 + 0.972553i \(0.574750\pi\)
\(180\) 0 0
\(181\) 240550. 0.545769 0.272885 0.962047i \(-0.412022\pi\)
0.272885 + 0.962047i \(0.412022\pi\)
\(182\) 328300. 0.734670
\(183\) 0 0
\(184\) −423360. −0.921861
\(185\) 443292. 0.952271
\(186\) 0 0
\(187\) −20424.0 −0.0427107
\(188\) 479808. 0.990086
\(189\) 0 0
\(190\) 962480. 1.93423
\(191\) −290384. −0.575956 −0.287978 0.957637i \(-0.592983\pi\)
−0.287978 + 0.957637i \(0.592983\pi\)
\(192\) 0 0
\(193\) −171454. −0.331325 −0.165663 0.986182i \(-0.552976\pi\)
−0.165663 + 0.986182i \(0.552976\pi\)
\(194\) 1.50846e6 2.87759
\(195\) 0 0
\(196\) 163268. 0.303571
\(197\) −401990. −0.737989 −0.368994 0.929432i \(-0.620298\pi\)
−0.368994 + 0.929432i \(0.620298\pi\)
\(198\) 0 0
\(199\) −259176. −0.463940 −0.231970 0.972723i \(-0.574517\pi\)
−0.231970 + 0.972723i \(0.574517\pi\)
\(200\) −2.91996e6 −5.16181
\(201\) 0 0
\(202\) −1.37354e6 −2.36844
\(203\) 54782.0 0.0933035
\(204\) 0 0
\(205\) 706172. 1.17362
\(206\) −287600. −0.472194
\(207\) 0 0
\(208\) 954080. 1.52907
\(209\) 83536.0 0.132284
\(210\) 0 0
\(211\) −1.19179e6 −1.84286 −0.921431 0.388542i \(-0.872979\pi\)
−0.921431 + 0.388542i \(0.872979\pi\)
\(212\) 2.55530e6 3.90484
\(213\) 0 0
\(214\) 225560. 0.336688
\(215\) −392200. −0.578644
\(216\) 0 0
\(217\) −181104. −0.261083
\(218\) −199980. −0.285000
\(219\) 0 0
\(220\) −663136. −0.923732
\(221\) 148740. 0.204855
\(222\) 0 0
\(223\) −218384. −0.294075 −0.147038 0.989131i \(-0.546974\pi\)
−0.147038 + 0.989131i \(0.546974\pi\)
\(224\) 133280. 0.177478
\(225\) 0 0
\(226\) 179060. 0.233199
\(227\) −582852. −0.750747 −0.375374 0.926874i \(-0.622486\pi\)
−0.375374 + 0.926874i \(0.622486\pi\)
\(228\) 0 0
\(229\) 961046. 1.21103 0.605516 0.795833i \(-0.292967\pi\)
0.605516 + 0.795833i \(0.292967\pi\)
\(230\) −1.24656e6 −1.55379
\(231\) 0 0
\(232\) 402480. 0.490935
\(233\) −605994. −0.731271 −0.365636 0.930758i \(-0.619148\pi\)
−0.365636 + 0.930758i \(0.619148\pi\)
\(234\) 0 0
\(235\) 747936. 0.883476
\(236\) −2.22360e6 −2.59882
\(237\) 0 0
\(238\) 108780. 0.124482
\(239\) −1.17014e6 −1.32509 −0.662544 0.749023i \(-0.730523\pi\)
−0.662544 + 0.749023i \(0.730523\pi\)
\(240\) 0 0
\(241\) −1.23691e6 −1.37181 −0.685907 0.727689i \(-0.740595\pi\)
−0.685907 + 0.727689i \(0.740595\pi\)
\(242\) 1.52587e6 1.67486
\(243\) 0 0
\(244\) −734536. −0.789839
\(245\) 254506. 0.270884
\(246\) 0 0
\(247\) −608360. −0.634480
\(248\) −1.33056e6 −1.37374
\(249\) 0 0
\(250\) −5.28516e6 −5.34821
\(251\) −959708. −0.961512 −0.480756 0.876854i \(-0.659638\pi\)
−0.480756 + 0.876854i \(0.659638\pi\)
\(252\) 0 0
\(253\) −108192. −0.106266
\(254\) −668640. −0.650291
\(255\) 0 0
\(256\) −2.11942e6 −2.02124
\(257\) 1.21259e6 1.14520 0.572600 0.819835i \(-0.305935\pi\)
0.572600 + 0.819835i \(0.305935\pi\)
\(258\) 0 0
\(259\) −204918. −0.189815
\(260\) 4.82936e6 4.43054
\(261\) 0 0
\(262\) 1.53764e6 1.38389
\(263\) 1.25274e6 1.11679 0.558397 0.829574i \(-0.311417\pi\)
0.558397 + 0.829574i \(0.311417\pi\)
\(264\) 0 0
\(265\) 3.98327e6 3.48437
\(266\) −444920. −0.385547
\(267\) 0 0
\(268\) 4.41973e6 3.75888
\(269\) 136866. 0.115323 0.0576614 0.998336i \(-0.481636\pi\)
0.0576614 + 0.998336i \(0.481636\pi\)
\(270\) 0 0
\(271\) −960896. −0.794791 −0.397396 0.917647i \(-0.630086\pi\)
−0.397396 + 0.917647i \(0.630086\pi\)
\(272\) 316128. 0.259084
\(273\) 0 0
\(274\) 2.55978e6 2.05981
\(275\) −746212. −0.595019
\(276\) 0 0
\(277\) 905830. 0.709328 0.354664 0.934994i \(-0.384595\pi\)
0.354664 + 0.934994i \(0.384595\pi\)
\(278\) −2.82924e6 −2.19562
\(279\) 0 0
\(280\) 1.86984e6 1.42531
