Properties

Label 63.4.s.a.47.14
Level $63$
Weight $4$
Character 63.47
Analytic conductor $3.717$
Analytic rank $0$
Dimension $44$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.14
Character \(\chi\) \(=\) 63.47
Dual form 63.4.s.a.59.14

$q$-expansion

\(f(q)\) \(=\) \(q+(0.958607 - 0.553452i) q^{2} +(4.58314 + 2.44844i) q^{3} +(-3.38738 + 5.86712i) q^{4} +12.4738 q^{5} +(5.74852 - 0.189454i) q^{6} +(-18.2811 - 2.96677i) q^{7} +16.3542i q^{8} +(15.0103 + 22.4431i) q^{9} +O(q^{10})\) \(q+(0.958607 - 0.553452i) q^{2} +(4.58314 + 2.44844i) q^{3} +(-3.38738 + 5.86712i) q^{4} +12.4738 q^{5} +(5.74852 - 0.189454i) q^{6} +(-18.2811 - 2.96677i) q^{7} +16.3542i q^{8} +(15.0103 + 22.4431i) q^{9} +(11.9574 - 6.90363i) q^{10} +3.72145i q^{11} +(-29.8901 + 18.5960i) q^{12} +(68.0440 - 39.2852i) q^{13} +(-19.1663 + 7.27374i) q^{14} +(57.1690 + 30.5413i) q^{15} +(-18.0478 - 31.2597i) q^{16} +(-56.8448 - 98.4582i) q^{17} +(26.8101 + 13.2066i) q^{18} +(33.4526 + 19.3138i) q^{19} +(-42.2534 + 73.1851i) q^{20} +(-76.5208 - 58.3573i) q^{21} +(2.05964 + 3.56741i) q^{22} +37.6101i q^{23} +(-40.0424 + 74.9537i) q^{24} +30.5949 q^{25} +(43.4849 - 75.3181i) q^{26} +(13.8436 + 139.611i) q^{27} +(79.3314 - 97.2077i) q^{28} +(-144.984 - 83.7067i) q^{29} +(71.7057 - 2.36320i) q^{30} +(-183.916 - 106.184i) q^{31} +(-147.907 - 85.3941i) q^{32} +(-9.11175 + 17.0559i) q^{33} +(-108.984 - 62.9218i) q^{34} +(-228.034 - 37.0068i) q^{35} +(-182.522 + 12.0438i) q^{36} +(132.003 - 228.635i) q^{37} +42.7571 q^{38} +(408.042 - 13.4478i) q^{39} +203.999i q^{40} +(190.215 + 329.461i) q^{41} +(-105.651 - 13.5911i) q^{42} +(90.2450 - 156.309i) q^{43} +(-21.8342 - 12.6060i) q^{44} +(187.235 + 279.950i) q^{45} +(20.8154 + 36.0533i) q^{46} +(77.0348 + 133.428i) q^{47} +(-6.17798 - 187.456i) q^{48} +(325.397 + 108.472i) q^{49} +(29.3284 - 16.9328i) q^{50} +(-19.4587 - 590.428i) q^{51} +532.296i q^{52} +(-162.088 + 93.5816i) q^{53} +(90.5388 + 126.171i) q^{54} +46.4205i q^{55} +(48.5192 - 298.973i) q^{56} +(106.029 + 170.425i) q^{57} -185.311 q^{58} +(-234.149 + 405.558i) q^{59} +(-372.842 + 231.962i) q^{60} +(308.466 - 178.093i) q^{61} -235.071 q^{62} +(-207.821 - 454.816i) q^{63} +99.7183 q^{64} +(848.765 - 490.035i) q^{65} +(0.705042 + 21.3928i) q^{66} +(48.3829 - 83.8017i) q^{67} +770.221 q^{68} +(-92.0860 + 172.372i) q^{69} +(-239.076 + 90.7309i) q^{70} +705.036i q^{71} +(-367.039 + 245.482i) q^{72} +(-631.911 + 364.834i) q^{73} -292.228i q^{74} +(140.220 + 74.9097i) q^{75} +(-226.633 + 130.847i) q^{76} +(11.0407 - 68.0322i) q^{77} +(383.709 - 238.723i) q^{78} +(204.962 + 355.005i) q^{79} +(-225.124 - 389.926i) q^{80} +(-278.383 + 673.754i) q^{81} +(364.682 + 210.549i) q^{82} +(321.436 - 556.744i) q^{83} +(601.594 - 251.278i) q^{84} +(-709.069 - 1228.14i) q^{85} -199.785i q^{86} +(-459.532 - 738.625i) q^{87} -60.8615 q^{88} +(-74.4458 + 128.944i) q^{89} +(334.423 + 164.736i) q^{90} +(-1360.47 + 516.306i) q^{91} +(-220.663 - 127.400i) q^{92} +(-582.928 - 936.965i) q^{93} +(147.692 + 85.2702i) q^{94} +(417.279 + 240.916i) q^{95} +(-468.795 - 753.514i) q^{96} +(-605.085 - 349.346i) q^{97} +(371.961 - 76.1098i) q^{98} +(-83.5208 + 55.8600i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44q - 3q^{2} - 3q^{3} + 81q^{4} - 6q^{5} - 24q^{6} + 5q^{7} - 3q^{9} + O(q^{10}) \) \( 44q - 3q^{2} - 3q^{3} + 81q^{4} - 6q^{5} - 24q^{6} + 5q^{7} - 3q^{9} - 6q^{10} - 3q^{12} + 36q^{13} + 129q^{14} - 141q^{15} - 263q^{16} + 72q^{17} - 15q^{18} - 6q^{19} - 24q^{20} - 306q^{21} + 14q^{22} - 66q^{24} + 698q^{25} + 96q^{26} - 432q^{27} - 156q^{28} - 132q^{29} + 852q^{30} + 177q^{31} - 501q^{32} + 849q^{33} - 24q^{34} - 765q^{35} + 1122q^{36} + 82q^{37} - 1746q^{38} - 645q^{39} - 618q^{41} - 963q^{42} + 82q^{43} - 603q^{44} + 303q^{45} + 266q^{46} - 201q^{47} + 1569q^{48} + 515q^{49} - 1845q^{50} + 417q^{51} - 564q^{53} - 684q^{54} + 3600q^{56} + 1170q^{57} - 538q^{58} + 747q^{59} - 516q^{60} - 1209q^{61} + 2904q^{62} + 1557q^{63} - 1144q^{64} - 831q^{65} + 1029q^{66} + 295q^{67} + 7008q^{68} + 1005q^{69} - 390q^{70} - 1119q^{72} - 6q^{73} - 1788q^{75} + 144q^{76} - 1203q^{77} - 5985q^{78} - 551q^{79} + 4239q^{80} + 3741q^{81} + 18q^{82} - 1830q^{83} - 7725q^{84} - 237q^{85} - 2130q^{87} + 1246q^{88} - 4266q^{89} - 9993q^{90} - 1140q^{91} + 7896q^{92} - 1479q^{93} - 3q^{94} - 1053q^{95} + 5034q^{96} + 792q^{97} - 5667q^{98} + 4335q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.958607 0.553452i 0.338919 0.195675i −0.320875 0.947122i \(-0.603977\pi\)
0.659794 + 0.751447i \(0.270644\pi\)
\(3\) 4.58314 + 2.44844i 0.882025 + 0.471203i
\(4\) −3.38738 + 5.86712i −0.423423 + 0.733390i
\(5\) 12.4738 1.11569 0.557844 0.829946i \(-0.311629\pi\)
0.557844 + 0.829946i \(0.311629\pi\)
