Properties

Label 63.4.s.a.47.8
Level $63$
Weight $4$
Character 63.47
Analytic conductor $3.717$
Analytic rank $0$
Dimension $44$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.8
Character \(\chi\) \(=\) 63.47
Dual form 63.4.s.a.59.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.59189 + 0.919076i) q^{2} +(-5.10006 - 0.994690i) q^{3} +(-2.31060 + 4.00207i) q^{4} +0.414554 q^{5} +(9.03291 - 3.10391i) q^{6} +(12.7471 - 13.4355i) q^{7} -23.1997i q^{8} +(25.0212 + 10.1460i) q^{9} +O(q^{10})\) \(q+(-1.59189 + 0.919076i) q^{2} +(-5.10006 - 0.994690i) q^{3} +(-2.31060 + 4.00207i) q^{4} +0.414554 q^{5} +(9.03291 - 3.10391i) q^{6} +(12.7471 - 13.4355i) q^{7} -23.1997i q^{8} +(25.0212 + 10.1460i) q^{9} +(-0.659923 + 0.381007i) q^{10} -49.6101i q^{11} +(15.7650 - 18.1125i) q^{12} +(1.43477 - 0.828367i) q^{13} +(-7.94365 + 33.1033i) q^{14} +(-2.11425 - 0.412352i) q^{15} +(2.83751 + 4.91471i) q^{16} +(-20.6496 - 35.7662i) q^{17} +(-49.1558 + 6.84517i) q^{18} +(130.814 + 75.5256i) q^{19} +(-0.957866 + 1.65907i) q^{20} +(-78.3749 + 55.8424i) q^{21} +(45.5955 + 78.9737i) q^{22} -131.651i q^{23} +(-23.0765 + 118.320i) q^{24} -124.828 q^{25} +(-1.52267 + 2.63733i) q^{26} +(-117.517 - 76.6333i) q^{27} +(24.3164 + 82.0587i) q^{28} +(-136.539 - 78.8310i) q^{29} +(3.74463 - 1.28674i) q^{30} +(-15.9411 - 9.20357i) q^{31} +(151.698 + 87.5830i) q^{32} +(-49.3467 + 253.015i) q^{33} +(65.7437 + 37.9571i) q^{34} +(5.28434 - 5.56973i) q^{35} +(-98.4187 + 76.6934i) q^{36} +(173.836 - 301.092i) q^{37} -277.655 q^{38} +(-8.14140 + 2.79757i) q^{39} -9.61751i q^{40} +(-16.9818 - 29.4134i) q^{41} +(73.4406 - 160.927i) q^{42} +(29.5623 - 51.2034i) q^{43} +(198.543 + 114.629i) q^{44} +(10.3726 + 4.20604i) q^{45} +(120.997 + 209.573i) q^{46} +(108.266 + 187.523i) q^{47} +(-9.58284 - 27.8877i) q^{48} +(-18.0246 - 342.526i) q^{49} +(198.712 - 114.727i) q^{50} +(69.7380 + 202.950i) q^{51} +7.65609i q^{52} +(174.040 - 100.482i) q^{53} +(257.506 + 13.9840i) q^{54} -20.5661i q^{55} +(-311.699 - 295.728i) q^{56} +(-592.036 - 515.305i) q^{57} +289.807 q^{58} +(149.819 - 259.493i) q^{59} +(6.53544 - 7.50859i) q^{60} +(-69.6527 + 40.2140i) q^{61} +33.8351 q^{62} +(455.263 - 206.841i) q^{63} -367.382 q^{64} +(0.594791 - 0.343403i) q^{65} +(-153.985 - 448.124i) q^{66} +(128.788 - 223.067i) q^{67} +190.852 q^{68} +(-130.952 + 671.426i) q^{69} +(-3.29307 + 13.7231i) q^{70} +1032.80i q^{71} +(235.383 - 580.484i) q^{72} +(-711.100 + 410.554i) q^{73} +639.073i q^{74} +(636.631 + 124.165i) q^{75} +(-604.518 + 349.019i) q^{76} +(-666.536 - 632.384i) q^{77} +(10.3890 - 11.9360i) q^{78} +(-52.6589 - 91.2079i) q^{79} +(1.17630 + 2.03741i) q^{80} +(523.119 + 507.728i) q^{81} +(54.0663 + 31.2152i) q^{82} +(245.110 - 424.542i) q^{83} +(-42.3924 - 442.691i) q^{84} +(-8.56037 - 14.8270i) q^{85} +108.680i q^{86} +(617.946 + 537.857i) q^{87} -1150.94 q^{88} +(-754.828 + 1307.40i) q^{89} +(-20.3777 + 2.83769i) q^{90} +(7.15964 - 29.8361i) q^{91} +(526.875 + 304.191i) q^{92} +(72.1456 + 62.7952i) q^{93} +(-344.695 - 199.010i) q^{94} +(54.2295 + 31.3094i) q^{95} +(-686.551 - 597.571i) q^{96} +(1087.14 + 627.661i) q^{97} +(343.501 + 528.697i) q^{98} +(503.342 - 1241.30i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44q - 3q^{2} - 3q^{3} + 81q^{4} - 6q^{5} - 24q^{6} + 5q^{7} - 3q^{9} + O(q^{10}) \) \( 44q - 3q^{2} - 3q^{3} + 81q^{4} - 6q^{5} - 24q^{6} + 5q^{7} - 3q^{9} - 6q^{10} - 3q^{12} + 36q^{13} + 129q^{14} - 141q^{15} - 263q^{16} + 72q^{17} - 15q^{18} - 6q^{19} - 24q^{20} - 306q^{21} + 14q^{22} - 66q^{24} + 698q^{25} + 96q^{26} - 432q^{27} - 156q^{28} - 132q^{29} + 852q^{30} + 177q^{31} - 501q^{32} + 849q^{33} - 24q^{34} - 765q^{35} + 1122q^{36} + 82q^{37} - 1746q^{38} - 645q^{39} - 618q^{41} - 963q^{42} + 82q^{43} - 603q^{44} + 303q^{45} + 266q^{46} - 201q^{47} + 1569q^{48} + 515q^{49} - 1845q^{50} + 417q^{51} - 564q^{53} - 684q^{54} + 3600q^{56} + 1170q^{57} - 538q^{58} + 747q^{59} - 516q^{60} - 1209q^{61} + 2904q^{62} + 1557q^{63} - 1144q^{64} - 831q^{65} + 1029q^{66} + 295q^{67} + 7008q^{68} + 1005q^{69} - 390q^{70} - 1119q^{72} - 6q^{73} - 1788q^{75} + 144q^{76} - 1203q^{77} - 5985q^{78} - 551q^{79} + 4239q^{80} + 3741q^{81} + 18q^{82} - 1830q^{83} - 7725q^{84} - 237q^{85} - 2130q^{87} + 1246q^{88} - 4266q^{89} - 9993q^{90} - 1140q^{91} + 7896q^{92} - 1479q^{93} - 3q^{94} - 1053q^{95} + 5034q^{96} + 792q^{97} - 5667q^{98} + 4335q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.59189 + 0.919076i −0.562817 + 0.324943i −0.754275 0.656558i \(-0.772012\pi\)
0.191458 + 0.981501i \(0.438678\pi\)
\(3\) −5.10006 0.994690i −0.981507 0.191428i
\(4\) −2.31060 + 4.00207i −0.288825 + 0.500259i
\(5\) 0.414554 0.0370788 0.0185394 0.999828i \(-0.494098\pi\)
0.0185394 + 0.999828i \(0.494098\pi\)
\(6\) 9.03291 3.10391i 0.614612 0.211194i
\(7\) 12.7471 13.4355i 0.688277 0.725448i
\(8\) 23.1997i 1.02529i
\(9\) 25.0212 + 10.1460i 0.926710 + 0.375776i
\(10\) −0.659923 + 0.381007i −0.0208686 + 0.0120485i
\(11\) 49.6101i 1.35982i −0.733296 0.679910i \(-0.762019\pi\)
0.733296 0.679910i \(-0.237981\pi\)
\(12\) 15.7650 18.1125i 0.379247 0.435718i
\(13\) 1.43477 0.828367i 0.0306104 0.0176729i −0.484617 0.874727i \(-0.661041\pi\)
0.515227 + 0.857054i \(0.327708\pi\)
\(14\) −7.94365 + 33.1033i −0.151645 + 0.631945i
\(15\) −2.11425 0.412352i −0.0363931 0.00709793i
\(16\) 2.83751 + 4.91471i 0.0443360 + 0.0767923i
\(17\) −20.6496 35.7662i −0.294604 0.510269i 0.680289 0.732944i \(-0.261854\pi\)
−0.974893 + 0.222675i \(0.928521\pi\)
\(18\) −49.1558 + 6.84517i −0.643674 + 0.0896345i
\(19\) 130.814 + 75.5256i 1.57952 + 0.911935i 0.994926 + 0.100608i \(0.0320787\pi\)
0.584592 + 0.811327i \(0.301255\pi\)
\(20\) −0.957866 + 1.65907i −0.0107093 + 0.0185490i
\(21\) −78.3749 + 55.8424i −0.814420 + 0.580277i
\(22\) 45.5955 + 78.9737i 0.441863 + 0.765330i
\(23\) 131.651i 1.19352i −0.802418 0.596762i \(-0.796454\pi\)
0.802418 0.596762i \(-0.203546\pi\)
\(24\) −23.0765 + 118.320i −0.196270 + 1.00633i
\(25\) −124.828 −0.998625
\(26\) −1.52267 + 2.63733i −0.0114854 + 0.0198932i