\(281\) 33062.0 0.0249783 0.0124892 0.999922i \(-0.496024\pi\)
0.0124892 + 0.999922i \(0.496024\pi\)
\(282\) 0 0
\(283\) −863588. −0.640974 −0.320487 0.947253i \(-0.603847\pi\)
−0.320487 + 0.947253i \(0.603847\pi\)
\(284\) 4.16976e6 3.06772
\(285\) 0 0
\(286\) 616400. 0.445602
\(287\) −326438. −0.233935
\(288\) 0 0
\(289\) −1.37057e6 −0.965289
\(290\) 1.18508e6 0.827471
\(291\) 0 0
\(292\) 2.64670e6 1.81655
\(293\) 1.33755e6 0.910206 0.455103 0.890439i \(-0.349602\pi\)
0.455103 + 0.890439i \(0.349602\pi\)
\(294\) 0 0
\(295\) −3.46620e6 −2.31899
\(296\) −1.50552e6 −0.998751
\(297\) 0 0
\(298\) 4.08054e6 2.66181
\(299\) 787920. 0.509688
\(300\) 0 0
\(301\) 181300. 0.115340
\(302\) −3.62504e6 −2.28715
\(303\) 0 0
\(304\) −1.29299e6 −0.802439
\(305\) −1.14501e6 −0.704791
\(306\) 0 0
\(307\) −1.32820e6 −0.804301 −0.402151 0.915573i \(-0.631737\pi\)
−0.402151 + 0.915573i \(0.631737\pi\)
\(308\) 306544. 0.184126
\(309\) 0 0
\(310\) −3.91776e6 −2.31544
\(311\) 665832. 0.390359 0.195179 0.980768i \(-0.437471\pi\)
0.195179 + 0.980768i \(0.437471\pi\)
\(312\) 0 0
\(313\) −3.09021e6 −1.78290 −0.891451 0.453116i \(-0.850312\pi\)
−0.891451 + 0.453116i \(0.850312\pi\)
\(314\) 1.52786e6 0.874499
\(315\) 0 0
\(316\) −5.99053e6 −3.37479
\(317\) 974178. 0.544490 0.272245 0.962228i \(-0.412234\pi\)
0.272245 + 0.962228i \(0.412234\pi\)
\(318\) 0 0
\(319\) 102856. 0.0565917
\(320\) −1.94701e6 −1.06290
\(321\) 0 0
\(322\) 576240. 0.309716
\(323\) −201576. −0.107506
\(324\) 0 0
\(325\) 5.43437e6 2.85391
\(326\) 1.50428e6 0.783943
\(327\) 0 0
\(328\) −2.39832e6 −1.23090
\(329\) −345744. −0.176102
\(330\) 0 0
\(331\) 781772. 0.392202 0.196101 0.980584i \(-0.437172\pi\)
0.196101 + 0.980584i \(0.437172\pi\)
\(332\) −4.88866e6 −2.43413
\(333\) 0 0
\(334\) −72880.0 −0.0357472
\(335\) 6.88958e6 3.35413
\(336\) 0 0
\(337\) 348754. 0.167280 0.0836401 0.996496i \(-0.473345\pi\)
0.0836401 + 0.996496i \(0.473345\pi\)
\(338\) −776070. −0.369495
\(339\) 0 0
\(340\) 1.60018e6 0.750707
\(341\) −340032. −0.158356
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 1.33200e6 0.606887
\(345\) 0 0
\(346\) −2.89154e6 −1.29849
\(347\) −2.50625e6 −1.11738 −0.558690 0.829376i \(-0.688696\pi\)
−0.558690 + 0.829376i \(0.688696\pi\)
\(348\) 0 0
\(349\) 3.05861e6 1.34419 0.672094 0.740466i \(-0.265395\pi\)
0.672094 + 0.740466i \(0.265395\pi\)
\(350\) 3.97439e6 1.73420
\(351\) 0 0
\(352\) 250240. 0.107647
\(353\) 3.49291e6 1.49194 0.745969 0.665981i \(-0.231987\pi\)
0.745969 + 0.665981i \(0.231987\pi\)
\(354\) 0 0
\(355\) 6.49992e6 2.73739
\(356\) −7.60362e6 −3.17977
\(357\) 0 0
\(358\) 1.99492e6 0.822655
\(359\) −2.12034e6 −0.868301 −0.434150 0.900840i \(-0.642951\pi\)
−0.434150 + 0.900840i \(0.642951\pi\)
\(360\) 0 0
\(361\) −1.65163e6 −0.667031
\(362\) −2.40550e6 −0.964793
\(363\) 0 0
\(364\) −2.23244e6 −0.883133
\(365\) 4.12573e6 1.62095
\(366\) 0 0
\(367\) 746592. 0.289346 0.144673 0.989479i \(-0.453787\pi\)
0.144673 + 0.989479i \(0.453787\pi\)
\(368\) 1.67462e6 0.644611
\(369\) 0 0
\(370\) −4.43292e6 −1.68339
\(371\) −1.84132e6 −0.694536
\(372\) 0 0
\(373\) −939034. −0.349469 −0.174735 0.984616i \(-0.555907\pi\)
−0.174735 + 0.984616i \(0.555907\pi\)
\(374\) 204240. 0.0755026
\(375\) 0 0
\(376\) −2.54016e6 −0.926598
\(377\) −749060. −0.271433
\(378\) 0 0
\(379\) 5.16534e6 1.84714 0.923572 0.383424i \(-0.125255\pi\)
0.923572 + 0.383424i \(0.125255\pi\)
\(380\) −6.54486e6 −2.32510
\(381\) 0 0
\(382\) 2.90384e6 1.01816
\(383\) −400512. −0.139514 −0.0697571 0.997564i \(-0.522222\pi\)
−0.0697571 + 0.997564i \(0.522222\pi\)
\(384\) 0 0
\(385\) 477848. 0.164300