\(6\) 5.74852 0.189454i 0.391137 0.0128907i
\(7\) −18.2811 2.96677i −0.987086 0.160190i
\(8\) 16.3542i 0.722762i
\(9\) 15.0103 + 22.4431i 0.555936 + 0.831225i
\(10\) 11.9574 6.90363i 0.378127 0.218312i
\(11\) 3.72145i 0.102005i 0.998699 + 0.0510027i \(0.0162417\pi\)
−0.998699 + 0.0510027i \(0.983758\pi\)
\(12\) −29.8901 + 18.5960i −0.719045 + 0.447350i
\(13\) 68.0440 39.2852i 1.45169 0.838135i 0.453115 0.891452i \(-0.350313\pi\)
0.998578 + 0.0533171i \(0.0169794\pi\)
\(14\) −19.1663 + 7.27374i −0.365887 + 0.138856i
\(15\) 57.1690 + 30.5413i 0.984064 + 0.525715i
\(16\) −18.0478 31.2597i −0.281996 0.488432i
\(17\) −56.8448 98.4582i −0.810994 1.40468i −0.912169 0.409814i \(-0.865594\pi\)
0.101175 0.994869i \(-0.467740\pi\)
\(18\) 26.8101 + 13.2066i 0.351067 + 0.172935i
\(19\) 33.4526 + 19.3138i 0.403923 + 0.233205i 0.688175 0.725544i \(-0.258412\pi\)
−0.284252 + 0.958750i \(0.591745\pi\)
\(20\) −42.2534 + 73.1851i −0.472408 + 0.818234i
\(21\) −76.5208 58.3573i −0.795152 0.606410i
\(22\) 2.05964 + 3.56741i 0.0199599 + 0.0345715i
\(23\) 37.6101i 0.340967i 0.985361 + 0.170483i \(0.0545329\pi\)
−0.985361 + 0.170483i \(0.945467\pi\)
\(24\) −40.0424 + 74.9537i −0.340567 + 0.637494i
\(25\) 30.5949 0.244759
\(26\) 43.4849 75.3181i 0.328004 0.568119i
\(27\) 13.8436 + 139.611i 0.0986742 + 0.995120i
\(28\) 79.3314 97.2077i 0.535437 0.656091i
\(29\) −144.984 83.7067i −0.928376 0.535998i −0.0420787 0.999114i \(-0.513398\pi\)
−0.886298 + 0.463116i \(0.846731\pi\)
\(30\) 71.7057 2.36320i 0.436387 0.0143820i
\(31\) −183.916 106.184i −1.06556 0.615201i −0.138595 0.990349i \(-0.544259\pi\)
−0.926965 + 0.375148i \(0.877592\pi\)
\(32\) −147.907 85.3941i −0.817078 0.471740i
\(33\) −9.11175 + 17.0559i −0.0480652 + 0.0899713i
\(34\) −108.984 62.9218i −0.549722 0.317382i
\(35\) −228.034 37.0068i −1.10128 0.178723i
\(36\) −182.522 + 12.0438i −0.845008 + 0.0557583i
\(37\) 132.003 228.635i 0.586516 1.01588i −0.408169 0.912907i \(-0.633832\pi\)
0.994685 0.102969i \(-0.0328342\pi\)
\(38\) 42.7571 0.182530
\(39\) 408.042 13.4478i 1.67536 0.0552148i
\(40\) 203.999i 0.806377i
\(41\) 190.215 + 329.461i 0.724549 + 1.25496i 0.959159 + 0.282866i \(0.0912853\pi\)
−0.234610 + 0.972090i \(0.575381\pi\)
\(42\) −105.651 13.5911i −0.388151 0.0499322i
\(43\) 90.2450 156.309i 0.320052 0.554346i −0.660447 0.750873i \(-0.729633\pi\)
0.980498 + 0.196527i \(0.0629663\pi\)
\(44\) −21.8342 12.6060i −0.0748097 0.0431914i
\(45\) 187.235 + 279.950i 0.620251 + 0.927387i
\(46\) 20.8154 + 36.0533i 0.0667186 + 0.115560i
\(47\) 77.0348 + 133.428i 0.239078 + 0.414096i 0.960450 0.278452i \(-0.0898214\pi\)
−0.721372 + 0.692548i \(0.756488\pi\)
\(48\) −6.17798 187.456i −0.0185774 0.563687i
\(49\) 325.397 + 108.472i 0.948678 + 0.316244i
\(50\) 29.3284 16.9328i 0.0829533 0.0478931i
\(51\) −19.4587 590.428i −0.0534268 1.62111i
\(52\) 532.296i 1.41954i
\(53\) −162.088 + 93.5816i −0.420085 + 0.242536i −0.695114 0.718900i \(-0.744646\pi\)
0.275029 + 0.961436i \(0.411313\pi\)
\(54\) 90.5388 + 126.171i 0.228162 + 0.317957i
\(55\) 46.4205i 0.113806i
\(56\) 48.5192 298.973i 0.115780 0.713428i
\(57\) 106.029 + 170.425i 0.246384 + 0.396023i
\(58\) −185.311 −0.419525
\(59\) −234.149 + 405.558i −0.516672 + 0.894902i 0.483141 + 0.875543i \(0.339496\pi\)
−0.999813 + 0.0193590i \(0.993837\pi\)
\(60\) −372.842 + 231.962i −0.802229 + 0.499103i
\(61\) 308.466 178.093i 0.647460 0.373811i −0.140023 0.990148i \(-0.544718\pi\)
0.787482 + 0.616337i \(0.211384\pi\)
\(62\) −235.071 −0.481518
\(63\) −207.821 454.816i −0.415603 0.909546i
\(64\) 99.7183 0.194762
\(65\) 848.765 490.035i 1.61964 0.935097i
\(66\) 0.705042 + 21.3928i 0.00131492 + 0.0398981i
\(67\) 48.3829 83.8017i 0.0882226 0.152806i −0.818537 0.574453i \(-0.805215\pi\)
0.906760 + 0.421647i \(0.138548\pi\)
\(68\) 770.221 1.37357
\(69\) −92.0860 + 172.372i −0.160665 + 0.300741i
\(70\) −239.076 + 90.7309i −0.408216 + 0.154920i
\(71\) 705.036i 1.17848i 0.807956 + 0.589242i \(0.200574\pi\)
−0.807956 + 0.589242i \(0.799426\pi\)
\(72\) −367.039 + 245.482i −0.600778 + 0.401810i
\(73\) −631.911 + 364.834i −1.01314 + 0.584939i −0.912111 0.409944i \(-0.865548\pi\)
−0.101034 + 0.994883i \(0.532215\pi\)
\(74\) 292.228i 0.459066i
\(75\) 140.220 + 74.9097i 0.215883 + 0.115331i
\(76\) −226.633 + 130.847i −0.342061 + 0.197489i
\(77\) 11.0407 68.0322i 0.0163403 0.100688i
\(78\) 383.709 238.723i 0.557007 0.346539i
\(79\) 204.962 + 355.005i 0.291900 + 0.505585i 0.974259 0.225432i \(-0.0723793\pi\)
−0.682359 + 0.731017i \(0.739046\pi\)
\(80\) −225.124 389.926i −0.314620 0.544938i
\(81\) −278.383 + 673.754i −0.381870 + 0.924216i
\(82\) 364.682 + 210.549i 0.491126 + 0.283552i
\(83\) 321.436 556.744i 0.425087 0.736272i −0.571341 0.820712i \(-0.693577\pi\)
0.996429 + 0.0844400i \(0.0269101\pi\)