\(27\) −117.517 76.6333i −0.837638 0.546225i
\(28\) 24.3164 + 82.0587i 0.164121 + 0.553844i
\(29\) −136.539 78.8310i −0.874300 0.504777i −0.00552512 0.999985i \(-0.501759\pi\)
−0.868775 + 0.495207i \(0.835092\pi\)
\(30\) 3.74463 1.28674i 0.0227891 0.00783083i
\(31\) −15.9411 9.20357i −0.0923580 0.0533229i 0.453110 0.891455i \(-0.350315\pi\)
−0.545468 + 0.838132i \(0.683648\pi\)
\(32\) 151.698 + 87.5830i 0.838022 + 0.483832i
\(33\) −49.3467 + 253.015i −0.260308 + 1.33467i
\(34\) 65.7437 + 37.9571i 0.331616 + 0.191459i
\(35\) 5.28434 5.56973i 0.0255205 0.0268988i
\(36\) −98.4187 + 76.6934i −0.455642 + 0.355062i
\(37\) 173.836 301.092i 0.772390 1.33782i −0.163860 0.986484i \(-0.552395\pi\)
0.936250 0.351335i \(-0.114272\pi\)
\(38\) −277.655 −1.18531
\(39\) −8.14140 + 2.79757i −0.0334274 + 0.0114864i
\(40\) 9.61751i 0.0380166i
\(41\) −16.9818 29.4134i −0.0646857 0.112039i 0.831869 0.554972i \(-0.187271\pi\)
−0.896555 + 0.442933i \(0.853938\pi\)
\(42\) 73.4406 160.927i 0.269813 0.591229i
\(43\) 29.5623 51.2034i 0.104842 0.181592i −0.808832 0.588040i \(-0.799900\pi\)
0.913674 + 0.406449i \(0.133233\pi\)
\(44\) 198.543 + 114.629i 0.680262 + 0.392749i
\(45\) 10.3726 + 4.20604i 0.0343613 + 0.0139333i
\(46\) 120.997 + 209.573i 0.387827 + 0.671736i
\(47\) 108.266 + 187.523i 0.336005 + 0.581978i 0.983677 0.179941i \(-0.0575906\pi\)
−0.647672 + 0.761919i \(0.724257\pi\)
\(48\) −9.58284 27.8877i −0.0288159 0.0838593i
\(49\) −18.0246 342.526i −0.0525500 0.998618i
\(50\) 198.712 114.727i 0.562043 0.324496i
\(51\) 69.7380 + 202.950i 0.191476 + 0.557228i
\(52\) 7.65609i 0.0204175i
\(53\) 174.040 100.482i 0.451062 0.260421i −0.257217 0.966354i \(-0.582805\pi\)
0.708278 + 0.705933i \(0.249472\pi\)
\(54\) 257.506 + 13.9840i 0.648929 + 0.0352405i
\(55\) 20.5661i 0.0504205i
\(56\) −311.699 295.728i −0.743795 0.705684i
\(57\) −592.036 515.305i −1.37574 1.19743i
\(58\) 289.807 0.656095
\(59\) 149.819 259.493i 0.330588 0.572596i −0.652039 0.758185i \(-0.726086\pi\)
0.982627 + 0.185590i \(0.0594195\pi\)
\(60\) 6.53544 7.50859i 0.0140620 0.0161559i
\(61\) −69.6527 + 40.2140i −0.146199 + 0.0844078i −0.571315 0.820731i \(-0.693567\pi\)
0.425116 + 0.905139i \(0.360233\pi\)
\(62\) 33.8351 0.0693075
\(63\) 455.263 206.841i 0.910439 0.413642i
\(64\) −367.382 −0.717543
\(65\) 0.594791 0.343403i 0.00113500 0.000655290i
\(66\) −153.985 448.124i −0.287186 0.835761i
\(67\) 128.788 223.067i 0.234835 0.406746i −0.724390 0.689391i \(-0.757878\pi\)
0.959225 + 0.282645i \(0.0912117\pi\)
\(68\) 190.852 0.340355
\(69\) −130.952 + 671.426i −0.228474 + 1.17145i
\(70\) −3.29307 + 13.7231i −0.00562281 + 0.0234318i
\(71\) 1032.80i 1.72635i 0.504902 + 0.863177i \(0.331529\pi\)
−0.504902 + 0.863177i \(0.668471\pi\)
\(72\) 235.383 580.484i 0.385280 0.950148i
\(73\) −711.100 + 410.554i −1.14011 + 0.658243i −0.946458 0.322828i \(-0.895367\pi\)
−0.193652 + 0.981070i \(0.562033\pi\)
\(74\) 639.073i 1.00393i
\(75\) 636.631 + 124.165i 0.980157 + 0.191165i
\(76\) −604.518 + 349.019i −0.912407 + 0.526779i
\(77\) −666.536 632.384i −0.986479 0.935933i
\(78\) 10.3890 11.9360i 0.0150811 0.0173267i
\(79\) −52.6589 91.2079i −0.0749948 0.129895i 0.826089 0.563539i \(-0.190561\pi\)
−0.901084 + 0.433645i \(0.857227\pi\)
\(80\) 1.17630 + 2.03741i 0.00164393 + 0.00284737i
\(81\) 523.119 + 507.728i 0.717585 + 0.696471i
\(82\) 54.0663 + 31.2152i 0.0728125 + 0.0420383i
\(83\) 245.110 424.542i 0.324148 0.561441i −0.657192 0.753724i \(-0.728256\pi\)
0.981340 + 0.192283i \(0.0615891\pi\)
\(84\) −42.3924 442.691i −0.0550641 0.575019i
\(85\) −8.56037 14.8270i −0.0109236 0.0189202i
\(86\) 108.680i 0.136270i
\(87\) 617.946 + 537.857i 0.761503 + 0.662808i
\(88\) −1150.94 −1.39421
\(89\) −754.828 + 1307.40i −0.899007 + 1.55713i −0.0702410 + 0.997530i \(0.522377\pi\)
−0.828766 + 0.559596i \(0.810956\pi\)
\(90\) −20.3777 + 2.83769i −0.0238667 + 0.00332354i
\(91\) 7.15964 29.8361i 0.00824763 0.0343701i
\(92\) 526.875 + 304.191i 0.597071 + 0.344719i
\(93\) 72.1456 + 62.7952i 0.0804425 + 0.0700167i
\(94\) −344.695 199.010i −0.378219 0.218365i
\(95\) 54.2295 + 31.3094i 0.0585666 + 0.0338135i
\(96\) −686.551 597.571i −0.729905 0.635305i
\(97\) 1087.14 + 627.661i 1.13796 + 0.657003i 0.945925 0.324384i \(-0.105157\pi\)
0.192037 + 0.981388i \(0.438490\pi\)
\(98\) 343.501 + 528.697i 0.354070 + 0.544964i
\(99\) 503.342 1241.30i 0.510988 1.26016i
\(100\) 288.428 499.571i 0.288428 0.499571i
\(101\) −1201.49 −1.18369 −0.591846 0.806051i \(-0.701601\pi\)
−0.591846 + 0.806051i \(0.701601\pi\)
\(102\) −297.541 258.978i −0.288833 0.251399i
\(103\) 219.409i 0.209893i 0.994478 + 0.104946i \(0.0334671\pi\)
−0.994478 + 0.104946i \(0.966533\pi\)
\(104\) −19.2179 33.2863i −0.0181199 0.0313845i
\(105\) −32.4906 + 23.1497i −0.0301977 + 0.0215160i
\(106\) −184.702 + 319.913i −0.169243 + 0.293138i
\(107\) 165.493 + 95.5472i 0.149521 + 0.0863261i 0.572894 0.819629i \(-0.305821\pi\)
−0.423373 + 0.905956i \(0.639154\pi\)
\(108\) 578.227 293.244i 0.515185 0.261273i
\(109\) −761.102 1318.27i −0.668810 1.15841i −0.978237 0.207490i \(-0.933470\pi\)
0.309427 0.950923i \(-0.399863\pi\)
\(110\) 18.9018 + 32.7389i 0.0163838 + 0.0283775i
\(111\) −1186.07 + 1362.68i −1.01420 + 1.16522i
\(112\) 102.201 + 24.5248i 0.0862243 + 0.0206908i
\(113\) 1363.73 787.351i 1.13530 0.655467i 0.190039 0.981777i \(-0.439139\pi\)
0.945263 + 0.326310i \(0.105805\pi\)
\(114\) 1416.06 + 276.181i 1.16339 + 0.226901i
\(115\) 54.5762i 0.0442544i
\(116\) 630.974 364.293i 0.505039 0.291584i
\(117\) 44.3043 6.16958i 0.0350080 0.00487502i
\(118\) 550.779i 0.429689i
\(119\) −743.758 178.476i −0.572943 0.137486i
\(120\) −9.56645 + 49.0499i −0.00727744 + 0.0373135i
\(121\) −1130.17 −0.849110
\(122\) 73.9195 128.032i 0.0548554 0.0950123i
\(123\) 57.3511 + 166.902i 0.0420421 + 0.122350i
\(124\) 73.6667 42.5315i 0.0533505 0.0308019i
\(125\) −103.567 −0.0741066
\(126\) −534.624 + 747.688i −0.378001 + 0.528646i
\(127\) 84.3766 0.0589544 0.0294772 0.999565i \(-0.490616\pi\)
0.0294772 + 0.999565i \(0.490616\pi\)
\(128\) −628.755 + 363.012i −0.434177 + 0.250672i