\(386\) 1.71454e6 0.585706
\(387\) 0 0
\(388\) −1.02575e7 −3.45910
\(389\) −306822. −0.102805 −0.0514023 0.998678i \(-0.516369\pi\)
−0.0514023 + 0.998678i \(0.516369\pi\)
\(390\) 0 0
\(391\) 261072. 0.0863611
\(392\) −864360. −0.284105
\(393\) 0 0
\(394\) 4.01990e6 1.30459
\(395\) −9.33818e6 −3.01141
\(396\) 0 0
\(397\) −3.83421e6 −1.22095 −0.610477 0.792034i \(-0.709022\pi\)
−0.610477 + 0.792034i \(0.709022\pi\)
\(398\) 2.59176e6 0.820138
\(399\) 0 0
\(400\) 1.15501e7 3.60940
\(401\) 3.29355e6 1.02283 0.511415 0.859334i \(-0.329122\pi\)
0.511415 + 0.859334i \(0.329122\pi\)
\(402\) 0 0
\(403\) 2.47632e6 0.759529
\(404\) 9.34007e6 2.84706
\(405\) 0 0
\(406\) −547820. −0.164939
\(407\) −384744. −0.115129
\(408\) 0 0
\(409\) −1.35473e6 −0.400445 −0.200223 0.979750i \(-0.564167\pi\)
−0.200223 + 0.979750i \(0.564167\pi\)
\(410\) −7.06172e6 −2.07468
\(411\) 0 0
\(412\) 1.95568e6 0.567616
\(413\) 1.60230e6 0.462241
\(414\) 0 0
\(415\) −7.62055e6 −2.17203
\(416\) −1.82240e6 −0.516310
\(417\) 0 0
\(418\) −835360. −0.233848
\(419\) −5.08199e6 −1.41416 −0.707080 0.707134i \(-0.749988\pi\)
−0.707080 + 0.707134i \(0.749988\pi\)
\(420\) 0 0
\(421\) 628022. 0.172691 0.0863455 0.996265i \(-0.472481\pi\)
0.0863455 + 0.996265i \(0.472481\pi\)
\(422\) 1.19179e7 3.25775
\(423\) 0 0
\(424\) −1.35281e7 −3.65445
\(425\) 1.80064e6 0.483565
\(426\) 0 0
\(427\) 529298. 0.140485
\(428\) −1.53381e6 −0.404726
\(429\) 0 0
\(430\) 3.92200e6 1.02291
\(431\) 3.00086e6 0.778132 0.389066 0.921210i \(-0.372798\pi\)
0.389066 + 0.921210i \(0.372798\pi\)
\(432\) 0 0
\(433\) 1.21496e6 0.311417 0.155709 0.987803i \(-0.450234\pi\)
0.155709 + 0.987803i \(0.450234\pi\)
\(434\) 1.81104e6 0.461534
\(435\) 0 0
\(436\) 1.35986e6 0.342594
\(437\) −1.06781e6 −0.267479
\(438\) 0 0
\(439\) 4.00654e6 0.992219 0.496110 0.868260i \(-0.334761\pi\)
0.496110 + 0.868260i \(0.334761\pi\)
\(440\) 3.51072e6 0.864499
\(441\) 0 0
\(442\) −1.48740e6 −0.362136
\(443\) 5.44751e6 1.31883 0.659415 0.751779i \(-0.270804\pi\)
0.659415 + 0.751779i \(0.270804\pi\)
\(444\) 0 0
\(445\) −1.18527e7 −2.83738
\(446\) 2.18384e6 0.519857
\(447\) 0 0
\(448\) 900032. 0.211867
\(449\) 1.81577e6 0.425056 0.212528 0.977155i \(-0.431830\pi\)
0.212528 + 0.977155i \(0.431830\pi\)
\(450\) 0 0
\(451\) −612904. −0.141890
\(452\) −1.21761e6 −0.280325
\(453\) 0 0
\(454\) 5.82852e6 1.32715
\(455\) −3.47998e6 −0.788040
\(456\) 0 0
\(457\) −5.30082e6 −1.18728 −0.593639 0.804731i \(-0.702309\pi\)
−0.593639 + 0.804731i \(0.702309\pi\)
\(458\) −9.61046e6 −2.14082
\(459\) 0 0
\(460\) 8.47661e6 1.86779
\(461\) −3.20381e6 −0.702124 −0.351062 0.936352i \(-0.614179\pi\)
−0.351062 + 0.936352i \(0.614179\pi\)
\(462\) 0 0
\(463\) −1.11853e6 −0.242490 −0.121245 0.992623i \(-0.538689\pi\)
−0.121245 + 0.992623i \(0.538689\pi\)
\(464\) −1.59203e6 −0.343287
\(465\) 0 0
\(466\) 6.05994e6 1.29272
\(467\) 3.85134e6 0.817184 0.408592 0.912717i \(-0.366020\pi\)
0.408592 + 0.912717i \(0.366020\pi\)
\(468\) 0 0
\(469\) −3.18480e6 −0.668576
\(470\) −7.47936e6 −1.56178
\(471\) 0 0
\(472\) 1.17720e7 2.43218
\(473\) 340400. 0.0699579
\(474\) 0 0
\(475\) −7.36479e6 −1.49770
\(476\) −739704. −0.149638
\(477\) 0 0
\(478\) 1.17014e7 2.34245
\(479\) −1.43536e6 −0.285839 −0.142920 0.989734i \(-0.545649\pi\)
−0.142920 + 0.989734i \(0.545649\pi\)
\(480\) 0 0
\(481\) 2.80194e6 0.552200
\(482\) 1.23691e7 2.42505
\(483\) 0 0
\(484\) −1.03759e7 −2.01332
\(485\) −1.59897e7 −3.08664
\(486\) 0 0
\(487\) 4.61097e6 0.880987 0.440494 0.897756i \(-0.354803\pi\)
0.440494 + 0.897756i \(0.354803\pi\)
\(488\) 3.88872e6 0.739192
\(489\) 0 0