\(84\) 601.594 251.278i 0.781420 0.326389i
\(85\) −709.069 1228.14i −0.904816 1.56719i
\(86\) 199.785i 0.250504i
\(87\) −459.532 738.625i −0.566287 0.910217i
\(88\) −60.8615 −0.0737256
\(89\) −74.4458 + 128.944i −0.0886656 + 0.153573i −0.906947 0.421244i \(-0.861594\pi\)
0.818282 + 0.574817i \(0.194927\pi\)
\(90\) 334.423 + 164.736i 0.391681 + 0.192941i
\(91\) −1360.47 + 516.306i −1.56721 + 0.594764i
\(92\) −220.663 127.400i −0.250062 0.144373i
\(93\) −582.928 936.965i −0.649966 1.04472i
\(94\) 147.692 + 85.2702i 0.162056 + 0.0935632i
\(95\) 417.279 + 240.916i 0.450652 + 0.260184i
\(96\) −468.795 753.514i −0.498398 0.801096i
\(97\) −605.085 349.346i −0.633372 0.365677i 0.148685 0.988885i \(-0.452496\pi\)
−0.782057 + 0.623207i \(0.785829\pi\)
\(98\) 371.961 76.1098i 0.383406 0.0784515i
\(99\) −83.5208 + 55.8600i −0.0847894 + 0.0567085i
\(100\) −103.636 + 179.504i −0.103636 + 0.179504i
\(101\) 597.788 0.588932 0.294466 0.955662i \(-0.404858\pi\)
0.294466 + 0.955662i \(0.404858\pi\)
\(102\) −345.427 555.219i −0.335317 0.538969i
\(103\) 518.717i 0.496220i 0.968732 + 0.248110i \(0.0798095\pi\)
−0.968732 + 0.248110i \(0.920190\pi\)
\(104\) 642.480 + 1112.81i 0.605772 + 1.04923i
\(105\) −954.502 727.935i −0.887142 0.676564i
\(106\) −103.586 + 179.416i −0.0949164 + 0.164400i
\(107\) −648.620 374.481i −0.586023 0.338341i 0.177500 0.984121i \(-0.443199\pi\)
−0.763523 + 0.645780i \(0.776532\pi\)
\(108\) −866.010 391.695i −0.771592 0.348990i
\(109\) −91.8969 159.170i −0.0807535 0.139869i 0.822820 0.568302i \(-0.192399\pi\)
−0.903574 + 0.428432i \(0.859066\pi\)
\(110\) 25.6915 + 44.4990i 0.0222690 + 0.0385710i
\(111\) 1164.79 724.666i 0.996005 0.619660i
\(112\) 237.193 + 625.004i 0.200113 + 0.527298i
\(113\) −1353.78 + 781.605i −1.12702 + 0.650683i −0.943183 0.332274i \(-0.892184\pi\)
−0.183833 + 0.982957i \(0.558851\pi\)
\(114\) 195.962 + 104.688i 0.160996 + 0.0860084i
\(115\) 469.139i 0.380413i
\(116\) 982.235 567.093i 0.786191 0.453908i
\(117\) 1903.04 + 937.434i 1.50373 + 0.740733i
\(118\) 518.361i 0.404398i
\(119\) 747.083 + 1968.57i 0.575504 + 1.51646i
\(120\) −499.479 + 934.955i −0.379967 + 0.711244i
\(121\) 1317.15 0.989595
\(122\) 197.132 341.442i 0.146291 0.253383i
\(123\) 65.1128 + 1975.69i 0.0477319 + 1.44831i
\(124\) 1245.99 719.373i 0.902365 0.520981i
\(125\) −1177.59 −0.842613
\(126\) −450.937 320.971i −0.318831 0.226939i
\(127\) 1644.85 1.14926 0.574632 0.818412i \(-0.305145\pi\)
0.574632 + 0.818412i \(0.305145\pi\)
\(128\) 1278.85 738.342i 0.883087 0.509850i
\(129\) 796.318 495.426i 0.543503 0.338138i
\(130\) 542.421 939.501i 0.365950 0.633844i
\(131\) −2825.37 −1.88438 −0.942189 0.335081i \(-0.891236\pi\)
−0.942189 + 0.335081i \(0.891236\pi\)
\(132\) −69.2041 111.235i −0.0456321 0.0733464i
\(133\) −554.250 452.324i −0.361350 0.294898i
\(134\) 107.110i 0.0690518i
\(135\) 172.682 + 1741.48i 0.110090 + 1.11024i
\(136\) 1610.21 929.654i 1.01525 0.586156i
\(137\) 777.229i 0.484695i −0.970190 0.242347i \(-0.922083\pi\)
0.970190 0.242347i \(-0.0779173\pi\)
\(138\) 7.12536 + 216.202i 0.00439530 + 0.133365i
\(139\) −1472.69 + 850.256i −0.898645 + 0.518833i −0.876760 0.480928i \(-0.840300\pi\)
−0.0218847 + 0.999761i \(0.506967\pi\)
\(140\) 989.562 1212.55i 0.597380 0.731992i
\(141\) 26.3700 + 800.135i 0.0157500 + 0.477897i
\(142\) 390.204 + 675.853i 0.230600 + 0.399410i
\(143\) 146.198 + 253.222i 0.0854943 + 0.148080i
\(144\) 430.661 874.264i 0.249225 0.505940i
\(145\) −1808.50 1044.14i −1.03578 0.598007i
\(146\) −403.836 + 699.464i −0.228916 + 0.396494i
\(147\) 1225.75 + 1293.85i 0.687743 + 0.725954i
\(148\) 894.286 + 1548.95i 0.496688 + 0.860290i
\(149\) 870.911i 0.478844i −0.970916 0.239422i \(-0.923042\pi\)
0.970916 0.239422i \(-0.0769580\pi\)
\(150\) 175.875 5.79630i 0.0957343 0.00315511i
\(151\) −102.754 −0.0553776 −0.0276888 0.999617i \(-0.508815\pi\)
−0.0276888 + 0.999617i \(0.508815\pi\)
\(152\) −315.863 + 547.091i −0.168552 + 0.291940i
\(153\) 1356.45 2753.66i 0.716747 1.45503i
\(154\) −27.0689 71.3266i −0.0141641 0.0373225i
\(155\) −2294.13 1324.52i −1.18883 0.686373i
\(156\) −1303.30 + 2439.59i −0.668892 + 1.25207i
\(157\) 697.899 + 402.932i 0.354767 + 0.204825i 0.666783 0.745252i \(-0.267671\pi\)
−0.312016 + 0.950077i \(0.601004\pi\)
\(158\) 392.957 + 226.874i 0.197860 + 0.114235i
\(159\) −972.001 + 32.0342i −0.484809 + 0.0159778i
\(160\) −1844.96 1065.19i −0.911604 0.526315i
\(161\) 111.580 687.553i 0.0546197 0.336564i
\(162\) 106.030 + 799.936i 0.0514229 + 0.387956i
\(163\) 46.0094 79.6906i 0.0221088 0.0382936i −0.854759 0.519025i \(-0.826295\pi\)
0.876868 + 0.480731i \(0.159629\pi\)
\(164\) −2577.32 −1.22716
\(165\) −113.658 + 212.751i −0.0536258 + 0.100380i
\(166\) 711.598i 0.332715i