\(129\) −201.701 + 231.735i −0.137665 + 0.158164i
\(130\) −0.631227 + 1.09332i −0.000425863 + 0.000737617i
\(131\) 792.466 0.528535 0.264267 0.964449i \(-0.414870\pi\)
0.264267 + 0.964449i \(0.414870\pi\)
\(132\) −898.562 782.104i −0.592498 0.515708i
\(133\) 2682.22 794.823i 1.74871 0.518195i
\(134\) 473.464i 0.305232i
\(135\) −48.7173 31.7686i −0.0310586 0.0202534i
\(136\) −829.764 + 479.064i −0.523174 + 0.302055i
\(137\) 678.899i 0.423374i −0.977337 0.211687i \(-0.932104\pi\)
0.977337 0.211687i \(-0.0678958\pi\)
\(138\) −408.631 1189.19i −0.252065 0.733554i
\(139\) 2217.73 1280.41i 1.35328 0.781314i 0.364568 0.931177i \(-0.381217\pi\)
0.988707 + 0.149863i \(0.0478832\pi\)
\(140\) 10.0805 + 34.0177i 0.00608540 + 0.0205359i
\(141\) −365.637 1064.07i −0.218384 0.635537i
\(142\) −949.225 1644.11i −0.560966 0.971621i
\(143\) −41.0954 71.1794i −0.0240320 0.0416246i
\(144\) 21.1334 + 151.761i 0.0122300 + 0.0878246i
\(145\) −56.6028 32.6797i −0.0324180 0.0187165i
\(146\) 754.661 1307.11i 0.427782 0.740940i
\(147\) −248.781 + 1764.83i −0.139586 + 0.990210i
\(148\) 803.329 + 1391.41i 0.446170 + 0.772790i
\(149\) 2357.74i 1.29633i 0.761498 + 0.648167i \(0.224464\pi\)
−0.761498 + 0.648167i \(0.775536\pi\)
\(150\) −1127.56 + 387.455i −0.613767 + 0.210904i
\(151\) 592.855 0.319509 0.159754 0.987157i \(-0.448930\pi\)
0.159754 + 0.987157i \(0.448930\pi\)
\(152\) 1752.17 3034.85i 0.934999 1.61947i
\(153\) −153.796 1104.42i −0.0812657 0.583577i
\(154\) 1642.26 + 394.086i 0.859331 + 0.206210i
\(155\) −6.60842 3.81537i −0.00342452 0.00197715i
\(156\) 7.61544 39.0465i 0.00390848 0.0200399i
\(157\) 1613.35 + 931.467i 0.820122 + 0.473498i 0.850459 0.526042i \(-0.176325\pi\)
−0.0303366 + 0.999540i \(0.509658\pi\)
\(158\) 167.654 + 96.7951i 0.0844167 + 0.0487380i
\(159\) −987.564 + 339.349i −0.492572 + 0.169259i
\(160\) 62.8870 + 36.3078i 0.0310728 + 0.0179399i
\(161\) −1768.79 1678.16i −0.865840 0.821475i
\(162\) −1299.39 327.458i −0.630182 0.158812i
\(163\) 1052.23 1822.52i 0.505627 0.875771i −0.494352 0.869262i \(-0.664595\pi\)
0.999979 0.00650957i \(-0.00207207\pi\)
\(164\) 156.953 0.0747313
\(165\) −20.4569 + 104.888i −0.00965191 + 0.0494881i
\(166\) 901.098i 0.421318i
\(167\) −970.922 1681.69i −0.449893 0.779238i 0.548485 0.836160i \(-0.315205\pi\)
−0.998379 + 0.0569221i \(0.981871\pi\)
\(168\) 1295.53 + 1818.27i 0.594952 + 0.835017i
\(169\) −1097.13 + 1900.28i −0.499375 + 0.864943i
\(170\) 27.2543 + 15.7353i 0.0122959 + 0.00709906i
\(171\) 2506.85 + 3216.98i 1.12107 + 1.43865i
\(172\) 136.613 + 236.621i 0.0605619 + 0.104896i
\(173\) −215.024 372.433i −0.0944971 0.163674i 0.814901 0.579599i \(-0.196791\pi\)
−0.909399 + 0.415926i \(0.863458\pi\)
\(174\) −1478.03 288.268i −0.643961 0.125595i
\(175\) −1591.19 + 1677.13i −0.687331 + 0.724451i
\(176\) 243.819 140.769i 0.104424 0.0602890i
\(177\) −1022.20 + 1174.41i −0.434086 + 0.498723i
\(178\) 2774.98i 1.16850i
\(179\) −316.818 + 182.915i −0.132291 + 0.0763783i −0.564685 0.825307i \(-0.691002\pi\)
0.432394 + 0.901685i \(0.357669\pi\)
\(180\) −40.7998 + 31.7935i −0.0168947 + 0.0131653i
\(181\) 3311.27i 1.35980i 0.733303 + 0.679902i \(0.237978\pi\)
−0.733303 + 0.679902i \(0.762022\pi\)
\(182\) 16.0244 + 54.0760i 0.00652640 + 0.0220241i
\(183\) 395.233 135.811i 0.159653 0.0548603i
\(184\) −3054.25 −1.22371
\(185\) 72.0642 124.819i 0.0286393 0.0496047i
\(186\) −172.561 33.6555i −0.0680258 0.0132674i
\(187\) −1774.37 + 1024.43i −0.693874 + 0.400608i
\(188\) −1000.64 −0.388187
\(189\) −2527.61 + 602.054i −0.972785 + 0.231709i
\(190\) −115.103 −0.0439497
\(191\) −3470.27 + 2003.56i −1.31466 + 0.759019i −0.982864 0.184333i \(-0.940988\pi\)
−0.331795 + 0.943351i \(0.607654\pi\)
\(192\) 1873.67 + 365.431i 0.704273 + 0.137358i
\(193\) −1168.46 + 2023.83i −0.435791 + 0.754812i −0.997360 0.0726178i \(-0.976865\pi\)
0.561569 + 0.827430i \(0.310198\pi\)
\(194\) −2307.47 −0.853953
\(195\) −3.37505 + 1.15974i −0.00123945 + 0.000425902i
\(196\) 1412.46 + 719.304i 0.514745 + 0.262137i
\(197\) 337.074i 0.121906i 0.998141 + 0.0609531i \(0.0194140\pi\)
−0.998141 + 0.0609531i \(0.980586\pi\)
\(198\) 339.590 + 2438.63i 0.121887 + 0.875281i
\(199\) 4282.30 2472.39i 1.52545 0.880719i 0.525905 0.850543i \(-0.323727\pi\)
0.999545 0.0301752i \(-0.00960652\pi\)
\(200\) 2895.97i 1.02388i
\(201\) −878.708 + 1009.55i −0.308355 + 0.354270i
\(202\) 1912.64 1104.26i 0.666203 0.384632i
\(203\) −2799.61 + 829.608i −0.967950 + 0.286833i
\(204\) −973.355 189.838i −0.334061 0.0651536i
\(205\) −7.03988 12.1934i −0.00239847 0.00415427i
\(206\) −201.653 349.274i −0.0682032 0.118131i
\(207\) 1335.72 3294.05i 0.448498 1.10605i
\(208\) 8.14236 + 4.70100i 0.00271429 + 0.00156709i
\(209\) 3746.84 6489.71i 1.24007 2.14786i
\(210\) 30.4451 66.7130i 0.0100043 0.0219221i
\(211\) −600.104 1039.41i −0.195795 0.339128i 0.751366 0.659886i \(-0.229396\pi\)
−0.947161 + 0.320758i \(0.896062\pi\)
\(212\) 928.695i 0.300863i
\(213\) 1027.32 5267.35i 0.330473 1.69443i
\(214\) −351.261 −0.112204
\(215\) 12.2551 21.2265i 0.00388741 0.00673320i
\(216\) −1777.87 + 2726.37i −0.560040 + 0.858823i
\(217\) −326.856 + 96.8573i −0.102251 + 0.0303000i
\(218\) 2423.18 + 1399.02i 0.752836 + 0.434650i
\(219\) 4035.03 1386.52i 1.24503 0.427820i
\(220\) 82.3069 + 47.5199i 0.0252233 + 0.0145627i
\(221\) −59.2551 34.2109i −0.0180359 0.0104130i
\(222\) 635.680 3259.31i 0.192180 0.985363i
\(223\) 1065.22 + 615.003i 0.319875 + 0.184680i 0.651337 0.758789i \(-0.274208\pi\)
−0.331462 + 0.943469i \(0.607542\pi\)
\(224\) 3110.43 921.713i 0.927786 0.274931i
\(225\) −3123.35 1266.50i −0.925436 0.375259i
\(226\) −1447.27 + 2506.75i −0.425978 + 0.737816i
\(227\) 1823.86 0.533276 0.266638 0.963797i \(-0.414087\pi\)
0.266638 + 0.963797i \(0.414087\pi\)
\(228\) 3430.24 1178.71i 0.996374 0.342376i
\(229\) 5127.88i 1.47974i −0.672751 0.739869i \(-0.734888\pi\)
0.672751 0.739869i \(-0.265112\pi\)
\(230\) 50.1597 + 86.8792i 0.0143802 + 0.0249072i
\(231\) 2770.35 + 3888.19i 0.789072 + 1.10746i
\(232\) −1828.85 + 3167.67i −0.517544 + 0.896412i