\(490\) −2.54506e6 −0.478859
\(491\) −7.40518e6 −1.38622 −0.693110 0.720832i \(-0.743760\pi\)
−0.693110 + 0.720832i \(0.743760\pi\)
\(492\) 0 0
\(493\) −248196. −0.0459915
\(494\) 6.08360e6 1.12161
\(495\) 0 0
\(496\) 5.26310e6 0.960589
\(497\) −3.00468e6 −0.545641
\(498\) 0 0
\(499\) 3.93432e6 0.707325 0.353662 0.935373i \(-0.384936\pi\)
0.353662 + 0.935373i \(0.384936\pi\)
\(500\) 3.59391e7 6.42898
\(501\) 0 0
\(502\) 9.59708e6 1.69973
\(503\) −3.40975e6 −0.600901 −0.300450 0.953797i \(-0.597137\pi\)
−0.300450 + 0.953797i \(0.597137\pi\)
\(504\) 0 0
\(505\) 1.45595e7 2.54050
\(506\) 1.08192e6 0.187853
\(507\) 0 0
\(508\) 4.54675e6 0.781703
\(509\) 7.72383e6 1.32141 0.660706 0.750645i \(-0.270257\pi\)
0.660706 + 0.750645i \(0.270257\pi\)
\(510\) 0 0
\(511\) −1.90718e6 −0.323102
\(512\) 1.25312e7 2.11260
\(513\) 0 0
\(514\) −1.21259e7 −2.02445
\(515\) 3.04856e6 0.506497
\(516\) 0 0
\(517\) −649152. −0.106812
\(518\) 2.04918e6 0.335549
\(519\) 0 0
\(520\) −2.55672e7 −4.14643
\(521\) 4.77658e6 0.770944 0.385472 0.922719i \(-0.374039\pi\)
0.385472 + 0.922719i \(0.374039\pi\)
\(522\) 0 0
\(523\) −9.28754e6 −1.48473 −0.742363 0.669998i \(-0.766295\pi\)
−0.742363 + 0.669998i \(0.766295\pi\)
\(524\) −1.04560e7 −1.66355
\(525\) 0 0
\(526\) −1.25274e7 −1.97423
\(527\) 820512. 0.128694
\(528\) 0 0
\(529\) −5.05337e6 −0.785130
\(530\) −3.98327e7 −6.15956
\(531\) 0 0
\(532\) 3.02546e6 0.463459
\(533\) 4.46354e6 0.680552
\(534\) 0 0
\(535\) −2.39094e6 −0.361147
\(536\) −2.33986e7 −3.51785
\(537\) 0 0
\(538\) −1.36866e6 −0.203864
\(539\) −220892. −0.0327498
\(540\) 0 0
\(541\) 7.72917e6 1.13538 0.567688 0.823244i \(-0.307838\pi\)
0.567688 + 0.823244i \(0.307838\pi\)
\(542\) 9.60896e6 1.40501
\(543\) 0 0
\(544\) −603840. −0.0874832
\(545\) 2.11979e6 0.305704
\(546\) 0 0
\(547\) −8.60361e6 −1.22945 −0.614727 0.788740i \(-0.710734\pi\)
−0.614727 + 0.788740i \(0.710734\pi\)
\(548\) −1.74065e7 −2.47605
\(549\) 0 0
\(550\) 7.46212e6 1.05185
\(551\) 1.01514e6 0.142445
\(552\) 0 0
\(553\) 4.31670e6 0.600260
\(554\) −9.05830e6 −1.25393
\(555\) 0 0
\(556\) 1.92388e7 2.63932
\(557\) 1.77723e6 0.242721 0.121360 0.992609i \(-0.461274\pi\)
0.121360 + 0.992609i \(0.461274\pi\)
\(558\) 0 0
\(559\) −2.47900e6 −0.335542
\(560\) −7.39626e6 −0.996648
\(561\) 0 0
\(562\) −330620. −0.0441559
\(563\) −2.68860e6 −0.357482 −0.178741 0.983896i \(-0.557202\pi\)
−0.178741 + 0.983896i \(0.557202\pi\)
\(564\) 0 0
\(565\) −1.89804e6 −0.250140
\(566\) 8.63588e6 1.13309
\(567\) 0 0
\(568\) −2.20752e7 −2.87100
\(569\) −5.32630e6 −0.689675 −0.344838 0.938662i \(-0.612066\pi\)
−0.344838 + 0.938662i \(0.612066\pi\)
\(570\) 0 0
\(571\) 1.33992e7 1.71984 0.859921 0.510427i \(-0.170513\pi\)
0.859921 + 0.510427i \(0.170513\pi\)
\(572\) −4.19152e6 −0.535650
\(573\) 0 0
\(574\) 3.26438e6 0.413543
\(575\) 9.53854e6 1.20313
\(576\) 0 0
\(577\) −1.10502e6 −0.138176 −0.0690878 0.997611i \(-0.522009\pi\)
−0.0690878 + 0.997611i \(0.522009\pi\)
\(578\) 1.37057e7 1.70641
\(579\) 0 0
\(580\) −8.05854e6 −0.994687
\(581\) 3.52271e6 0.432949
\(582\) 0 0
\(583\) −3.45718e6 −0.421260
\(584\) −1.40119e7 −1.70007
\(585\) 0 0
\(586\) −1.33755e7 −1.60903
\(587\) −5.97288e6 −0.715465 −0.357732 0.933824i \(-0.616450\pi\)
−0.357732 + 0.933824i \(0.616450\pi\)
\(588\) 0 0
\(589\) −3.35597e6 −0.398593
\(590\) 3.46620e7 4.09943
\(591\) 0 0
\(592\) 5.95517e6 0.698377
\(593\) 1.11945e7 1.30728 0.653639 0.756807i \(-0.273242\pi\)
0.653639 + 0.756807i \(0.273242\pi\)
\(594\) 0 0
\(595\) −1.15307e6 −0.133525
\(596\) −2.77477e7 −3.19971
\(597\) 0 0
\(598\) −7.87920e6 −0.901009