\(167\) 1919.63 + 3324.89i 0.889492 + 1.54065i 0.840477 + 0.541847i \(0.182275\pi\)
0.0490152 + 0.998798i \(0.484392\pi\)
\(168\) 954.389 1251.44i 0.438290 0.574706i
\(169\) 1988.15 3443.59i 0.904941 1.56740i
\(170\) −1359.44 784.871i −0.613318 0.354099i
\(171\) 68.6701 + 1040.68i 0.0307096 + 0.465398i
\(172\) 611.389 + 1058.96i 0.271035 + 0.469446i
\(173\) −39.1096 67.7398i −0.0171876 0.0297697i 0.857304 0.514811i \(-0.172138\pi\)
−0.874491 + 0.485041i \(0.838805\pi\)
\(174\) −849.304 453.722i −0.370032 0.197681i
\(175\) −559.307 90.7679i −0.241598 0.0392080i
\(176\) 116.331 67.1639i 0.0498227 0.0287652i
\(177\) −2066.12 + 1285.43i −0.877397 + 0.545869i
\(178\) 164.809i 0.0693985i
\(179\) −213.100 + 123.033i −0.0889823 + 0.0513740i −0.543831 0.839195i \(-0.683027\pi\)
0.454849 + 0.890569i \(0.349693\pi\)
\(180\) −2276.73 + 150.231i −0.942765 + 0.0622089i
\(181\) 4214.90i 1.73089i −0.501003 0.865446i \(-0.667035\pi\)
0.501003 0.865446i \(-0.332965\pi\)
\(182\) −1018.40 + 1247.89i −0.414775 + 0.508239i
\(183\) 1849.79 60.9635i 0.747216 0.0246260i
\(184\) −615.084 −0.246438
\(185\) 1646.57 2851.94i 0.654369 1.13340i
\(186\) −1077.36 575.558i −0.424710 0.226892i
\(187\) 366.407 211.545i 0.143285 0.0827258i
\(188\) −1043.79 −0.404925
\(189\) 161.119 2593.32i 0.0620087 0.998076i
\(190\) 533.342 0.203646
\(191\) −2333.97 + 1347.52i −0.884187 + 0.510486i −0.872037 0.489440i \(-0.837201\pi\)
−0.0121506 + 0.999926i \(0.503868\pi\)
\(192\) 457.023 + 244.154i 0.171785 + 0.0917725i
\(193\) −60.7485 + 105.219i −0.0226568 + 0.0392428i −0.877132 0.480250i \(-0.840546\pi\)
0.854475 + 0.519493i \(0.173879\pi\)
\(194\) −773.384 −0.286215
\(195\) 5089.82 167.745i 1.86918 0.0616024i
\(196\) −1738.66 + 1541.71i −0.633622 + 0.561846i
\(197\) 590.988i 0.213737i −0.994273 0.106868i \(-0.965918\pi\)
0.994273 0.106868i \(-0.0340824\pi\)
\(198\) −49.1478 + 99.7725i −0.0176403 + 0.0358107i
\(199\) 103.470 59.7383i 0.0368582 0.0212801i −0.481458 0.876469i \(-0.659892\pi\)
0.518316 + 0.855189i \(0.326559\pi\)
\(200\) 500.356i 0.176902i
\(201\) 426.929 265.612i 0.149817 0.0932081i
\(202\) 573.043 330.847i 0.199600 0.115239i
\(203\) 2402.13 + 1960.39i 0.830526 + 0.677794i
\(204\) 3530.03 + 1885.84i 1.21153 + 0.647231i
\(205\) 2372.69 + 4109.62i 0.808371 + 1.40014i
\(206\) 287.085 + 497.246i 0.0970978 + 0.168178i
\(207\) −844.085 + 564.537i −0.283420 + 0.189556i
\(208\) −2456.08 1418.02i −0.818744 0.472702i
\(209\) −71.8755 + 124.492i −0.0237882 + 0.0412024i
\(210\) −1317.87 169.532i −0.433055 0.0557088i
\(211\) −2357.88 4083.96i −0.769302 1.33247i −0.937942 0.346793i \(-0.887271\pi\)
0.168639 0.985678i \(-0.446063\pi\)
\(212\) 1267.99i 0.410781i
\(213\) −1726.24 + 3231.28i −0.555305 + 1.03945i
\(214\) −829.029 −0.264819
\(215\) 1125.69 1949.76i 0.357078 0.618477i
\(216\) −2283.24 + 226.402i −0.719235 + 0.0713180i
\(217\) 3047.17 + 2486.80i 0.953250 + 0.777949i
\(218\) −176.186 101.721i −0.0547377 0.0316028i
\(219\) −3789.41 + 124.887i −1.16924 + 0.0385347i
\(220\) −272.355 157.244i −0.0834643 0.0481881i
\(221\) −7735.90 4466.32i −2.35463 1.35945i
\(222\) 715.504 1339.32i 0.216313 0.404907i
\(223\) −2370.99 1368.89i −0.711988 0.411066i 0.0998088 0.995007i \(-0.468177\pi\)
−0.811797 + 0.583940i \(0.801510\pi\)
\(224\) 2450.56 + 1999.90i 0.730958 + 0.596536i
\(225\) 459.237 + 686.643i 0.136070 + 0.203450i
\(226\) −865.161 + 1498.50i −0.254645 + 0.441057i
\(227\) 5075.55 1.48404 0.742018 0.670380i \(-0.233869\pi\)
0.742018 + 0.670380i \(0.233869\pi\)
\(228\) −1359.06 + 44.7905i −0.394763 + 0.0130102i
\(229\) 1841.10i 0.531280i 0.964072 + 0.265640i \(0.0855832\pi\)
−0.964072 + 0.265640i \(0.914417\pi\)
\(230\) 259.646 + 449.720i 0.0744371 + 0.128929i
\(231\) 217.174 284.768i 0.0618570 0.0811098i
\(232\) 1368.96 2371.11i 0.387399 0.670995i
\(233\) 2765.48 + 1596.65i 0.777566 + 0.448928i 0.835567 0.549388i \(-0.185139\pi\)
−0.0580009 + 0.998317i \(0.518473\pi\)
\(234\) 2343.09 154.610i 0.654584 0.0431931i
\(235\) 960.915 + 1664.35i 0.266737 + 0.462002i
\(236\) −1586.31 2747.56i −0.437541 0.757843i
\(237\) 70.1612 + 2128.88i 0.0192298 + 0.583483i
\(238\) 1805.67 + 1473.61i 0.491781 + 0.401344i
\(239\) 388.647 224.385i 0.105186 0.0607292i −0.446484 0.894792i \(-0.647324\pi\)
0.551670 + 0.834062i \(0.313991\pi\)
\(240\) −77.0627 2338.28i −0.0207266 0.628899i
\(241\) 1103.73i 0.295012i 0.989061 + 0.147506i \(0.0471245\pi\)
−0.989061 + 0.147506i \(0.952875\pi\)
\(242\) 1262.63 728.979i 0.335392 0.193639i
\(243\) −2925.51 + 2406.30i −0.772312 + 0.635244i
\(244\) 2413.08i 0.633120i
\(245\) 4058.92 + 1353.05i 1.05843 + 0.352829i
\(246\) 1155.87 + 1857.88i 0.299575 + 0.481520i
\(247\) 3034.99 0.781830
\(248\) 1736.56 3007.81i 0.444644 0.770146i
\(249\) 2836.34 1764.62i 0.721871 0.449109i
\(250\) −1128.84 + 651.738i −0.285577 + 0.164878i