\(233\) −3036.86 1753.33i −0.853869 0.492981i 0.00808557 0.999967i \(-0.497426\pi\)
−0.861954 + 0.506986i \(0.830760\pi\)
\(234\) −64.8572 + 50.5403i −0.0181190 + 0.0141193i
\(235\) 44.8822 + 77.7382i 0.0124587 + 0.0215791i
\(236\) 692.341 + 1199.17i 0.190964 + 0.330760i
\(237\) 177.840 + 517.545i 0.0487424 + 0.141849i
\(238\) 1348.01 399.456i 0.367137 0.108794i
\(239\) 3414.05 1971.10i 0.924002 0.533473i 0.0390925 0.999236i \(-0.487553\pi\)
0.884910 + 0.465763i \(0.154220\pi\)
\(240\) −3.97260 11.5610i −0.00106846 0.00310940i
\(241\) 1022.27i 0.273238i 0.990624 + 0.136619i \(0.0436236\pi\)
−0.990624 + 0.136619i \(0.956376\pi\)
\(242\) 1799.10 1038.71i 0.477894 0.275912i
\(243\) −2162.91 3109.78i −0.570990 0.820957i
\(244\) 371.673i 0.0975162i
\(245\) −7.47218 141.995i −0.00194849 0.0370276i
\(246\) −244.692 212.978i −0.0634186 0.0551992i
\(247\) 250.252 0.0644662
\(248\) −213.520 + 369.827i −0.0546715 + 0.0946938i
\(249\) −1672.36 + 1921.38i −0.425629 + 0.489007i
\(250\) 164.867 95.1861i 0.0417085 0.0240804i
\(251\) −646.886 −0.162674 −0.0813369 0.996687i \(-0.525919\pi\)
−0.0813369 + 0.996687i \(0.525919\pi\)
\(252\) −224.137 + 2299.92i −0.0560290 + 0.574926i
\(253\) −6531.20 −1.62298
\(254\) −134.318 + 77.5485i −0.0331806 + 0.0191568i
\(255\) 28.9101 + 84.1335i 0.00709970 + 0.0206613i
\(256\) 2136.80 3701.04i 0.521679 0.903575i
\(257\) 1189.28 0.288660 0.144330 0.989530i \(-0.453897\pi\)
0.144330 + 0.989530i \(0.453897\pi\)
\(258\) 108.103 554.274i 0.0260860 0.133750i
\(259\) −1829.43 6173.61i −0.438900 1.48112i
\(260\) 3.17386i 0.000757056i
\(261\) −2616.56 3357.76i −0.620540 0.796323i
\(262\) −1261.52 + 728.336i −0.297468 + 0.171743i
\(263\) 4767.82i 1.11786i 0.829216 + 0.558928i \(0.188787\pi\)
−0.829216 + 0.558928i \(0.811213\pi\)
\(264\) 5869.86 + 1144.83i 1.36843 + 0.266891i
\(265\) 72.1490 41.6553i 0.0167248 0.00965608i
\(266\) −3539.29 + 3730.43i −0.815819 + 0.859878i
\(267\) 5150.13 5917.00i 1.18046 1.35623i
\(268\) 595.154 + 1030.84i 0.135652 + 0.234957i
\(269\) 2176.22 + 3769.33i 0.493259 + 0.854350i 0.999970 0.00776629i \(-0.00247211\pi\)
−0.506711 + 0.862116i \(0.669139\pi\)
\(270\) 106.750 + 5.79714i 0.0240615 + 0.00130668i
\(271\) −476.614 275.173i −0.106835 0.0616811i 0.445631 0.895217i \(-0.352979\pi\)
−0.552465 + 0.833536i \(0.686313\pi\)
\(272\) 117.187 202.974i 0.0261231 0.0452466i
\(273\) −66.1923 + 145.044i −0.0146745 + 0.0321556i
\(274\) 623.960 + 1080.73i 0.137572 + 0.238282i
\(275\) 6192.74i 1.35795i
\(276\) −2384.52 2075.47i −0.520040 0.452640i
\(277\) −1456.16 −0.315855 −0.157928 0.987451i \(-0.550481\pi\)
−0.157928 + 0.987451i \(0.550481\pi\)
\(278\) −2353.58 + 4076.52i −0.507764 + 0.879473i
\(279\) −305.485 392.021i −0.0655517 0.0841208i
\(280\) −129.216 122.595i −0.0275790 0.0261659i
\(281\) 6158.20 + 3555.44i 1.30736 + 0.754803i 0.981654 0.190670i \(-0.0610660\pi\)
0.325702 + 0.945472i \(0.394399\pi\)
\(282\) 1560.01 + 1357.83i 0.329423 + 0.286728i
\(283\) −2355.21 1359.78i −0.494710 0.285621i 0.231816 0.972760i \(-0.425533\pi\)
−0.726526 + 0.687139i \(0.758866\pi\)
\(284\) −4133.35 2386.39i −0.863624 0.498614i
\(285\) −245.431 213.621i −0.0510107 0.0443995i
\(286\) 130.839 + 75.5397i 0.0270512 + 0.0156180i
\(287\) −611.651 146.775i −0.125800 0.0301877i
\(288\) 2907.05 + 3730.55i 0.594791 + 0.763281i
\(289\) 1603.69 2777.67i 0.326417 0.565371i
\(290\) 120.140 0.0243272
\(291\) −4920.15 4282.47i −0.991149 0.862691i
\(292\) 3794.50i 0.760467i
\(293\) 2004.64 + 3472.14i 0.399701 + 0.692302i 0.993689 0.112172i \(-0.0357808\pi\)
−0.593988 + 0.804474i \(0.702447\pi\)
\(294\) −1225.98 3038.06i −0.243200 0.602664i
\(295\) 62.1078 107.574i 0.0122578 0.0212312i
\(296\) −6985.25 4032.93i −1.37165 0.791924i
\(297\) −3801.79 + 5830.05i −0.742768 + 1.13904i
\(298\) −2166.94 3753.26i −0.421234 0.729599i
\(299\) −109.055 188.889i −0.0210930 0.0365342i
\(300\) −1967.92 + 2260.95i −0.378726 + 0.435119i
\(301\) −311.110 1049.88i −0.0595750 0.201043i
\(302\) −943.758 + 544.879i −0.179825 + 0.103822i
\(303\) 6127.68 + 1195.11i 1.16180 + 0.226592i
\(304\) 857.218i 0.161726i
\(305\) −28.8748 + 16.6709i −0.00542087 + 0.00312974i
\(306\) 1259.87 + 1616.77i 0.235367 + 0.302040i
\(307\) 3968.59i 0.737783i 0.929473 + 0.368891i \(0.120263\pi\)
−0.929473 + 0.368891i \(0.879737\pi\)
\(308\) 4070.94 1206.34i 0.753128 0.223174i
\(309\) 218.244 1119.00i 0.0401794 0.206011i
\(310\) 14.0265 0.00256984
\(311\) −2387.59 + 4135.43i −0.435331 + 0.754016i −0.997323 0.0731274i \(-0.976702\pi\)
0.561991 + 0.827143i \(0.310035\pi\)
\(312\) 64.9026 + 188.878i 0.0117769 + 0.0342728i
\(313\) −8330.83 + 4809.81i −1.50443 + 0.868583i −0.504443 + 0.863445i \(0.668302\pi\)
−0.999987 + 0.00513795i \(0.998365\pi\)
\(314\) −3424.36 −0.615438
\(315\) 188.731 85.7466i 0.0337580 0.0153374i
\(316\) 486.694 0.0866414
\(317\) 7775.68 4489.29i 1.37768 0.795406i 0.385803 0.922581i \(-0.373924\pi\)
0.991880 + 0.127175i \(0.0405911\pi\)
\(318\) 1260.20 1447.85i 0.222229 0.255319i
\(319\) −3910.81 + 6773.73i −0.686406 + 1.18889i
\(320\) −152.299 −0.0266056
\(321\) −748.982 651.910i −0.130231 0.113352i
\(322\) 4358.07 + 1045.79i 0.754241 + 0.180992i
\(323\) 6238.30i 1.07464i
\(324\) −3240.68 + 920.407i −0.555672 + 0.157820i
\(325\) −179.100 + 103.404i −0.0305683 + 0.0176486i
\(326\) 3868.33i 0.657199i
\(327\) 2570.40 + 7480.30i 0.434689 + 1.26502i
\(328\) −682.381 + 393.973i −0.114873 + 0.0663217i
\(329\) 3899.54 + 935.754i 0.653460 + 0.156808i
\(330\) −63.8352 185.771i −0.0106485 0.0309890i
\(331\) 571.533 + 989.924i 0.0949072 + 0.164384i 0.909570 0.415551i \(-0.136411\pi\)
−0.814663 + 0.579935i \(0.803078\pi\)
\(332\) 1132.70 + 1961.89i 0.187244 + 0.324316i
\(333\) 7404.44 5769.96i 1.21850 0.949524i
\(334\) 3091.20 + 1784.70i 0.506415 + 0.292379i
\(335\) 53.3895 92.4733i 0.00870740 0.0150817i
\(336\) −496.838 226.736i −0.0806689 0.0368140i
\(337\) 2865.89 + 4963.87i 0.463250 + 0.802372i 0.999121 0.0419278i \(-0.0133499\pi\)
−0.535871 + 0.844300i \(0.680017\pi\)
\(338\) 4033.38i 0.649073i