\(599\) −1.09055e7 −1.24187 −0.620937 0.783860i \(-0.713248\pi\)
−0.620937 + 0.783860i \(0.713248\pi\)
\(600\) 0 0
\(601\) 7.39737e6 0.835394 0.417697 0.908586i \(-0.362837\pi\)
0.417697 + 0.908586i \(0.362837\pi\)
\(602\) −1.81300e6 −0.203895
\(603\) 0 0
\(604\) 2.46503e7 2.74935
\(605\) −1.61742e7 −1.79653
\(606\) 0 0
\(607\) 7.13355e6 0.785840 0.392920 0.919573i \(-0.371465\pi\)
0.392920 + 0.919573i \(0.371465\pi\)
\(608\) 2.46976e6 0.270954
\(609\) 0 0
\(610\) 1.14501e7 1.24591
\(611\) 4.72752e6 0.512307
\(612\) 0 0
\(613\) −1.71264e7 −1.84083 −0.920416 0.390939i \(-0.872150\pi\)
−0.920416 + 0.390939i \(0.872150\pi\)
\(614\) 1.32820e7 1.42182
\(615\) 0 0
\(616\) −1.62288e6 −0.172320
\(617\) −2.29924e6 −0.243149 −0.121574 0.992582i \(-0.538794\pi\)
−0.121574 + 0.992582i \(0.538794\pi\)
\(618\) 0 0
\(619\) −1.85176e6 −0.194249 −0.0971245 0.995272i \(-0.530965\pi\)
−0.0971245 + 0.995272i \(0.530965\pi\)
\(620\) 2.66408e7 2.78335
\(621\) 0 0
\(622\) −6.65832e6 −0.690063
\(623\) 5.47908e6 0.565572
\(624\) 0 0
\(625\) 3.06758e7 3.14120
\(626\) 3.09021e7 3.15176
\(627\) 0 0
\(628\) −1.03894e7 −1.05122
\(629\) 928404. 0.0935643
\(630\) 0 0
\(631\) 9.25978e6 0.925822 0.462911 0.886405i \(-0.346805\pi\)
0.462911 + 0.886405i \(0.346805\pi\)
\(632\) 3.17146e7 3.15839
\(633\) 0 0
\(634\) −9.74178e6 −0.962532
\(635\) 7.08758e6 0.697532
\(636\) 0 0
\(637\) 1.60867e6 0.157079
\(638\) −1.02856e6 −0.100041
\(639\) 0 0
\(640\) 2.86963e7 2.76934
\(641\) −1.79419e7 −1.72474 −0.862369 0.506280i \(-0.831020\pi\)
−0.862369 + 0.506280i \(0.831020\pi\)
\(642\) 0 0
\(643\) 6.70020e6 0.639087 0.319544 0.947572i \(-0.396470\pi\)
0.319544 + 0.947572i \(0.396470\pi\)
\(644\) −3.91843e6 −0.372304
\(645\) 0 0
\(646\) 2.01576e6 0.190045
\(647\) 1.12549e7 1.05701 0.528507 0.848929i \(-0.322752\pi\)
0.528507 + 0.848929i \(0.322752\pi\)
\(648\) 0 0
\(649\) 3.00840e6 0.280365
\(650\) −5.43437e7 −5.04505
\(651\) 0 0
\(652\) −1.02291e7 −0.942364
\(653\) −1.31704e7 −1.20869 −0.604347 0.796721i \(-0.706566\pi\)
−0.604347 + 0.796721i \(0.706566\pi\)
\(654\) 0 0
\(655\) −1.62990e7 −1.48442
\(656\) 9.48669e6 0.860706
\(657\) 0 0
\(658\) 3.45744e6 0.311308
\(659\) 1.43453e7 1.28676 0.643380 0.765547i \(-0.277532\pi\)
0.643380 + 0.765547i \(0.277532\pi\)
\(660\) 0 0
\(661\) −14138.0 −0.00125859 −0.000629295 1.00000i \(-0.500200\pi\)
−0.000629295 1.00000i \(0.500200\pi\)
\(662\) −7.81772e6 −0.693322
\(663\) 0 0
\(664\) 2.58811e7 2.27805
\(665\) 4.71615e6 0.413555
\(666\) 0 0
\(667\) −1.31477e6 −0.114429
\(668\) 495584. 0.0429711
\(669\) 0 0
\(670\) −6.88958e7 −5.92933
\(671\) 993784. 0.0852090
\(672\) 0 0
\(673\) 1.37787e7 1.17266 0.586329 0.810073i \(-0.300573\pi\)
0.586329 + 0.810073i \(0.300573\pi\)
\(674\) −3.48754e6 −0.295712
\(675\) 0 0
\(676\) 5.27728e6 0.444164
\(677\) −1.26155e7 −1.05787 −0.528936 0.848662i \(-0.677409\pi\)
−0.528936 + 0.848662i \(0.677409\pi\)
\(678\) 0 0
\(679\) 7.39145e6 0.615255
\(680\) −8.47152e6 −0.702569
\(681\) 0 0
\(682\) 3.40032e6 0.279936
\(683\) 1.08656e6 0.0891258 0.0445629 0.999007i \(-0.485810\pi\)
0.0445629 + 0.999007i \(0.485810\pi\)
\(684\) 0 0
\(685\) −2.71337e7 −2.20944
\(686\) 1.17649e6 0.0954504
\(687\) 0 0
\(688\) −5.26880e6 −0.424366
\(689\) 2.51773e7 2.02051
\(690\) 0 0
\(691\) 1.91229e7 1.52356 0.761780 0.647836i \(-0.224326\pi\)
0.761780 + 0.647836i \(0.224326\pi\)
\(692\) 1.96625e7 1.56089
\(693\) 0 0
\(694\) 2.50625e7 1.97527
\(695\) 2.99899e7 2.35512
\(696\) 0 0
\(697\) 1.47896e6 0.115312
\(698\) −3.05861e7 −2.37621
\(699\) 0 0
\(700\) −2.70259e7 −2.08466