\(251\) 4137.13 1.04037 0.520186 0.854053i \(-0.325863\pi\)
0.520186 + 0.854053i \(0.325863\pi\)
\(252\) 3372.43 + 321.326i 0.843028 + 0.0803239i
\(253\) −139.964 −0.0347805
\(254\) 1576.76 910.343i 0.389507 0.224882i
\(255\) −242.723 7364.87i −0.0596076 1.80865i
\(256\) 418.400 724.691i 0.102149 0.176926i
\(257\) 1613.81 0.391699 0.195849 0.980634i \(-0.437254\pi\)
0.195849 + 0.980634i \(0.437254\pi\)
\(258\) 489.162 915.642i 0.118038 0.220951i
\(259\) −3091.46 + 3788.08i −0.741675 + 0.908802i
\(260\) 6639.74i 1.58377i
\(261\) −297.618 4510.36i −0.0705828 1.06967i
\(262\) −2708.42 + 1563.71i −0.638651 + 0.368725i
\(263\) 5800.44i 1.35996i 0.733229 + 0.679982i \(0.238012\pi\)
−0.733229 + 0.679982i \(0.761988\pi\)
\(264\) −278.936 149.016i −0.0650278 0.0347397i
\(265\) −2021.85 + 1167.31i −0.468684 + 0.270595i
\(266\) −781.647 126.851i −0.180172 0.0292395i
\(267\) −656.907 + 408.691i −0.150569 + 0.0936760i
\(268\) 327.783 + 567.737i 0.0747109 + 0.129403i
\(269\) 1625.70 + 2815.80i 0.368479 + 0.638224i 0.989328 0.145706i \(-0.0465454\pi\)
−0.620849 + 0.783930i \(0.713212\pi\)
\(270\) 1129.36 + 1573.82i 0.254558 + 0.354740i
\(271\) 2171.88 + 1253.93i 0.486834 + 0.281074i 0.723260 0.690576i \(-0.242643\pi\)
−0.236426 + 0.971649i \(0.575976\pi\)
\(272\) −2051.85 + 3553.90i −0.457395 + 0.792231i
\(273\) −7499.36 964.726i −1.66257 0.213875i
\(274\) −430.159 745.057i −0.0948425 0.164272i
\(275\) 113.857i 0.0249667i
\(276\) −699.397 1124.17i −0.152532 0.245170i
\(277\) 5741.68 1.24543 0.622715 0.782449i \(-0.286030\pi\)
0.622715 + 0.782449i \(0.286030\pi\)
\(278\) −941.152 + 1630.12i −0.203045 + 0.351684i
\(279\) −377.537 5721.50i −0.0810126 1.22773i
\(280\) 605.218 3729.32i 0.129174 0.795963i
\(281\) −5760.65 3325.91i −1.22296 0.706076i −0.257412 0.966302i \(-0.582870\pi\)
−0.965548 + 0.260226i \(0.916203\pi\)
\(282\) 468.115 + 752.420i 0.0988504 + 0.158886i
\(283\) −1389.64 802.309i −0.291892 0.168524i 0.346903 0.937901i \(-0.387233\pi\)
−0.638795 + 0.769377i \(0.720567\pi\)
\(284\) −4136.53 2388.23i −0.864289 0.498997i
\(285\) 1322.58 + 2125.84i 0.274887 + 0.441838i
\(286\) 280.293 + 161.827i 0.0579512 + 0.0334582i
\(287\) −2499.89 6587.23i −0.514160 1.35482i
\(288\) −303.618 4601.28i −0.0621210 0.941433i
\(289\) −4006.17 + 6938.89i −0.815423 + 1.41235i
\(290\) −2311.52 −0.468059
\(291\) −1917.83 3082.61i −0.386342 0.620983i
\(292\) 4943.33i 0.990707i
\(293\) 47.1597 + 81.6830i 0.00940307 + 0.0162866i 0.870689 0.491835i \(-0.163674\pi\)
−0.861286 + 0.508121i \(0.830340\pi\)
\(294\) 1891.10 + 561.903i 0.375140 + 0.111465i
\(295\) −2920.72 + 5058.84i −0.576444 + 0.998431i
\(296\) 3739.15 + 2158.80i 0.734236 + 0.423912i
\(297\) −519.557 + 51.5183i −0.101508 + 0.0100653i
\(298\) −482.007 834.861i −0.0936977 0.162289i
\(299\) 1477.52 + 2559.14i 0.285776 + 0.494979i
\(300\) −914.484 + 568.942i −0.175993 + 0.109493i
\(301\) −2113.51 + 2589.76i −0.404720 + 0.495918i
\(302\) −98.5008 + 56.8695i −0.0187685 + 0.0108360i
\(303\) 2739.74 + 1463.65i 0.519452 + 0.277506i
\(304\) 1394.29i 0.263052i
\(305\) 3847.73 2221.49i 0.722363 0.417056i
\(306\) −223.718 3390.40i −0.0417944 0.633387i
\(307\) 4341.53i 0.807115i −0.914954 0.403557i \(-0.867774\pi\)
0.914954 0.403557i \(-0.132226\pi\)
\(308\) 361.754 + 295.228i 0.0669248 + 0.0546174i
\(309\) −1270.05 + 2377.35i −0.233820 + 0.437679i
\(310\) −2932.22 −0.537223
\(311\) −619.110 + 1072.33i −0.112883 + 0.195518i −0.916931 0.399045i \(-0.869342\pi\)
0.804049 + 0.594563i \(0.202675\pi\)
\(312\) 219.929 + 6673.22i 0.0399071 + 1.21089i
\(313\) 370.765 214.061i 0.0669549 0.0386564i −0.466149 0.884706i \(-0.654359\pi\)
0.533104 + 0.846050i \(0.321026\pi\)
\(314\) 892.015 0.160316
\(315\) −2592.31 5673.27i −0.463683 1.01477i
\(316\) −2777.14 −0.494388
\(317\) 3711.39 2142.77i 0.657578 0.379653i −0.133775 0.991012i \(-0.542710\pi\)
0.791354 + 0.611359i \(0.209377\pi\)
\(318\) −914.037 + 568.664i −0.161184 + 0.100280i
\(319\) 311.510 539.552i 0.0546747 0.0946994i
\(320\) 1243.86 0.217294
\(321\) −2055.82 3304.41i −0.357460 0.574561i
\(322\) −273.566 720.847i −0.0473454 0.124755i
\(323\) 4391.57i 0.756512i
\(324\) −3010.00 3915.57i −0.516118 0.671394i
\(325\) 2081.80 1201.93i 0.355315 0.205141i
\(326\) 101.856i 0.0173045i
\(327\) −31.4575 954.503i −0.00531989 0.161419i
\(328\) −5388.09 + 3110.81i −0.907035 + 0.523677i
\(329\) −1012.43 2667.76i −0.169657 0.447047i
\(330\) 8.79453 + 266.849i 0.00146704 + 0.0445138i
\(331\) −5180.91 8973.60i −0.860328 1.49013i −0.871612 0.490196i \(-0.836925\pi\)
0.0112839 0.999936i \(-0.496408\pi\)
\(332\) 2177.66 + 3771.81i 0.359983 + 0.623509i
\(333\) 7112.67 469.334i 1.17049 0.0772352i
\(334\) 3680.33 + 2124.84i 0.602931 + 0.348102i
\(335\) 603.517 1045.32i 0.0984289 0.170484i