\(339\) −7738.28 + 2659.04i −1.23978 + 0.426016i
\(340\) 79.1183 0.0126200
\(341\) −456.591 + 790.838i −0.0725096 + 0.125590i
\(342\) −6947.26 2817.08i −1.09844 0.445410i
\(343\) −4831.77 4124.03i −0.760615 0.649204i
\(344\) −1187.90 685.835i −0.186184 0.107493i
\(345\) −54.2864 + 278.342i −0.00847155 + 0.0434360i
\(346\) 684.589 + 395.248i 0.106369 + 0.0614123i
\(347\) −2758.89 1592.85i −0.426816 0.246422i 0.271173 0.962530i \(-0.412588\pi\)
−0.697989 + 0.716108i \(0.745922\pi\)
\(348\) −3580.36 + 1230.29i −0.551516 + 0.189513i
\(349\) 6403.54 + 3697.08i 0.982159 + 0.567050i 0.902921 0.429806i \(-0.141418\pi\)
0.0792376 + 0.996856i \(0.474751\pi\)
\(350\) 991.591 4132.22i 0.151436 0.631076i
\(351\) −232.091 12.6039i −0.0352938 0.00191665i
\(352\) 4345.00 7525.77i 0.657925 1.13956i
\(353\) −11089.9 −1.67211 −0.836055 0.548646i \(-0.815143\pi\)
−0.836055 + 0.548646i \(0.815143\pi\)
\(354\) 547.854 2809.00i 0.0822546 0.421743i
\(355\) 428.152i 0.0640111i
\(356\) −3488.21 6041.75i −0.519311 0.899472i
\(357\) 3615.68 + 1650.05i 0.536028 + 0.244621i
\(358\) 336.226 582.360i 0.0496371 0.0859740i
\(359\) 8302.65 + 4793.54i 1.22060 + 0.704716i 0.965047 0.262077i \(-0.0844076\pi\)
0.255558 + 0.966794i \(0.417741\pi\)
\(360\) 97.5789 240.642i 0.0142857 0.0352303i
\(361\) 7978.74 + 13819.6i 1.16325 + 2.01481i
\(362\) −3043.31 5271.16i −0.441858 0.765321i
\(363\) 5763.91 + 1124.16i 0.833407 + 0.162544i
\(364\) 102.863 + 97.5927i 0.0148118 + 0.0140529i
\(365\) −294.789 + 170.197i −0.0422739 + 0.0244068i
\(366\) −504.346 + 579.445i −0.0720289 + 0.0827543i
\(367\) 11623.3i 1.65322i −0.562772 0.826612i \(-0.690265\pi\)
0.562772 0.826612i \(-0.309735\pi\)
\(368\) 647.024 373.559i 0.0916534 0.0529161i
\(369\) −126.478 908.254i −0.0178434 0.128135i
\(370\) 264.930i 0.0372245i
\(371\) 868.475 3619.17i 0.121534 0.506463i
\(372\) −418.010 + 143.638i −0.0582603 + 0.0200195i
\(373\) −3902.56 −0.541734 −0.270867 0.962617i \(-0.587310\pi\)
−0.270867 + 0.962617i \(0.587310\pi\)
\(374\) 1883.06 3261.55i 0.260349 0.450938i
\(375\) 528.199 + 103.017i 0.0727362 + 0.0141861i
\(376\) 4350.47 2511.74i 0.596697 0.344503i
\(377\) −261.204 −0.0356835
\(378\) 3470.33 3281.47i 0.472208 0.446509i
\(379\) −699.252 −0.0947709 −0.0473855 0.998877i \(-0.515089\pi\)
−0.0473855 + 0.998877i \(0.515089\pi\)
\(380\) −250.605 + 144.687i −0.0338310 + 0.0195323i
\(381\) −430.326 83.9286i −0.0578642 0.0112855i
\(382\) 3682.85 6378.89i 0.493275 0.854378i
\(383\) 10158.5 1.35528 0.677641 0.735393i \(-0.263002\pi\)
0.677641 + 0.735393i \(0.263002\pi\)
\(384\) 3567.77 1225.96i 0.474133 0.162923i
\(385\) −276.315 262.157i −0.0365775 0.0347033i
\(386\) 4295.62i 0.566428i
\(387\) 1259.19 981.231i 0.165396 0.128886i
\(388\) −5023.89 + 2900.54i −0.657343 + 0.379517i
\(389\) 4758.61i 0.620234i −0.950698 0.310117i \(-0.899632\pi\)
0.950698 0.310117i \(-0.100368\pi\)
\(390\) 4.30680 4.94810i 0.000559189 0.000642454i
\(391\) −4708.64 + 2718.53i −0.609018 + 0.351617i
\(392\) −7946.50 + 418.166i −1.02387 + 0.0538790i
\(393\) −4041.62 788.258i −0.518760 0.101176i
\(394\) −309.797 536.584i −0.0396125 0.0686109i
\(395\) −21.8299 37.8106i −0.00278072 0.00481635i
\(396\) 3804.77 + 4882.57i 0.482820 + 0.619591i
\(397\) 6232.29 + 3598.21i 0.787883 + 0.454885i 0.839217 0.543797i \(-0.183014\pi\)
−0.0513336 + 0.998682i \(0.516347\pi\)
\(398\) −4544.63 + 7871.53i −0.572366 + 0.991367i
\(399\) −14470.1 + 1385.66i −1.81557 + 0.173860i
\(400\) −354.201 613.494i −0.0442751 0.0766867i
\(401\) 6733.30i 0.838517i −0.907867 0.419258i \(-0.862290\pi\)
0.907867 0.419258i \(-0.137710\pi\)
\(402\) 470.950 2414.69i 0.0584299 0.299587i
\(403\) −30.4958 −0.00376948
\(404\) 2776.17 4808.46i 0.341880 0.592153i
\(405\) 216.861 + 210.480i 0.0266072 + 0.0258243i
\(406\) 3694.18 3893.69i 0.451575 0.475963i
\(407\) −14937.2 8624.01i −1.81919 1.05031i
\(408\) 4708.37 1617.90i 0.571321 0.196318i
\(409\) 9440.71 + 5450.60i 1.14135 + 0.658960i 0.946765 0.321925i \(-0.104330\pi\)
0.194587 + 0.980885i \(0.437663\pi\)
\(410\) 22.4134 + 12.9404i 0.00269980 + 0.00155873i
\(411\) −675.294 + 3462.43i −0.0810458 + 0.415545i
\(412\) −878.089 506.965i −0.105001 0.0606223i
\(413\) −1576.67 5320.66i −0.187852 0.633929i
\(414\) 901.170 + 6471.39i 0.106981 + 0.768240i
\(415\) 101.611 175.996i 0.0120190 0.0208175i
\(416\) 290.204 0.0342029
\(417\) −12584.1 + 4324.19i −1.47781 + 0.507810i
\(418\) 13774.5i 1.61180i
\(419\) 8088.59 + 14009.8i 0.943087 + 1.63347i 0.759538 + 0.650463i \(0.225425\pi\)
0.183549 + 0.983011i \(0.441241\pi\)
\(420\) −17.5739 183.519i −0.00204171 0.0213210i
\(421\) 2966.25 5137.69i 0.343387 0.594764i −0.641672 0.766979i \(-0.721759\pi\)
0.985059 + 0.172215i \(0.0550924\pi\)
\(422\) 1910.60 + 1103.08i 0.220394 + 0.127245i
\(423\) 806.354 + 5790.50i 0.0926862 + 0.665588i
\(424\) −2331.15 4037.68i −0.267007 0.462469i
\(425\) 2577.65 + 4464.63i 0.294199 + 0.509567i
\(426\) 3205.73 + 9329.22i 0.364596 + 1.06104i
\(427\) −347.573 + 1448.43i −0.0393916 + 0.164155i
\(428\) −764.773 + 441.542i −0.0863708 + 0.0498662i
\(429\) 138.788 + 403.896i 0.0156194 + 0.0454552i
\(430\) 45.0537i 0.00505275i
\(431\) 5735.59 3311.44i 0.641006 0.370085i −0.143996 0.989578i \(-0.545995\pi\)
0.785002 + 0.619493i \(0.212662\pi\)
\(432\) 43.1736 795.011i 0.00480831 0.0885416i
\(433\) 9664.86i 1.07266i −0.844007 0.536332i \(-0.819809\pi\)
0.844007 0.536332i \(-0.180191\pi\)
\(434\) 431.299 454.592i 0.0477028 0.0502790i
\(435\) 256.172 + 222.970i 0.0282356 + 0.0245761i
\(436\) 7034.40 0.772676
\(437\) 9942.99 17221.8i 1.08842 1.88519i
\(438\) −5148.98 + 5915.69i −0.561708 + 0.645348i
\(439\) 4883.74 2819.63i 0.530953 0.306546i −0.210451 0.977604i \(-0.567493\pi\)
0.741404 + 0.671058i \(0.234160\pi\)
\(440\) −477.126 −0.0516957
\(441\) 3024.26 8753.28i 0.326558 0.945177i
\(442\) 125.770 0.0135345
\(443\) −7383.09 + 4262.63i −0.791832 + 0.457164i −0.840607 0.541646i \(-0.817801\pi\)
0.0487754 + 0.998810i \(0.484468\pi\)
\(444\) −2713.00 7895.31i −0.289985 0.843908i
\(445\) −312.917 + 541.988i −0.0333341 + 0.0577364i