\(701\) −1.15000e7 −0.883897 −0.441948 0.897040i \(-0.645713\pi\)
−0.441948 + 0.897040i \(0.645713\pi\)
\(702\) 0 0
\(703\) −3.79726e6 −0.289789
\(704\) 1.68986e6 0.128504
\(705\) 0 0
\(706\) −3.49291e7 −2.63740
\(707\) −6.73035e6 −0.506394
\(708\) 0 0
\(709\) 6.97551e6 0.521147 0.260574 0.965454i \(-0.416088\pi\)
0.260574 + 0.965454i \(0.416088\pi\)
\(710\) −6.49992e7 −4.83907
\(711\) 0 0
\(712\) 4.02545e7 2.97587
\(713\) 4.34650e6 0.320196
\(714\) 0 0
\(715\) −6.53384e6 −0.477973
\(716\) −1.35655e7 −0.988899
\(717\) 0 0
\(718\) 2.12034e7 1.53495
\(719\) 1.44264e6 0.104072 0.0520362 0.998645i \(-0.483429\pi\)
0.0520362 + 0.998645i \(0.483429\pi\)
\(720\) 0 0
\(721\) −1.40924e6 −0.100959
\(722\) 1.65164e7 1.17916
\(723\) 0 0
\(724\) 1.63574e7 1.15976
\(725\) −9.06810e6 −0.640724
\(726\) 0 0
\(727\) −1.90334e7 −1.33561 −0.667807 0.744334i \(-0.732767\pi\)
−0.667807 + 0.744334i \(0.732767\pi\)
\(728\) 1.18188e7 0.826504
\(729\) 0 0
\(730\) −4.12573e7 −2.86546
\(731\) −821400. −0.0568540
\(732\) 0 0
\(733\) 5.45585e6 0.375062 0.187531 0.982259i \(-0.439952\pi\)
0.187531 + 0.982259i \(0.439952\pi\)
\(734\) −7.46592e6 −0.511497
\(735\) 0 0
\(736\) −3.19872e6 −0.217662
\(737\) −5.97963e6 −0.405514
\(738\) 0 0
\(739\) 7.85197e6 0.528893 0.264446 0.964400i \(-0.414811\pi\)
0.264446 + 0.964400i \(0.414811\pi\)
\(740\) 3.01439e7 2.02358
\(741\) 0 0
\(742\) 1.84132e7 1.22778
\(743\) 1.48695e7 0.988154 0.494077 0.869418i \(-0.335506\pi\)
0.494077 + 0.869418i \(0.335506\pi\)
\(744\) 0 0
\(745\) −4.32537e7 −2.85518
\(746\) 9.39034e6 0.617781
\(747\) 0 0
\(748\) −1.38883e6 −0.0907603
\(749\) 1.10524e6 0.0719869
\(750\) 0 0
\(751\) −2.51309e7 −1.62595 −0.812977 0.582295i \(-0.802155\pi\)
−0.812977 + 0.582295i \(0.802155\pi\)
\(752\) 1.00477e7 0.647924
\(753\) 0 0
\(754\) 7.49060e6 0.479831
\(755\) 3.84254e7 2.45330
\(756\) 0 0
\(757\) −1.97874e7 −1.25501 −0.627507 0.778611i \(-0.715925\pi\)
−0.627507 + 0.778611i \(0.715925\pi\)
\(758\) −5.16534e7 −3.26532
\(759\) 0 0
\(760\) 3.46493e7 2.17601
\(761\) 1.49642e7 0.936678 0.468339 0.883549i \(-0.344853\pi\)
0.468339 + 0.883549i \(0.344853\pi\)
\(762\) 0 0
\(763\) −979902. −0.0609356
\(764\) −1.97461e7 −1.22391
\(765\) 0 0
\(766\) 4.00512e6 0.246629
\(767\) −2.19090e7 −1.34473
\(768\) 0 0
\(769\) 5.06419e6 0.308812 0.154406 0.988007i \(-0.450654\pi\)
0.154406 + 0.988007i \(0.450654\pi\)
\(770\) −4.77848e6 −0.290444
\(771\) 0 0
\(772\) −1.16589e7 −0.704066
\(773\) −2.63025e7 −1.58324 −0.791622 0.611011i \(-0.790763\pi\)
−0.791622 + 0.611011i \(0.790763\pi\)
\(774\) 0 0
\(775\) 2.99783e7 1.79288
\(776\) 5.43046e7 3.23729
\(777\) 0 0
\(778\) 3.06822e6 0.181735
\(779\) −6.04910e6 −0.357147
\(780\) 0 0
\(781\) −5.64144e6 −0.330950
\(782\) −2.61072e6 −0.152666
\(783\) 0 0
\(784\) 3.41902e6 0.198661
\(785\) −1.61953e7 −0.938027
\(786\) 0 0
\(787\) 1.00525e7 0.578545 0.289273 0.957247i \(-0.406587\pi\)
0.289273 + 0.957247i \(0.406587\pi\)
\(788\) −2.73353e7 −1.56823
\(789\) 0 0
\(790\) 9.33818e7 5.32346
\(791\) 877394. 0.0498601
\(792\) 0 0
\(793\) −7.23734e6 −0.408692
\(794\) 3.83421e7 2.15836
\(795\) 0 0
\(796\) −1.76240e7 −0.985873
\(797\) −2.78516e7 −1.55312 −0.776560 0.630044i \(-0.783037\pi\)
−0.776560 + 0.630044i \(0.783037\pi\)
\(798\) 0 0
\(799\) 1.56643e6 0.0868050
\(800\) −2.20619e7 −1.21876
\(801\) 0 0
\(802\) −3.29355e7 −1.80812
\(803\) −3.58082e6 −0.195972
\(804\) 0 0
\(805\) −6.10814e6 −0.332215
\(806\) −2.47632e7 −1.34267
\(807\) 0 0
\(808\) −4.94474e7 −2.66450
\(809\) 1.96936e7 1.05792 0.528961 0.848646i \(-0.322582\pi\)
0.528961 + 0.848646i \(0.322582\pi\)
\(810\) 0 0