\(336\) −443.199 + 3445.23i −0.0719598 + 0.559383i
\(337\) 900.566 + 1559.83i 0.145570 + 0.252134i 0.929585 0.368607i \(-0.120165\pi\)
−0.784016 + 0.620741i \(0.786832\pi\)
\(338\) 4401.39i 0.708296i
\(339\) −8118.27 + 267.553i −1.30066 + 0.0428658i
\(340\) 9607.55 1.53248
\(341\) 395.159 684.436i 0.0627539 0.108693i
\(342\) 641.796 + 959.601i 0.101475 + 0.151723i
\(343\) −5626.79 2948.35i −0.885768 0.464129i
\(344\) 2556.31 + 1475.89i 0.400660 + 0.231321i
\(345\) −1148.66 + 2150.13i −0.179251 + 0.335533i
\(346\) −74.9815 43.2906i −0.0116504 0.00672635i
\(347\) 2749.86 + 1587.63i 0.425419 + 0.245615i 0.697393 0.716689i \(-0.254343\pi\)
−0.271974 + 0.962304i \(0.587677\pi\)
\(348\) 5890.21 194.123i 0.907323 0.0299026i
\(349\) 6434.98 + 3715.24i 0.986981 + 0.569834i 0.904370 0.426748i \(-0.140341\pi\)
0.0826105 + 0.996582i \(0.473674\pi\)
\(350\) −586.391 + 222.539i −0.0895541 + 0.0339863i
\(351\) 6426.64 + 8955.87i 0.977289 + 1.36191i
\(352\) 317.790 550.428i 0.0481200 0.0833464i
\(353\) −6095.40 −0.919052 −0.459526 0.888164i \(-0.651981\pi\)
−0.459526 + 0.888164i \(0.651981\pi\)
\(354\) −1269.18 + 2375.72i −0.190554 + 0.356690i
\(355\) 8794.46i 1.31482i
\(356\) −504.353 873.565i −0.0750861 0.130053i
\(357\) −1395.94 + 10851.4i −0.206949 + 1.60873i
\(358\) −136.186 + 235.881i −0.0201052 + 0.0348232i
\(359\) −7038.53 4063.70i −1.03476 0.597420i −0.116416 0.993200i \(-0.537141\pi\)
−0.918345 + 0.395781i \(0.870474\pi\)
\(360\) −4578.36 + 3062.08i −0.670280 + 0.448294i
\(361\) −2683.45 4647.87i −0.391231 0.677631i
\(362\) −2332.75 4040.44i −0.338692 0.586631i
\(363\) 6036.68 + 3224.97i 0.872847 + 0.466300i
\(364\) 1579.20 9730.95i 0.227397 1.40121i
\(365\) −7882.31 + 4550.85i −1.13035 + 0.652610i
\(366\) 1739.48 1082.21i 0.248427 0.154558i
\(367\) 169.168i 0.0240614i −0.999928 0.0120307i \(-0.996170\pi\)
0.999928 0.0120307i \(-0.00382958\pi\)
\(368\) 1175.68 678.778i 0.166539 0.0961515i
\(369\) −4538.95 + 9214.30i −0.640348 + 1.29994i
\(370\) 3645.19i 0.512174i
\(371\) 3240.78 1229.90i 0.453512 0.172111i
\(372\) 7471.89 246.250i 1.04140 0.0343212i
\(373\) 13664.6 1.89685 0.948424 0.317003i \(-0.102677\pi\)
0.948424 + 0.317003i \(0.102677\pi\)
\(374\) 234.160 405.577i 0.0323747 0.0560746i
\(375\) −5397.05 2883.25i −0.743206 0.397042i
\(376\) −2182.12 + 1259.85i −0.299293 + 0.172797i
\(377\) −13153.7 −1.79696
\(378\) −1280.83 2575.15i −0.174282 0.350400i
\(379\) 4708.21 0.638112 0.319056 0.947736i \(-0.396634\pi\)
0.319056 + 0.947736i \(0.396634\pi\)
\(380\) −2826.97 + 1632.15i −0.381633 + 0.220336i
\(381\) 7538.56 + 4027.31i 1.01368 + 0.541536i
\(382\) −1491.57 + 2583.47i −0.199778 + 0.346026i
\(383\) 12369.3 1.65024 0.825120 0.564957i \(-0.191107\pi\)
0.825120 + 0.564957i \(0.191107\pi\)
\(384\) 7668.91 252.744i 1.01915 0.0335880i
\(385\) 137.719 848.617i 0.0182307 0.112336i
\(386\) 134.485i 0.0177335i
\(387\) 4862.65 320.865i 0.638715 0.0421459i
\(388\) 4099.31 2366.74i 0.536368 0.309672i
\(389\) 9022.85i 1.17603i 0.808849 + 0.588016i \(0.200091\pi\)
−0.808849 + 0.588016i \(0.799909\pi\)
\(390\) 4786.30 2977.77i 0.621446 0.386629i
\(391\) 3703.02 2137.94i 0.478950 0.276522i
\(392\) −1773.97 + 5321.61i −0.228569 + 0.685669i
\(393\) −12949.1 6917.75i −1.66207 0.887924i
\(394\) −327.083 566.525i −0.0418229 0.0724394i
\(395\) 2556.65 + 4428.25i 0.325669 + 0.564075i
\(396\) −44.8204 679.245i −0.00568765 0.0861954i
\(397\) 5716.84 + 3300.62i 0.722720 + 0.417263i 0.815753 0.578400i \(-0.196323\pi\)
−0.0930329 + 0.995663i \(0.529656\pi\)
\(398\) 66.1245 114.531i 0.00832794 0.0144244i
\(399\) −1432.71 3430.11i −0.179763 0.430377i
\(400\) −552.169 956.385i −0.0690211 0.119548i
\(401\) 702.295i 0.0874586i −0.999043 0.0437293i \(-0.986076\pi\)
0.999043 0.0437293i \(-0.0139239\pi\)
\(402\) 262.254 490.902i 0.0325374 0.0609054i
\(403\) −16685.9 −2.06249
\(404\) −2024.94 + 3507.29i −0.249367 + 0.431916i
\(405\) −3472.49 + 8404.24i −0.426048 + 1.03114i
\(406\) 3387.68 + 549.774i 0.414108 + 0.0672040i
\(407\) 850.854 + 491.241i 0.103625 + 0.0598278i
\(408\) 9656.01 318.232i 1.17168 0.0386148i
\(409\) 4197.60 + 2423.48i 0.507476 + 0.292992i 0.731796 0.681524i \(-0.238683\pi\)
−0.224319 + 0.974516i \(0.572016\pi\)
\(410\) 4548.96 + 2626.34i 0.547944 + 0.316355i
\(411\) 1903.00 3562.15i 0.228389 0.427513i
\(412\) −3043.37 1757.09i −0.363923 0.210111i
\(413\) 5483.70 6719.38i 0.653354 0.800579i
\(414\) −496.702 + 1008.33i −0.0589651 + 0.119702i
\(415\) 4009.52 6944.70i 0.474264 0.821450i
\(416\) −13418.9 −1.58153
\(417\) −8831.33 + 291.053i −1.03710 + 0.0341797i
\(418\) 159.118i 0.0186190i
\(419\) 2902.78 + 5027.77i 0.338449 + 0.586211i 0.984141 0.177387i \(-0.0567644\pi\)
−0.645692 + 0.763598i \(0.723431\pi\)
\(420\) 7504.14 3134.38i 0.871821 0.364148i
