Properties

Label 63.5.b.a
Level $63$
Weight $5$
Character orbit 63.b
Analytic conductor $6.512$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,5,Mod(8,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.8");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 63.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.51230767428\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 92x^{6} + 2949x^{4} + 37548x^{2} + 142884 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{7}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} - 15) q^{4} + (\beta_{6} + 2 \beta_1) q^{5} + \beta_{4} q^{7} + (3 \beta_{7} + \beta_{6} - 18 \beta_1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{3} - 15) q^{4} + (\beta_{6} + 2 \beta_1) q^{5} + \beta_{4} q^{7} + (3 \beta_{7} + \beta_{6} - 18 \beta_1) q^{8} + ( - 8 \beta_{4} - 2 \beta_{2} - 48) q^{10} + (3 \beta_{7} + 2 \beta_{5} - 5 \beta_1) q^{11} + (6 \beta_{3} + 2 \beta_{2} - 44) q^{13} + (\beta_{7} + 3 \beta_{6} - \beta_{5} + 2 \beta_1) q^{14} + ( - 14 \beta_{4} - 13 \beta_{3} + \beta_{2} + 350) q^{16} + ( - 2 \beta_{7} + 3 \beta_{6} + 4 \beta_{5} + 32 \beta_1) q^{17} + (4 \beta_{4} - 4 \beta_{3} + 2 \beta_{2} - 110) q^{19} + (6 \beta_{7} - 24 \beta_{6} + 16 \beta_{5} - 28 \beta_1) q^{20} + (6 \beta_{4} - 14 \beta_{3} + 7 \beta_{2} + 201) q^{22} + (\beta_{7} + 4 \beta_{6} - 10 \beta_{5} - 15 \beta_1) q^{23} + ( - 12 \beta_{4} + 14 \beta_{3} - 10 \beta_{2} - 329) q^{25} + (4 \beta_{7} + 22 \beta_{6} - 8 \beta_{5} - 162 \beta_1) q^{26} + ( - 16 \beta_{4} - 7 \beta_{3} - 7 \beta_{2} - 28) q^{28} + ( - 15 \beta_{7} + 11 \beta_{6} - 20 \beta_{5} + 45 \beta_1) q^{29} + (52 \beta_{4} + 32 \beta_{3} - 2 \beta_{2} + 138) q^{31} + ( - 12 \beta_{7} - 31 \beta_{6} + 10 \beta_{5} + 279 \beta_1) q^{32} + (4 \beta_{4} + 32 \beta_{3} - 906) q^{34} + ( - 7 \beta_{5} + 84 \beta_1) q^{35} + (28 \beta_{4} + 6 \beta_{3} - 18 \beta_{2} + 526) q^{37} + ( - 22 \beta_{7} + 24 \beta_{6} - 12 \beta_{5} - 30 \beta_1) q^{38} + (148 \beta_{4} + 2 \beta_{3} + 54 \beta_{2} + 24) q^{40} + ( - 32 \beta_{7} - 15 \beta_{6} - 20 \beta_{5} + 78 \beta_1) q^{41} + (40 \beta_{4} - 4 \beta_{3} - 1600) q^{43} + ( - 37 \beta_{7} + 60 \beta_{6} - 2 \beta_{5} + 385 \beta_1) q^{44} + ( - 94 \beta_{4} - 26 \beta_{3} - 27 \beta_{2} + 387) q^{46} + ( - 58 \beta_{7} - 60 \beta_{6} + 4 \beta_{5} - 318 \beta_1) q^{47} + 343 q^{49} + (100 \beta_{7} - 102 \beta_{6} + 52 \beta_{5} - 599 \beta_1) q^{50} + ( - 232 \beta_{4} - 122 \beta_{3} - 24 \beta_{2} + 4538) q^{52} + (77 \beta_{7} - \beta_{6} - 48 \beta_{5} - 67 \beta_1) q^{53} + (116 \beta_{4} - 104 \beta_{3} + 34 \beta_{2} + 334) q^{55} + (28 \beta_{7} - 63 \beta_{6} + 28 \beta_{5} + 119 \beta_1) q^{56} + ( - 178 \beta_{4} + 68 \beta_{3} - 77 \beta_{2} - 1611) q^{58} + ( - 154 \beta_{7} + 44 \beta_{6} + 28 \beta_{5} + 354 \beta_1) q^{59} + ( - 76 \beta_{4} - 28 \beta_{3} + 58 \beta_{2} + 776) q^{61} + (162 \beta_{7} + 172 \beta_{6} - 44 \beta_{5} - 362 \beta_1) q^{62} + (108 \beta_{4} + 169 \beta_{3} + 86 \beta_{2} - 3415) q^{64} + ( - 64 \beta_{7} - 44 \beta_{6} + 100 \beta_{5} + 380 \beta_1) q^{65} + (92 \beta_{4} - 82 \beta_{3} - 2 \beta_{2} + 104) q^{67} + (68 \beta_{7} + 92 \beta_{6} + 60 \beta_{5} - 994 \beta_1) q^{68} + ( - 42 \beta_{4} + 84 \beta_{3} - 14 \beta_{2} - 2702) q^{70} + (67 \beta_{7} - 16 \beta_{6} + 2 \beta_{5} + 603 \beta_1) q^{71} + (12 \beta_{4} + 94 \beta_{3} - 24 \beta_{2} + 2794) q^{73} + (172 \beta_{7} - 54 \beta_{6} + 44 \beta_{5} + 504 \beta_1) q^{74} + ( - 156 \beta_{4} - 76 \beta_{3} - 62 \beta_{2} - 794) q^{76} + (67 \beta_{7} - 44 \beta_{6} - 4 \beta_{5} - 83 \beta_1) q^{77} + ( - 108 \beta_{4} + 134 \beta_{3} + 34 \beta_{2} + 4024) q^{79} + ( - 128 \beta_{7} + 494 \beta_{6} - 108 \beta_{5} - 274 \beta_1) q^{80} + (64 \beta_{4} + 204 \beta_{3} - 42 \beta_{2} - 3100) q^{82} + (100 \beta_{7} - 124 \beta_{6} - 88 \beta_{5} - 792 \beta_1) q^{83} + ( - 92 \beta_{4} - 134 \beta_{3} - 98 \beta_{2} - 3970) q^{85} + (28 \beta_{7} + 116 \beta_{6} - 40 \beta_{5} - 1444 \beta_1) q^{86} + ( - 322 \beta_{4} + 152 \beta_{3} - 49 \beta_{2} - 8129) q^{88} + ( - 76 \beta_{7} - 55 \beta_{6} + 12 \beta_{5} + 850 \beta_1) q^{89} + ( - 56 \beta_{4} - 126 \beta_{3} - 28 \beta_{2} - 210) q^{91} + (33 \beta_{7} - 460 \beta_{6} + 42 \beta_{5} + 507 \beta_1) q^{92} + (620 \beta_{4} - 24 \beta_{3} + 70 \beta_{2} + 8726) q^{94} + ( - 124 \beta_{7} - 20 \beta_{6} - 88 \beta_{5} + 564 \beta_1) q^{95} + ( - 100 \beta_{4} - 50 \beta_{3} + 124 \beta_{2} - 882) q^{97} + 343 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 120 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 120 q^{4} - 376 q^{10} - 360 q^{13} + 2796 q^{16} - 888 q^{19} + 1580 q^{22} - 2592 q^{25} - 196 q^{28} + 1112 q^{31} - 7248 q^{34} + 4280 q^{37} - 24 q^{40} - 12800 q^{43} + 3204 q^{46} + 2744 q^{49} + 36400 q^{52} + 2536 q^{55} - 12580 q^{58} + 5976 q^{61} - 27664 q^{64} + 840 q^{67} - 21560 q^{70} + 22448 q^{73} - 6104 q^{76} + 32056 q^{79} - 24632 q^{82} - 31368 q^{85} - 64836 q^{88} - 1568 q^{91} + 69528 q^{94} - 7552 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 92x^{6} + 2949x^{4} + 37548x^{2} + 142884 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 71\nu^{7} + 4642\nu^{5} + 83127\nu^{3} + 362754\nu ) / 63504 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 110\nu^{4} + 3057\nu^{2} + 19062 ) / 72 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{6} - 334\nu^{4} - 6213\nu^{2} - 25398 ) / 72 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -5\nu^{6} - 334\nu^{4} - 6429\nu^{2} - 30366 ) / 72 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 377\nu^{7} + 25990\nu^{5} + 550065\nu^{3} + 3503934\nu ) / 31752 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -5\nu^{7} - 320\nu^{5} - 5687\nu^{3} - 21546\nu ) / 294 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -1097\nu^{7} - 75598\nu^{5} - 1492473\nu^{3} - 7051086\nu ) / 63504 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 4\beta_{7} + 5\beta_{6} + 3\beta_{5} + 106\beta_1 ) / 126 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{4} + \beta_{3} - 69 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{7} - 7\beta_{6} + \beta_{5} - 148\beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 42\beta_{4} - 41\beta_{3} + 5\beta_{2} + 1927 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -62\beta_{7} + 287\beta_{6} - 107\beta_{5} + 4544\beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -1563\beta_{4} + 1453\beta_{3} - 334\beta_{2} - 58223 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 5422\beta_{7} - 11785\beta_{6} + 5095\beta_{5} - 144232\beta_1 ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