\(811\) 5.05617e6 0.269942 0.134971 0.990850i \(-0.456906\pi\)
0.134971 + 0.990850i \(0.456906\pi\)
\(812\) 3.72518e6 0.198270
\(813\) 0 0
\(814\) 3.84744e6 0.203522
\(815\) −1.59454e7 −0.840893
\(816\) 0 0
\(817\) 3.35960e6 0.176089
\(818\) 1.35473e7 0.707894
\(819\) 0 0
\(820\) 4.80197e7 2.49393
\(821\) 2.82324e6 0.146181 0.0730904 0.997325i \(-0.476714\pi\)
0.0730904 + 0.997325i \(0.476714\pi\)
\(822\) 0 0
\(823\) 2.54741e7 1.31099 0.655494 0.755201i \(-0.272461\pi\)
0.655494 + 0.755201i \(0.272461\pi\)
\(824\) −1.03536e7 −0.531219
\(825\) 0 0
\(826\) −1.60230e7 −0.817135
\(827\) 1.75616e7 0.892893 0.446446 0.894810i \(-0.352689\pi\)
0.446446 + 0.894810i \(0.352689\pi\)
\(828\) 0 0
\(829\) 9.14728e6 0.462280 0.231140 0.972920i \(-0.425754\pi\)
0.231140 + 0.972920i \(0.425754\pi\)
\(830\) 7.62055e7 3.83965
\(831\) 0 0
\(832\) −1.23066e7 −0.616351
\(833\) 533022. 0.0266154
\(834\) 0 0
\(835\) 772528. 0.0383441
\(836\) 5.68045e6 0.281104
\(837\) 0 0
\(838\) 5.08199e7 2.49991
\(839\) 1.09891e7 0.538961 0.269481 0.963006i \(-0.413148\pi\)
0.269481 + 0.963006i \(0.413148\pi\)
\(840\) 0 0
\(841\) −1.92612e7 −0.939061
\(842\) −6.28022e6 −0.305277
\(843\) 0 0
\(844\) −8.10416e7 −3.91608
\(845\) 8.22634e6 0.396337
\(846\) 0 0
\(847\) 7.47676e6 0.358101
\(848\) 5.35111e7 2.55537
\(849\) 0 0
\(850\) −1.80064e7 −0.854831
\(851\) 4.91803e6 0.232792
\(852\) 0 0
\(853\) −1.34854e7 −0.634586 −0.317293 0.948328i \(-0.602774\pi\)
−0.317293 + 0.948328i \(0.602774\pi\)
\(854\) −5.29298e6 −0.248345
\(855\) 0 0
\(856\) 8.12016e6 0.378774
\(857\) −1.07032e7 −0.497808 −0.248904 0.968528i \(-0.580070\pi\)
−0.248904 + 0.968528i \(0.580070\pi\)
\(858\) 0 0
\(859\) −1.33747e7 −0.618446 −0.309223 0.950990i \(-0.600069\pi\)
−0.309223 + 0.950990i \(0.600069\pi\)
\(860\) −2.66696e7 −1.22962
\(861\) 0 0
\(862\) −3.00086e7 −1.37556
\(863\) −1.99768e7 −0.913058 −0.456529 0.889708i \(-0.650908\pi\)
−0.456529 + 0.889708i \(0.650908\pi\)
\(864\) 0 0
\(865\) 3.06503e7 1.39282
\(866\) −1.21496e7 −0.550513
\(867\) 0 0
\(868\) −1.23151e7 −0.554802
\(869\) 8.10483e6 0.364078
\(870\) 0 0
\(871\) 4.35473e7 1.94498
\(872\) −7.19928e6 −0.320625
\(873\) 0 0
\(874\) 1.06781e7 0.472840
\(875\) −2.58973e7 −1.14349
\(876\) 0 0
\(877\) 8.81107e6 0.386838 0.193419 0.981116i \(-0.438042\pi\)
0.193419 + 0.981116i \(0.438042\pi\)
\(878\) −4.00654e7 −1.75401
\(879\) 0 0
\(880\) −1.38868e7 −0.604501
\(881\) −4.01078e7 −1.74096 −0.870481 0.492202i \(-0.836192\pi\)
−0.870481 + 0.492202i \(0.836192\pi\)
\(882\) 0 0
\(883\) 1.49664e7 0.645976 0.322988 0.946403i \(-0.395313\pi\)
0.322988 + 0.946403i \(0.395313\pi\)
\(884\) 1.01143e7 0.435317
\(885\) 0 0
\(886\) −5.44751e7 −2.33138
\(887\) 575144. 0.0245453 0.0122726 0.999925i \(-0.496093\pi\)
0.0122726 + 0.999925i \(0.496093\pi\)
\(888\) 0 0
\(889\) −3.27634e6 −0.139038
\(890\) 1.18527e8 5.01583
\(891\) 0 0
\(892\) −1.48501e7 −0.624910
\(893\) −6.40685e6 −0.268854
\(894\) 0 0
\(895\) −2.11462e7 −0.882417
\(896\) −1.32653e7 −0.552009
\(897\) 0 0
\(898\) −1.81577e7 −0.751400
\(899\) −4.13213e6 −0.170520
\(900\) 0 0
\(901\) 8.34232e6 0.342353
\(902\) 6.12904e6 0.250828
\(903\) 0 0
\(904\) 6.44616e6 0.262349
\(905\) 2.54983e7 1.03488
\(906\) 0 0
\(907\) −3.33367e7 −1.34557 −0.672783 0.739840i \(-0.734901\pi\)
−0.672783 + 0.739840i \(0.734901\pi\)
\(908\) −3.96339e7 −1.59534
\(909\) 0 0
\(910\) 3.47998e7 1.39307
\(911\) −2.17451e7 −0.868090 −0.434045 0.900891i \(-0.642914\pi\)
−0.434045 + 0.900891i \(0.642914\pi\)
\(912\) 0 0
\(913\) 6.61406e6 0.262598
\(914\) 5.30082e7 2.09883
\(915\) 0 0
\(916\) 6.53511e7 2.57344
