Properties

Label 63.6.a
Level $63$
Weight $6$
Character orbit 63.a
Rep. character $\chi_{63}(1,\cdot)$
Character field $\Q$
Dimension $13$
Newform subspaces $8$
Sturm bound $48$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(48\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(63))\).

Total New Old
Modular forms 44 13 31
Cusp forms 36 13 23
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(4\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(5\)
Minus space\(-\)\(8\)

Trace form

\( 13 q - 9 q^{2} + 193 q^{4} + 42 q^{5} + 49 q^{7} + 99 q^{8} - 156 q^{10} - 876 q^{11} - 742 q^{13} + 147 q^{14} + 4645 q^{16} + 3090 q^{17} + 4868 q^{19} + 7788 q^{20} + 1788 q^{22} - 3168 q^{23} + 11083 q^{25}+ \cdots - 21609 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(63))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7
63.6.a.a 63.a 1.a $1$ $10.104$ \(\Q\) None 21.6.a.d \(-10\) \(0\) \(106\) \(-49\) $-$ $+$ $\mathrm{SU}(2)$ \(q-10q^{2}+68q^{4}+106q^{5}-7^{2}q^{7}+\cdots\)
63.6.a.b 63.a 1.a $1$ $10.104$ \(\Q\) None 21.6.a.c \(-5\) \(0\) \(-94\) \(-49\) $-$ $+$ $\mathrm{SU}(2)$ \(q-5q^{2}-7q^{4}-94q^{5}-7^{2}q^{7}+195q^{8}+\cdots\)
63.6.a.c 63.a 1.a $1$ $10.104$ \(\Q\) None 21.6.a.b \(-1\) \(0\) \(34\) \(-49\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-31q^{4}+34q^{5}-7^{2}q^{7}+63q^{8}+\cdots\)
63.6.a.d 63.a 1.a $1$ $10.104$ \(\Q\) None 21.6.a.a \(6\) \(0\) \(-78\) \(49\) $-$ $-$ $\mathrm{SU}(2)$ \(q+6q^{2}+4q^{4}-78q^{5}+7^{2}q^{7}-168q^{8}+\cdots\)
63.6.a.e 63.a 1.a $1$ $10.104$ \(\Q\) None 7.6.a.a \(10\) \(0\) \(56\) \(-49\) $-$ $+$ $\mathrm{SU}(2)$ \(q+10q^{2}+68q^{4}+56q^{5}-7^{2}q^{7}+\cdots\)
63.6.a.f 63.a 1.a $2$ $10.104$ \(\Q(\sqrt{57}) \) None 7.6.a.b \(-9\) \(0\) \(18\) \(98\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-4-\beta )q^{2}+(-2+9\beta )q^{4}+(14+\cdots)q^{5}+\cdots\)
63.6.a.g 63.a 1.a $2$ $10.104$ \(\Q(\sqrt{7}) \) None 63.6.a.g \(0\) \(0\) \(0\) \(-98\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-4q^{4}-7\beta q^{5}-7^{2}q^{7}-6^{2}\beta q^{8}+\cdots\)
63.6.a.h 63.a 1.a $4$ $10.104$ 4.4.358541904.1 None 63.6.a.h \(0\) \(0\) \(0\) \(196\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(24+\beta _{3})q^{4}+(3\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(63))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(63)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)