8.1
5.12618i
5.99257i
4.82885i
2.54824i
2.54824i
4.82885i
5.99257i
5.12618i
7.70411i 0 −43.3534 25.4664i 0 −18.5203 210.733i 0 196.196
8.2 7.15630i 0 −35.2126 46.1483i 0 18.5203 137.491i 0 −330.251
8.3 3.66513i 0 2.56682 14.9468i 0 18.5203 68.0498i 0 −54.7821
8.4 0.0296928i 0 15.9991 28.1850i 0 −18.5203 0.950143i 0 0.836892
8.5 0.0296928i 0 15.9991 28.1850i 0 −18.5203 0.950143i 0 0.836892
8.6 3.66513i 0 2.56682 14.9468i 0 18.5203 68.0498i 0 −54.7821
8.7 7.15630i 0 −35.2126 46.1483i 0 18.5203 137.491i 0 −330.251
8.8 7.70411i 0 −43.3534 25.4664i 0 −18.5203 210.733i 0 196.196
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 8.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.5.b.a 8
3.b odd 2 1 inner 63.5.b.a 8
4.b odd 2 1 1008.5.d.c 8
7.b odd 2 1 441.5.b.d 8
12.b even 2 1 1008.5.d.c 8
21.c even 2 1 441.5.b.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.5.b.a 8 1.a even 1 1 trivial
63.5.b.a 8 3.b odd 2 1 inner
441.5.b.d 8 7.b odd 2 1
441.5.b.d 8 21.c even 2 1
1008.5.d.c 8 4.b odd 2 1
1008.5.d.c 8 12.b even 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(63, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 124 T^{6} + 4525 T^{4} + \cdots + 36 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 3796 T^{6} + \cdots + 245120049216 \) Copy content Toggle raw display
$7$ \( (T^{2} - 343)^{4} \) Copy content Toggle raw display
$11$ \( T^{8} + 50308 T^{6} + \cdots + 16\!\cdots\!84 \) Copy content Toggle raw display
$13$ \( (T^{4} + 180 T^{3} - 64700 T^{2} + \cdots - 186689216)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + 268500 T^{6} + \cdots + 22\!\cdots\!84 \) Copy content Toggle raw display
$19$ \( (T^{4} + 444 T^{3} + 16216 T^{2} + \cdots - 1542278528)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 836292 T^{6} + \cdots + 11\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{8} + 4034680 T^{6} + \cdots + 12\!\cdots\!16 \) Copy content Toggle raw display
$31$ \( (T^{4} - 556 T^{3} + \cdots - 63902466432)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 2140 T^{3} + \cdots + 337529037888)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + 6762676 T^{6} + \cdots + 67\!\cdots\!76 \) Copy content Toggle raw display
$43$ \( (T^{4} + 6400 T^{3} + \cdots + 3971721144832)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 30135792 T^{6} + \cdots + 68\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{8} + 32836584 T^{6} + \cdots + 31\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{8} + 81221232 T^{6} + \cdots + 13\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( (T^{4} - 2988 T^{3} + \cdots - 16126016178608)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 420 T^{3} + \cdots - 5902268493824)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 54832644 T^{6} + \cdots + 40\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( (T^{4} - 11224 T^{3} + \cdots - 14260001208768)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 16028 T^{3} + \cdots + 22129475818048)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 199827072 T^{6} + \cdots + 77\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{8} + 122212756 T^{6} + \cdots + 20\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( (T^{4} + 3776 T^{3} + \cdots + 16\!\cdots\!72)^{2} \) Copy content Toggle raw display
show more
show less