\(446\) −2260.94 −0.240042
\(447\) 2345.22 12024.6i 0.248155 1.27236i
\(448\) −4683.04 + 4935.95i −0.493868 + 0.520540i
\(449\) 12740.7i 1.33914i 0.742751 + 0.669568i \(0.233521\pi\)
−0.742751 + 0.669568i \(0.766479\pi\)
\(450\) 6136.03 854.470i 0.642789 0.0895113i
\(451\) −1459.20 + 842.470i −0.152353 + 0.0879609i
\(452\) 7277.00i 0.757260i
\(453\) −3023.59 589.707i −0.313600 0.0611630i
\(454\) −2903.37 + 1676.26i −0.300137 + 0.173284i
\(455\) 2.96806 12.3687i 0.000305812 0.00127440i
\(456\) −11954.9 + 13735.0i −1.22772 + 1.41053i
\(457\) 6550.30 + 11345.4i 0.670481 + 1.16131i 0.977768 + 0.209691i \(0.0672457\pi\)
−0.307287 + 0.951617i \(0.599421\pi\)
\(458\) 4712.91 + 8163.01i 0.480830 + 0.832821i
\(459\) −314.190 + 5785.60i −0.0319502 + 0.588341i
\(460\) 218.418 + 126.104i 0.0221387 + 0.0127818i
\(461\) 5864.00 10156.8i 0.592438 1.02613i −0.401465 0.915874i \(-0.631499\pi\)
0.993903 0.110258i \(-0.0351678\pi\)
\(462\) −7983.63 3643.40i −0.803965 0.366897i
\(463\) −3831.27 6635.96i −0.384567 0.666089i 0.607142 0.794593i \(-0.292316\pi\)
−0.991709 + 0.128504i \(0.958982\pi\)
\(464\) 894.733i 0.0895193i
\(465\) 29.9082 + 26.0320i 0.00298271 + 0.00259614i
\(466\) 6445.79 0.640763
\(467\) −7179.19 + 12434.7i −0.711378 + 1.23214i 0.252962 + 0.967476i \(0.418595\pi\)
−0.964340 + 0.264666i \(0.914738\pi\)
\(468\) −77.6784 + 191.565i −0.00767240 + 0.0189211i
\(469\) −1355.35 4573.78i −0.133442 0.450315i
\(470\) −142.895 82.5003i −0.0140239 0.00809671i
\(471\) −7301.64 6355.31i −0.714314 0.621735i
\(472\) −6020.16 3475.74i −0.587077 0.338949i
\(473\) −2540.21 1466.59i −0.246932 0.142566i
\(474\) −758.764 660.425i −0.0735257 0.0639964i
\(475\) −16329.3 9427.73i −1.57735 0.910681i
\(476\) 2432.80 2564.19i 0.234259 0.246910i
\(477\) 5374.18 748.379i 0.515863 0.0718363i
\(478\) −3623.19 + 6275.54i −0.346696 + 0.600495i
\(479\) −17463.5 −1.66582 −0.832908 0.553412i \(-0.813325\pi\)
−0.832908 + 0.553412i \(0.813325\pi\)
\(480\) −284.612 247.725i −0.0270640 0.0235564i
\(481\) 575.999i 0.0546015i
\(482\) −939.547 1627.34i −0.0887867 0.153783i
\(483\) 7351.68 + 10318.1i 0.692574 + 0.972029i
\(484\) 2611.36 4523.00i 0.245244 0.424775i
\(485\) 450.678 + 260.199i 0.0421943 + 0.0243609i
\(486\) 6301.23 + 2962.54i 0.588127 + 0.276510i
\(487\) −1345.48 2330.44i −0.125194 0.216842i 0.796615 0.604487i \(-0.206622\pi\)
−0.921809 + 0.387645i \(0.873289\pi\)
\(488\) 932.952 + 1615.92i 0.0865425 + 0.149896i
\(489\) −7179.29 + 8248.31i −0.663923 + 0.762784i
\(490\) 142.400 + 219.173i 0.0131285 + 0.0202066i
\(491\) −5823.37 + 3362.13i −0.535245 + 0.309024i −0.743149 0.669125i \(-0.766669\pi\)
0.207905 + 0.978149i \(0.433336\pi\)
\(492\) −800.467 156.119i −0.0733493 0.0143057i
\(493\) 6511.31i 0.594837i
\(494\) −398.373 + 230.001i −0.0362827 + 0.0209478i
\(495\) 208.662 514.587i 0.0189468 0.0467252i
\(496\) 104.461i 0.00945651i
\(497\) 13876.2 + 13165.2i 1.25238 + 1.18821i
\(498\) 896.313 4595.65i 0.0806521 0.413526i
\(499\) 202.746 0.0181887 0.00909435 0.999959i \(-0.497105\pi\)
0.00909435 + 0.999959i \(0.497105\pi\)
\(500\) 239.302 414.483i 0.0214038 0.0370725i
\(501\) 3279.00 + 9542.46i 0.292405 + 0.850950i
\(502\) 1029.77 594.538i 0.0915556 0.0528596i
\(503\) −7820.60 −0.693247 −0.346624 0.938004i \(-0.612672\pi\)
−0.346624 + 0.938004i \(0.612672\pi\)
\(504\) −4798.64 10561.9i −0.424104 0.933465i
\(505\) −498.083 −0.0438899
\(506\) 10396.9 6002.68i 0.913439 0.527374i
\(507\) 7485.60 8600.24i 0.655715 0.753353i
\(508\) −194.960 + 337.681i −0.0170275 + 0.0294925i
\(509\) 9845.24 0.857333 0.428667 0.903463i \(-0.358984\pi\)
0.428667 + 0.903463i \(0.358984\pi\)
\(510\) −123.347 107.360i −0.0107096 0.00932156i
\(511\) −3548.45 + 14787.3i −0.307190 + 1.28014i
\(512\) 2047.34i 0.176719i
\(513\) −9585.17 18900.3i −0.824943 1.62664i
\(514\) −1893.21 + 1093.04i −0.162463 + 0.0937978i
\(515\) 90.9567i 0.00778258i
\(516\) −461.370 1342.67i −0.0393618 0.114550i
\(517\) 9303.02 5371.10i 0.791386 0.456907i
\(518\) 8586.26 + 8146.31i 0.728298 + 0.690981i
\(519\) 726.181 + 2113.31i 0.0614178 + 0.178736i
\(520\) −7.96684 13.7990i −0.000671863 0.00116370i
\(521\) 3985.06 + 6902.32i 0.335103 + 0.580415i 0.983505 0.180883i \(-0.0578957\pi\)
−0.648402 + 0.761298i \(0.724562\pi\)
\(522\) 7251.31 + 2940.37i 0.608010 + 0.246545i
\(523\) −4651.74 2685.68i −0.388922 0.224544i 0.292771 0.956183i \(-0.405423\pi\)
−0.681693 + 0.731638i \(0.738756\pi\)
\(524\) −1831.07 + 3171.50i −0.152654 + 0.264404i
\(525\) 9783.40 6970.70i 0.813300 0.579479i
\(526\) −4381.99 7589.83i −0.363239 0.629149i
\(527\) 760.201i 0.0628366i
\(528\) −1383.51 + 475.406i −0.114034 + 0.0391844i
\(529\) −5164.88 −0.424499
\(530\) −76.5687 + 132.621i −0.00627535 + 0.0108692i
\(531\) 6381.44 4972.78i 0.521528 0.406403i
\(532\) −3016.60 + 12571.0i −0.245838 + 1.02447i
\(533\) −48.7302 28.1344i −0.00396011 0.00228637i
\(534\) −2760.24 + 14152.6i −0.223684 + 1.14689i
\(535\) 68.6056 + 39.6094i 0.00554407 + 0.00320087i
\(536\) −5175.09 2987.84i −0.417033 0.240774i
\(537\) 1797.74 617.742i 0.144466 0.0496416i
\(538\) −6928.60 4000.23i −0.555229 0.320562i
\(539\) −16992.8 + 894.205i −1.35794 + 0.0714585i
\(540\) 239.706 121.566i 0.0191024 0.00968768i
\(541\) −2172.50 + 3762.88i −0.172649 + 0.299037i −0.939345 0.342973i \(-0.888566\pi\)
0.766696 + 0.642010i \(0.221899\pi\)
\(542\) 1011.62 0.0801712
\(543\) 3293.69 16887.7i 0.260305 1.33466i
\(544\) 7234.22i 0.570155i
\(545\) −315.518 546.493i −0.0247987 0.0429526i
\(546\) −27.9362 291.730i −0.00218967 0.0228661i
\(547\) 4859.25 8416.46i 0.379829 0.657883i −0.611208 0.791470i \(-0.709316\pi\)
0.991037 + 0.133587i \(0.0426495\pi\)
\(548\) 2717.00 + 1568.66i 0.211797 + 0.122281i
\(549\) −2150.80 + 299.509i −0.167202 + 0.0232837i
\(550\) −5691.60 9858.15i −0.441256 0.764278i
\(551\) −11907.5 20624.4i −0.920648 1.59461i
\(552\) 15576.9 + 3038.03i 1.20108 + 0.234252i
\(553\) −1896.67 455.135i −0.145849 0.0349988i
\(554\) 2318.04 1338.32i 0.177769 0.102635i
\(555\) −491.688 + 564.902i −0.0376054 + 0.0432050i
\(556\) 11834.0i 0.902651i