\(421\) 4730.66 8193.74i 0.547644 0.948547i −0.450791 0.892629i \(-0.648858\pi\)
0.998435 0.0559179i \(-0.0178085\pi\)
\(422\) −4520.55 2609.94i −0.521462 0.301066i
\(423\) −1838.23 + 3731.69i −0.211295 + 0.428939i
\(424\) −1530.46 2650.83i −0.175296 0.303622i
\(425\) −1739.16 3012.31i −0.198498 0.343809i
\(426\) 133.572 + 4052.91i 0.0151915 + 0.460949i
\(427\) −6167.46 + 2340.59i −0.698979 + 0.265267i
\(428\) 4394.25 2537.02i 0.496271 0.286522i
\(429\) 50.0454 + 1518.51i 0.00563220 + 0.170896i
\(430\) 2492.07i 0.279485i
\(431\) −4423.48 + 2553.90i −0.494365 + 0.285422i −0.726384 0.687289i \(-0.758800\pi\)
0.232018 + 0.972711i \(0.425467\pi\)
\(432\) 4114.36 2952.42i 0.458223 0.328816i
\(433\) 15003.8i 1.66521i 0.553866 + 0.832606i \(0.313152\pi\)
−0.553866 + 0.832606i \(0.686848\pi\)
\(434\) 4297.36 + 697.402i 0.475299 + 0.0771345i
\(435\) −5732.09 9213.44i −0.631800 1.01552i
\(436\) 1245.16 0.136771
\(437\) −726.395 + 1258.15i −0.0795153 + 0.137725i
\(438\) −3563.43 + 2216.97i −0.388738 + 0.241852i
\(439\) 4808.09 2775.95i 0.522728 0.301797i −0.215322 0.976543i \(-0.569080\pi\)
0.738050 + 0.674746i \(0.235747\pi\)
\(440\) −759.172 −0.0822548
\(441\) 2449.86 + 8931.09i 0.264535 + 0.964376i
\(442\) −9887.58 −1.06404
\(443\) 6333.33 3656.55i 0.679245 0.392162i −0.120325 0.992735i \(-0.538394\pi\)
0.799571 + 0.600572i \(0.205060\pi\)
\(444\) 306.126 + 9288.65i 0.0327209 + 0.992838i
\(445\) −928.619 + 1608.42i −0.0989231 + 0.171340i
\(446\) −3030.46 −0.321741
\(447\) 2132.37 3991.50i 0.225633 0.422353i
\(448\) −1822.96 295.841i −0.192247 0.0311991i
\(449\) 15920.2i 1.67332i −0.547720 0.836662i \(-0.684504\pi\)
0.547720 0.836662i \(-0.315496\pi\)
\(450\) 820.251 + 404.054i 0.0859267 + 0.0423274i
\(451\) −1226.07 + 707.874i −0.128012 + 0.0739079i
\(452\) 10590.4i 1.10206i
\(453\) −470.936 251.587i −0.0488444 0.0260941i
\(454\) 4865.46 2809.07i 0.502967 0.290388i
\(455\) −16970.2 + 6440.28i −1.74851 + 0.663571i
\(456\) −2787.16 + 1734.02i −0.286230 + 0.178077i
\(457\) −7796.81 13504.5i −0.798073 1.38230i −0.920870 0.389871i \(-0.872520\pi\)
0.122797 0.992432i \(-0.460814\pi\)
\(458\) 1018.96 + 1764.89i 0.103958 + 0.180061i
\(459\) 12958.9 9299.21i 1.31780 0.945642i
\(460\) −2752.49 1589.15i −0.278991 0.161075i
\(461\) 5142.24 8906.62i 0.519518 0.899832i −0.480224 0.877146i \(-0.659445\pi\)
0.999743 0.0226865i \(-0.00722196\pi\)
\(462\) 50.5786 393.176i 0.00509336 0.0395935i
\(463\) 5144.96 + 8911.33i 0.516429 + 0.894481i 0.999818 + 0.0190753i \(0.00607223\pi\)
−0.483389 + 0.875405i \(0.660594\pi\)
\(464\) 6042.88i 0.604599i
\(465\) −7271.31 11687.5i −0.725159 1.16558i
\(466\) 3534.68 0.351376
\(467\) −5970.25 + 10340.8i −0.591585 + 1.02465i 0.402435 + 0.915449i \(0.368164\pi\)
−0.994019 + 0.109206i \(0.965169\pi\)
\(468\) −11946.4 + 7989.91i −1.17996 + 0.789175i
\(469\) −1133.11 + 1388.45i −0.111561 + 0.136700i
\(470\) 1842.28 + 1063.64i 0.180804 + 0.104387i
\(471\) 2212.01 + 3555.46i 0.216399 + 0.347828i
\(472\) −6632.60 3829.33i −0.646801 0.373431i
\(473\) 581.696 + 335.842i 0.0565463 + 0.0326470i
\(474\) 1245.49 + 2001.92i 0.120690 + 0.193990i
\(475\) 1023.48 + 590.904i 0.0988638 + 0.0570790i
\(476\) −14080.5 2285.07i −1.35584 0.220033i
\(477\) −4533.24 2233.07i −0.435143 0.214351i
\(478\) 248.373 430.194i 0.0237663 0.0411645i
\(479\) −6528.18 −0.622714 −0.311357 0.950293i \(-0.600783\pi\)
−0.311357 + 0.950293i \(0.600783\pi\)
\(480\) −5847.64 9399.16i −0.556057 0.893773i
\(481\) 20743.0i 1.96632i
\(482\) 610.864 + 1058.05i 0.0577263 + 0.0999849i
\(483\) 2194.82 2877.95i 0.206766 0.271121i
\(484\) −4461.69 + 7727.88i −0.419017 + 0.725759i
\(485\) −7547.69 4357.66i −0.706645 0.407982i
\(486\) −1472.65 + 3925.83i −0.137450 + 0.366418i
\(487\) 1624.66 + 2814.00i 0.151172 + 0.261837i 0.931658 0.363335i \(-0.118362\pi\)
−0.780487 + 0.625172i \(0.785029\pi\)
\(488\) 2912.57 + 5044.73i 0.270176 + 0.467959i
\(489\) 405.985 252.582i 0.0375445 0.0233582i
\(490\) 4639.76 949.376i 0.427761 0.0875274i
\(491\) 9629.30 5559.48i 0.885059 0.510989i 0.0127359 0.999919i \(-0.495946\pi\)
0.872323 + 0.488930i \(0.162613\pi\)
\(492\) −11812.2 6310.41i −1.08239 0.578242i
\(493\) 19033.2i 1.73877i
\(494\) 2909.36 1679.72i 0.264977 0.152984i
\(495\) −1041.82 + 696.784i −0.0945985 + 0.0632690i
\(496\) 7665.55i 0.693938i
\(497\) 2091.68 12888.8i 0.188782 1.16327i
\(498\) 1742.31 3261.35i 0.156776 0.293463i
\(499\) −8160.84 −0.732123 −0.366062 0.930591i \(-0.619294\pi\)
−0.366062 + 0.930591i \(0.619294\pi\)
\(500\) 3988.94 6909.05i 0.356782 0.617964i
\(501\) 657.113 + 19938.5i 0.0585981 + 1.77802i
\(502\) 3965.88 2289.70i 0.352601 0.203574i
\(503\) 6103.08 0.541000 0.270500 0.962720i \(-0.412811\pi\)
0.270500 + 0.962720i \(0.412811\pi\)