\(917\) 7.53444e6 0.295888
\(918\) 0 0
\(919\) −4.03986e6 −0.157789 −0.0788947 0.996883i \(-0.525139\pi\)
−0.0788947 + 0.996883i \(0.525139\pi\)
\(920\) −4.48762e7 −1.74802
\(921\) 0 0
\(922\) 3.20381e7 1.24119
\(923\) 4.10844e7 1.58735
\(924\) 0 0
\(925\) 3.39202e7 1.30348
\(926\) 1.11853e7 0.428666
\(927\) 0 0
\(928\) 3.04096e6 0.115915
\(929\) −7.69679e6 −0.292597 −0.146299 0.989240i \(-0.546736\pi\)
−0.146299 + 0.989240i \(0.546736\pi\)
\(930\) 0 0
\(931\) −2.18011e6 −0.0824335
\(932\) −4.12076e7 −1.55395
\(933\) 0 0
\(934\) −3.85134e7 −1.44459
\(935\) −2.16494e6 −0.0809874
\(936\) 0 0
\(937\) −453558. −0.0168766 −0.00843828 0.999964i \(-0.502686\pi\)
−0.00843828 + 0.999964i \(0.502686\pi\)
\(938\) 3.18480e7 1.18189
\(939\) 0 0
\(940\) 5.08596e7 1.87739
\(941\) 2.43852e7 0.897745 0.448873 0.893596i \(-0.351826\pi\)
0.448873 + 0.893596i \(0.351826\pi\)
\(942\) 0 0
\(943\) 7.83451e6 0.286901
\(944\) −4.65648e7 −1.70070
\(945\) 0 0
\(946\) −3.40400e6 −0.123669
\(947\) 2.18745e7 0.792615 0.396308 0.918118i \(-0.370291\pi\)
0.396308 + 0.918118i \(0.370291\pi\)
\(948\) 0 0
\(949\) 2.60777e7 0.939949
\(950\) 7.36479e7 2.64759
\(951\) 0 0
\(952\) 3.91608e6 0.140042
\(953\) 3.93319e7 1.40286 0.701428 0.712741i \(-0.252546\pi\)
0.701428 + 0.712741i \(0.252546\pi\)
\(954\) 0 0
\(955\) −3.07807e7 −1.09212
\(956\) −7.95698e7 −2.81581
\(957\) 0 0
\(958\) 1.43536e7 0.505297
\(959\) 1.25429e7 0.440405
\(960\) 0 0
\(961\) −1.49687e7 −0.522849
\(962\) −2.80194e7 −0.976160
\(963\) 0 0
\(964\) −8.41099e7 −2.91511
\(965\) −1.81741e7 −0.628254
\(966\) 0 0
\(967\) 3.85234e7 1.32483 0.662413 0.749139i \(-0.269532\pi\)
0.662413 + 0.749139i \(0.269532\pi\)
\(968\) 5.49313e7 1.88422
\(969\) 0 0
\(970\) 1.59897e8 5.45645
\(971\) −2.43543e7 −0.828947 −0.414473 0.910061i \(-0.636034\pi\)
−0.414473 + 0.910061i \(0.636034\pi\)
\(972\) 0 0
\(973\) −1.38633e7 −0.469444
\(974\) −4.61097e7 −1.55738
\(975\) 0 0
\(976\) −1.53820e7 −0.516880
\(977\) −1.62534e7 −0.544763 −0.272382 0.962189i \(-0.587811\pi\)
−0.272382 + 0.962189i \(0.587811\pi\)
\(978\) 0 0
\(979\) 1.02873e7 0.343038
\(980\) 1.73064e7 0.575628
\(981\) 0 0
\(982\) 7.40518e7 2.45051
\(983\) 252456. 0.00833301 0.00416650 0.999991i \(-0.498674\pi\)
0.00416650 + 0.999991i \(0.498674\pi\)
\(984\) 0 0
\(985\) −4.26109e7 −1.39936
\(986\) 2.48196e6 0.0813022
\(987\) 0 0
\(988\) −4.13685e7 −1.34827
\(989\) −4.35120e6 −0.141455
\(990\) 0 0
\(991\) −2.49728e7 −0.807761 −0.403880 0.914812i \(-0.632339\pi\)
−0.403880 + 0.914812i \(0.632339\pi\)
\(992\) −1.00531e7 −0.324356
\(993\) 0 0
\(994\) 3.00468e7 0.964567
\(995\) −2.74727e7 −0.879717
\(996\) 0 0
\(997\) −3.60983e7 −1.15013 −0.575067 0.818106i \(-0.695024\pi\)
−0.575067 + 0.818106i \(0.695024\pi\)
\(998\) −3.93432e7 −1.25039
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.6.a.a.1.1 1
3.2 odd 2 21.6.a.d.1.1 1
4.3 odd 2 1008.6.a.bc.1.1 1
7.6 odd 2 441.6.a.b.1.1 1
12.11 even 2 336.6.a.a.1.1 1
15.2 even 4 525.6.d.a.274.2 2
15.8 even 4 525.6.d.a.274.1 2
15.14 odd 2 525.6.a.a.1.1 1
21.2 odd 6 147.6.e.a.67.1 2
21.5 even 6 147.6.e.b.67.1 2
21.11 odd 6 147.6.e.a.79.1 2
21.17 even 6 147.6.e.b.79.1 2
21.20 even 2 147.6.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.6.a.d.1.1 1 3.2 odd 2
63.6.a.a.1.1 1 1.1 even 1 trivial
147.6.a.g.1.1 1 21.20 even 2
147.6.e.a.67.1 2 21.2 odd 6
147.6.e.a.79.1 2 21.11 odd 6
147.6.e.b.67.1 2 21.5 even 6
147.6.e.b.79.1 2 21.17 even 6
336.6.a.a.1.1 1 12.11 even 2
441.6.a.b.1.1 1 7.6 odd 2
525.6.a.a.1.1 1 15.14 odd 2
525.6.d.a.274.1 2 15.8 even 4
525.6.d.a.274.2 2 15.2 even 4
1008.6.a.bc.1.1 1 4.3 odd 2