\(557\) 13997.2 8081.28i 1.06478 0.614749i 0.138026 0.990429i \(-0.455924\pi\)
0.926749 + 0.375680i \(0.122591\pi\)
\(558\) 846.595 + 343.290i 0.0642280 + 0.0260441i
\(559\) 97.9537i 0.00741145i
\(560\) 42.3679 + 10.1668i 0.00319709 + 0.000767192i
\(561\) 10068.4 3459.71i 0.757730 0.260373i
\(562\) −13070.9 −0.981070
\(563\) 7136.84 12361.4i 0.534249 0.925346i −0.464951 0.885337i \(-0.653928\pi\)
0.999199 0.0400092i \(-0.0127387\pi\)
\(564\) 5103.32 + 995.325i 0.381008 + 0.0743099i
\(565\) 565.340 326.399i 0.0420956 0.0243039i
\(566\) 4998.98 0.371242
\(567\) 13489.8 556.326i 0.999151 0.0412054i
\(568\) 23960.7 1.77001
\(569\) 10570.7 6103.00i 0.778817 0.449650i −0.0571938 0.998363i \(-0.518215\pi\)
0.836011 + 0.548713i \(0.184882\pi\)
\(570\) 587.032 + 114.492i 0.0431370 + 0.00841322i
\(571\) 9366.03 16222.4i 0.686438 1.18895i −0.286544 0.958067i \(-0.592506\pi\)
0.972982 0.230879i \(-0.0741602\pi\)
\(572\) 379.820 0.0277641
\(573\) 19691.5 6766.44i 1.43564 0.493319i
\(574\) 1108.58 328.505i 0.0806117 0.0238877i
\(575\) 16433.7i 1.19188i
\(576\) −9192.33 3727.44i −0.664954 0.269635i
\(577\) −14902.3 + 8603.86i −1.07520 + 0.620768i −0.929598 0.368574i \(-0.879846\pi\)
−0.145604 + 0.989343i \(0.546513\pi\)
\(578\) 5895.64i 0.424267i
\(579\) 7972.31 9159.41i 0.572224 0.657431i
\(580\) 261.573 151.019i 0.0187262 0.0108116i
\(581\) −2579.50 8704.84i −0.184193 0.621579i
\(582\) 11768.2 + 2295.22i 0.838161 + 0.163471i
\(583\) −4984.94 8634.16i −0.354125 0.613363i
\(584\) 9524.72 + 16497.3i 0.674890 + 1.16894i
\(585\) 18.3665 2.55762i 0.00129806 0.000180760i
\(586\) −6382.32 3684.83i −0.449917 0.259759i
\(587\) −8021.17 + 13893.1i −0.564002 + 0.976880i 0.433140 + 0.901327i \(0.357406\pi\)
−0.997142 + 0.0755529i \(0.975928\pi\)
\(588\) −6488.15 5073.45i −0.455046 0.355826i
\(589\) −1390.21 2407.92i −0.0972541 0.168449i
\(590\) 228.327i 0.0159324i
\(591\) 335.284 1719.10i 0.0233363 0.119652i
\(592\) 1973.04 0.136979
\(593\) −7608.23 + 13177.8i −0.526868 + 0.912562i 0.472642 + 0.881255i \(0.343300\pi\)
−0.999510 + 0.0313075i \(0.990033\pi\)
\(594\) 693.750 12774.9i 0.0479207 0.882427i
\(595\) −308.328 73.9880i −0.0212440 0.00509783i
\(596\) −9435.85 5447.79i −0.648502 0.374413i
\(597\) −24299.3 + 8349.76i −1.66583 + 0.572417i
\(598\) 347.207 + 200.460i 0.0237430 + 0.0137080i
\(599\) −21676.6 12515.0i −1.47860 0.853670i −0.478892 0.877874i \(-0.658961\pi\)
−0.999707 + 0.0242042i \(0.992295\pi\)
\(600\) 2880.60 14769.6i 0.196000 1.00495i
\(601\) −4104.86 2369.94i −0.278604 0.160852i 0.354187 0.935174i \(-0.384757\pi\)
−0.632791 + 0.774323i \(0.718091\pi\)
\(602\) 1460.17 + 1385.35i 0.0988571 + 0.0937918i
\(603\) 5485.65 4274.73i 0.370469 0.288691i
\(604\) −1369.85 + 2372.65i −0.0922820 + 0.159837i
\(605\) −468.514 −0.0314840
\(606\) −10853.0 + 3729.32i −0.727512 + 0.249989i
\(607\) 10613.6i 0.709711i −0.934921 0.354855i \(-0.884530\pi\)
0.934921 0.354855i \(-0.115470\pi\)
\(608\) 13229.5 + 22914.2i 0.882447 + 1.52844i
\(609\) 15103.4 1446.31i 1.00496 0.0962353i
\(610\) 30.6436 53.0763i 0.00203397 0.00352294i
\(611\) 310.675 + 179.368i 0.0205705 + 0.0118764i
\(612\) 4775.34 + 1936.37i 0.315411 + 0.127897i
\(613\) 6179.57 + 10703.3i 0.407163 + 0.705226i 0.994571 0.104065i \(-0.0331849\pi\)
−0.587408 + 0.809291i \(0.699852\pi\)
\(614\) −3647.44 6317.54i −0.239737 0.415237i
\(615\) 23.7751 + 69.1897i 0.00155887 + 0.00453658i
\(616\) −14671.1 + 15463.4i −0.959603 + 1.01143i
\(617\) −13982.2 + 8072.63i −0.912322 + 0.526729i −0.881177 0.472786i \(-0.843248\pi\)
−0.0311444 + 0.999515i \(0.509915\pi\)
\(618\) 681.024 + 1981.90i 0.0443282 + 0.129003i
\(619\) 6724.76i 0.436657i 0.975875 + 0.218329i \(0.0700605\pi\)
−0.975875 + 0.218329i \(0.929940\pi\)
\(620\) 30.5388 17.6316i 0.00197817 0.00114210i
\(621\) −10088.8 + 15471.2i −0.651933 + 0.999741i
\(622\) 8777.52i 0.565830i
\(623\) 7943.72 + 26807.0i 0.510848 + 1.72392i
\(624\) −36.8505 32.0745i −0.00236410 0.00205770i
\(625\) 15560.6 0.995877
\(626\) 8841.16 15313.3i 0.564479 0.977707i
\(627\) −25564.3 + 29371.0i −1.62830 + 1.87076i
\(628\) −7455.59 + 4304.49i −0.473743 + 0.273516i
\(629\) −14358.6 −0.910196
\(630\) −221.630 + 309.957i −0.0140158 + 0.0196015i
\(631\) 15753.1 0.993855 0.496928 0.867792i \(-0.334461\pi\)
0.496928 + 0.867792i \(0.334461\pi\)
\(632\) −2115.99 + 1221.67i −0.133180 + 0.0768915i
\(633\) 2026.67 + 5897.97i 0.127256 + 0.370337i
\(634\) −8252.00 + 14292.9i −0.516922 + 0.895336i
\(635\) 34.9786 0.00218596
\(636\) 923.764 4736.40i 0.0575938 0.295300i
\(637\) −309.599 476.517i −0.0192571 0.0296394i
\(638\) 14377.3i 0.892170i
\(639\) −10478.8 + 25841.9i −0.648722 + 1.59983i
\(640\) −260.653 + 150.488i −0.0160987 + 0.00929462i
\(641\) 13811.5i 0.851049i −0.904947 0.425525i \(-0.860090\pi\)
0.904947 0.425525i \(-0.139910\pi\)
\(642\) 1791.45 + 349.396i 0.110129 + 0.0214790i
\(643\) −12084.2 + 6976.82i −0.741142 + 0.427899i −0.822484 0.568788i \(-0.807413\pi\)
0.0813422 + 0.996686i \(0.474079\pi\)
\(644\) 10803.1 3201.27i 0.661026 0.195882i
\(645\) −83.6158 + 96.0665i −0.00510445 + 0.00586452i
\(646\) 5733.47 + 9930.67i 0.349196 + 0.604825i
\(647\) −7274.72 12600.2i −0.442038 0.765633i 0.555802 0.831314i \(-0.312411\pi\)
−0.997841 + 0.0656817i \(0.979078\pi\)
\(648\) 11779.1 12136.2i 0.714086 0.735733i
\(649\) −12873.5 7432.52i −0.778627 0.449541i
\(650\) 190.072 329.214i 0.0114696 0.0198659i
\(651\) 1763.33 168.857i 0.106160 0.0101660i
\(652\) 4862.57 + 8422.22i 0.292075 + 0.505889i
\(653\) 1830.45i 0.109695i 0.998495 + 0.0548475i \(0.0174673\pi\)
−0.998495 + 0.0548475i \(0.982533\pi\)
\(654\) −10966.7 9545.40i −0.655709 0.570726i
\(655\) 328.520 0.0195974
\(656\) 96.3720 166.921i 0.00573582 0.00993473i
\(657\) −21958.0 + 3057.75i −1.30390 + 0.181574i
\(658\) −7067.65 + 2094.36i −0.418732 + 0.124083i
\(659\) 8381.93 + 4839.31i 0.495468 + 0.286059i 0.726840 0.686807i \(-0.240988\pi\)
−0.231372 + 0.972865i \(0.574321\pi\)
\(660\) −372.502 324.224i −0.0219691 0.0191218i
\(661\) 10341.4 + 5970.60i 0.608522 + 0.351330i 0.772387 0.635153i \(-0.219063\pi\)
−0.163865 + 0.986483i \(0.552396\pi\)
\(662\) −1819.63 1050.56i −0.106831 0.0616788i
\(663\) 268.175 + 233.418i 0.0157090 + 0.0136730i
\(664\) −9849.25 5686.47i −0.575640 0.332346i
\(665\) 1111.92 329.497i 0.0648400 0.0192140i
\(666\) −6484.01 + 15990.4i −0.377253 + 0.930352i
\(667\) −10378.1 + 17975.5i −0.602464 + 1.04350i
\(668\) 8973.64 0.519761
\(669\) −4820.93 4196.11i −0.278607 0.242498i
\(670\) 196.276i 0.0113176i
\(671\) 1995.02 + 3455.48i 0.114779 + 0.198804i
\(672\) −16780.2 + 1606.88i −0.963258 + 0.0922421i
\(673\) 215.515 373.284i 0.0123440 0.0213804i −0.859787 0.510652i \(-0.829404\pi\)
0.872131 + 0.489272i \(0.162737\pi\)
\(674\) −9124.36 5267.95i −0.521450 0.301059i
\(675\) 14669.5 + 9565.99i 0.836487 + 0.545474i
\(676\) −5070.04 8781.57i −0.288464 0.499634i
\(677\) −7902.98 13688.4i −0.448650 0.777085i 0.549648 0.835396i \(-0.314762\pi\)
−0.998298 + 0.0583110i \(0.981428\pi\)
\(678\) 9874.60 11345.0i 0.559339 0.642627i
\(679\) 22290.8 6605.43i 1.25986 0.373333i
\(680\) −343.982 + 198.598i −0.0193987 + 0.0111998i
\(681\) −9301.77 1814.17i −0.523413 0.102084i
\(682\) 1678.57i 0.0942458i
\(683\) 27402.6 15820.9i 1.53518 0.886338i 0.536072 0.844173i \(-0.319908\pi\)
0.999111 0.0421653i \(-0.0134256\pi\)
\(684\) −18666.9 + 2599.45i −1.04349 + 0.145310i
\(685\) 281.440i 0.0156982i
\(686\) 11481.9 + 2124.23i 0.639041 + 0.118227i
\(687\) −5100.65 + 26152.5i −0.283263 + 1.45237i
\(688\) 335.533 0.0185931
\(689\) 166.472 288.339i 0.00920478 0.0159431i
\(690\) −169.400 492.982i −0.00934628 0.0271993i
\(691\) 13298.8 7678.08i 0.732144 0.422703i −0.0870621 0.996203i \(-0.527748\pi\)
0.819206 + 0.573499i \(0.194415\pi\)
\(692\) 1987.34 0.109172
\(693\) −10261.4 22585.6i −0.562479 1.23803i
\(694\) 5855.79 0.320292
\(695\) 919.367 530.797i 0.0501778 0.0289702i
\(696\) 12478.1 14336.1i 0.679571 0.780762i
\(697\) −701.336 + 1214.75i −0.0381133 + 0.0660142i
\(698\) −13591.6 −0.737034
\(699\) 13744.1 + 11962.8i 0.743707 + 0.647319i
\(700\) −3035.38 10243.2i −0.163895 0.553082i
\(701\) 7678.12i 0.413693i −0.978373 0.206846i \(-0.933680\pi\)
0.978373 0.206846i \(-0.0663200\pi\)
\(702\) 381.047 193.246i 0.0204868 0.0103897i
\(703\) 45480.4 26258.1i 2.44001 1.40874i
\(704\) 18225.9i 0.975729i
\(705\) −151.576 441.113i −0.00809744 0.0235649i
\(706\) 17653.8 10192.4i 0.941092 0.543339i
\(707\) −15315.5 + 16142.6i −0.814708 + 0.858708i
\(708\) −2338.18 6804.50i −0.124116 0.361199i
\(709\) 8017.46 + 13886.7i 0.424686 + 0.735577i 0.996391 0.0848818i \(-0.0270513\pi\)
−0.571705 + 0.820459i \(0.693718\pi\)
\(710\) −393.505 681.570i −0.0207999 0.0360266i
\(711\) −392.197 2816.40i −0.0206871 0.148556i
\(712\) 30331.3 + 17511.8i 1.59651 + 0.921744i
\(713\) −1211.66 + 2098.65i −0.0636422 + 0.110231i
\(714\) −7272.27 + 696.397i −0.381174 + 0.0365014i
\(715\) −17.0363 29.5077i −0.000891077 0.00154339i
\(716\) 1690.57i 0.0882398i
\(717\) −19372.5 + 6656.82i −1.00904 + 0.346727i
\(718\) −17622.5 −0.915969
\(719\) 9585.35 16602.3i 0.497181 0.861143i −0.502814 0.864395i \(-0.667702\pi\)
0.999995 + 0.00325214i \(0.00103519\pi\)
\(720\) 8.76093 + 62.9131i 0.000453473 + 0.00325643i
\(721\) 2947.86 + 2796.82i 0.152266 + 0.144464i
\(722\) −25402.5 14666.2i −1.30940 0.755980i
\(723\) 1016.84 5213.65i 0.0523055 0.268185i
\(724\) −13251.9 7651.01i −0.680254 0.392745i
\(725\) 17043.9 + 9840.32i 0.873098 + 0.504083i
\(726\) −10208.7 + 3507.93i −0.521873 + 0.179327i
\(727\) 13432.8 + 7755.44i 0.685276 + 0.395644i 0.801840 0.597539i \(-0.203855\pi\)
−0.116564 + 0.993183i \(0.537188\pi\)
\(728\) −692.189 166.101i −0.0352393 0.00845622i
\(729\) 7937.68 + 18011.5i 0.403276 + 0.915078i
\(730\) 312.847 541.868i 0.0158616 0.0274732i
\(731\) −2441.80 −0.123547
\(732\) −369.700 + 1895.56i −0.0186673 + 0.0957128i
\(733\) 20363.2i 1.02610i −0.858359 0.513050i \(-0.828515\pi\)
0.858359 0.513050i \(-0.171485\pi\)
\(734\) 10682.7 + 18503.0i 0.537203 + 0.930463i
\(735\) −103.133 + 731.617i −0.00517567 + 0.0367158i
\(736\) 11530.3 19971.1i 0.577465 1.00020i
\(737\) −11066.4 6389.18i −0.553101 0.319333i
\(738\) 1036.09 + 1329.59i 0.0516791 + 0.0663185i
\(739\) 1493.90 + 2587.52i 0.0743629 + 0.128800i 0.900809 0.434215i \(-0.142974\pi\)
−0.826446 + 0.563016i \(0.809641\pi\)
\(740\) 333.023 + 576.812i 0.0165435 + 0.0286541i
\(741\) −1276.30 248.923i −0.0632740 0.0123406i
\(742\) 1943.78 + 6559.50i 0.0961703 + 0.324538i
\(743\) 4165.48 2404.94i 0.205675 0.118747i −0.393625 0.919271i \(-0.628779\pi\)
0.599300 + 0.800525i \(0.295446\pi\)
\(744\) 1456.83 1673.76i 0.0717875 0.0824769i
\(745\) 977.410i 0.0480665i
\(746\) 6212.43 3586.75i 0.304897 0.176033i
\(747\) 10440.3 8135.68i 0.511367 0.398486i
\(748\) 9468.18i 0.462822i
\(749\) 3393.27 1005.53i 0.165537 0.0490536i
\(750\) −935.513 + 321.463i −0.0455468 + 0.0156509i
\(751\) −2250.12 −0.109331 −0.0546657 0.998505i \(-0.517409\pi\)
−0.0546657 + 0.998505i \(0.517409\pi\)
\(752\) −614.412 + 1064.19i −0.0297943 + 0.0516052i
\(753\) 3299.16 + 643.451i 0.159665 + 0.0311403i
\(754\) 415.807 240.066i 0.0200833 0.0115951i
\(755\) 245.770 0.0118470
\(756\) 3430.82 11506.8i 0.165050 0.553568i
\(757\) −16948.7 −0.813754 −0.406877 0.913483i \(-0.633382\pi\)
−0.406877 + 0.913483i \(0.633382\pi\)
\(758\) 1113.13 642.666i 0.0533387 0.0307951i
\(759\) 33309.5 + 6496.52i 1.59296 + 0.310684i
\(760\) 726.369 1258.11i 0.0346686 0.0600478i
\(761\) −24129.2 −1.14938 −0.574692 0.818369i \(-0.694878\pi\)
−0.574692 + 0.818369i \(0.694878\pi\)
\(762\) 762.166 261.897i 0.0362341 0.0124508i
\(763\) −27413.4 6578.26i −1.30070 0.312122i
\(764\) 18517.7i 0.876893i
\(765\) −63.7566 457.842i −0.00301323 0.0216383i
\(766\) −16171.1 + 9336.40i −0.762776 + 0.440389i
\(767\) 496.419i 0.0233698i
\(768\) −14579.2 + 16750.1i −0.685001 + 0.787001i
\(769\) −33734.0 + 19476.3i −1.58190 + 0.913308i −0.587314 + 0.809359i \(0.699815\pi\)
−0.994583 + 0.103949i \(0.966852\pi\)
\(770\) 680.805 + 163.370i 0.0318630 + 0.00764602i
\(771\) −6065.42 1182.97i −0.283321 0.0552576i
\(772\) −5399.69 9352.53i −0.251734 0.436017i
\(773\) −9505.37