\(504\) 7438.17 3398.75i 0.657386 0.300382i
\(505\) 7456.66 0.657064
\(506\) −134.170 + 77.4633i −0.0117877 + 0.00680566i
\(507\) 17543.4 10914.5i 1.53675 0.956079i
\(508\) −5571.72 + 9650.51i −0.486625 + 0.842859i
\(509\) −332.400 −0.0289458 −0.0144729 0.999895i \(-0.504607\pi\)
−0.0144729 + 0.999895i \(0.504607\pi\)
\(510\) −4308.77 6925.67i −0.374109 0.601321i
\(511\) 12634.4 4794.83i 1.09376 0.415089i
\(512\) 10887.2i 0.939749i
\(513\) −2233.33 + 4937.73i −0.192210 + 0.424963i
\(514\) 1547.01 893.165i 0.132754 0.0766455i
\(515\) 6470.35i 0.553627i
\(516\) 209.286 + 6350.29i 0.0178552 + 0.541775i
\(517\) −496.547 + 286.681i −0.0422400 + 0.0243873i
\(518\) −866.974 + 5342.25i −0.0735379 + 0.453137i
\(519\) −13.3877 406.219i −0.00113228 0.0343565i
\(520\) 8014.14 + 13880.9i 0.675853 + 1.17061i
\(521\) 5203.98 + 9013.56i 0.437602 + 0.757948i 0.997504 0.0706102i \(-0.0224947\pi\)
−0.559902 + 0.828559i \(0.689161\pi\)
\(522\) −2781.56 4158.94i −0.233229 0.348720i
\(523\) −11845.6 6839.04i −0.990384 0.571798i −0.0849946 0.996381i \(-0.527087\pi\)
−0.905389 + 0.424583i \(0.860421\pi\)
\(524\) 9570.60 16576.8i 0.797889 1.38198i
\(525\) −2341.14 1785.43i −0.194621 0.148424i
\(526\) 3210.26 + 5560.34i 0.266111 + 0.460917i
\(527\) 24144.1i 1.99570i
\(528\) 697.609 22.9911i 0.0574991 0.00189499i
\(529\) 10752.5 0.883742
\(530\) −1292.10 + 2237.99i −0.105897 + 0.183419i
\(531\) −12616.6 + 832.515i −1.03110 + 0.0680378i
\(532\) 4531.29 1719.65i 0.369279 0.140144i
\(533\) 25885.9 + 14945.2i 2.10365 + 1.21454i
\(534\) −403.524 + 755.340i −0.0327007 + 0.0612112i
\(535\) −8090.74 4671.19i −0.653819 0.377483i
\(536\) 1370.51 + 791.266i 0.110442 + 0.0637640i
\(537\) −1277.91 + 42.1159i −0.102692 + 0.00338442i
\(538\) 3116.82 + 1799.49i 0.249769 + 0.144204i
\(539\) −403.671 + 1210.95i −0.0322585 + 0.0967703i
\(540\) −10802.4 4885.91i −0.860855 0.389364i
\(541\) −28.6719 + 49.6612i −0.00227856 + 0.00394658i −0.867162 0.498025i \(-0.834059\pi\)
0.864884 + 0.501972i \(0.167392\pi\)
\(542\) 2775.97 0.219996
\(543\) 10319.9 19317.5i 0.815601 1.52669i
\(544\) 19416.9i 1.53031i
\(545\) −1146.30 1985.45i −0.0900956 0.156050i
\(546\) −7722.86 + 3225.74i −0.605326 + 0.252837i
\(547\) −9099.49 + 15760.8i −0.711272 + 1.23196i 0.253107 + 0.967438i \(0.418547\pi\)
−0.964380 + 0.264522i \(0.914786\pi\)
\(548\) 4560.09 + 2632.77i 0.355470 + 0.205231i
\(549\) 8627.11 + 4249.70i 0.670667 + 0.330370i
\(550\) 63.0145 + 109.144i 0.00488536 + 0.00846169i
\(551\) −3233.40 5600.41i −0.249995 0.433004i
\(552\) −2819.01 1506.00i −0.217364 0.116122i
\(553\) −2693.72 7097.96i −0.207140 0.545816i
\(554\) 5504.01 3177.74i 0.422099 0.243699i
\(555\) 14529.3 9039.31i 1.11123 0.691347i
\(556\) 11520.6i 0.878743i
\(557\) 16522.7 9539.40i 1.25689 0.725668i 0.284425 0.958698i \(-0.408197\pi\)
0.972470 + 0.233030i \(0.0748640\pi\)
\(558\) −3528.49 5275.72i −0.267693 0.400249i
\(559\) 14181.2i 1.07299i
\(560\) 2958.69 + 7796.16i 0.223263 + 0.588300i
\(561\) 2197.25 72.4146i 0.165362 0.00544982i
\(562\) −7362.93 −0.552645
\(563\) 10787.3 18684.2i 0.807516 1.39866i −0.107063 0.994252i \(-0.534145\pi\)
0.914579 0.404407i \(-0.132522\pi\)
\(564\) −4783.81 2555.65i −0.357154 0.190802i
\(565\) −16886.7 + 9749.55i −1.25740 + 0.725959i
\(566\) −1776.16 −0.131904
\(567\) 7088.02 11491.1i 0.524989 0.851109i
\(568\) −11530.3 −0.851764
\(569\) −2644.80 + 1526.98i −0.194861 + 0.112503i −0.594256 0.804276i \(-0.702553\pi\)
0.399395 + 0.916779i \(0.369220\pi\)
\(570\) 2444.38 + 1305.86i 0.179621 + 0.0959585i
\(571\) −3506.26 + 6073.01i −0.256974 + 0.445092i −0.965430 0.260663i \(-0.916059\pi\)
0.708456 + 0.705755i \(0.249392\pi\)
\(572\) −1980.91 −0.144801
\(573\) −13996.2 + 461.272i −1.02042 + 0.0336298i
\(574\) −6042.13 4930.99i −0.439362 0.358564i
\(575\) 1150.67i 0.0834547i
\(576\) 1496.80 + 2237.99i 0.108275 + 0.161891i
\(577\) −18180.1 + 10496.3i −1.31169 + 0.757305i −0.982376 0.186915i \(-0.940151\pi\)
−0.329315 + 0.944220i \(0.606818\pi\)
\(578\) 8868.89i 0.638231i
\(579\) −536.042 + 333.496i −0.0384752 + 0.0239372i
\(580\) 12252.2 7073.79i 0.877144 0.506419i
\(581\) −7527.94 + 9224.26i −0.537541 + 0.658669i
\(582\) −3544.53 1893.59i −0.252449 0.134865i
\(583\) −348.259 603.203i −0.0247400 0.0428509i
\(584\) −5966.58 10334.4i −0.422772 0.732263i
\(585\) 23738.1 + 11693.3i 1.67769 + 0.826427i
\(586\) 90.4152 + 52.2012i 0.00637375 + 0.00367988i
\(587\) 6537.09 11322.6i 0.459650 0.796137i −0.539292 0.842119i \(-0.681308\pi\)
0.998942 + 0.0459813i \(0.0146415\pi\)
\(588\) −11743.3 + 2808.85i −0.823613 + 0.196998i
\(589\) −4101.65 7104.27i −0.286936 0.496988i
\(590\) 6465.92i 0.451182i
\(591\) 1447.00 2708.58i 0.100713 0.188521i
\(592\) −9529.41 −0.661582
\(593\) −555.269 + 961.755i −0.0384523 + 0.0666013i −0.884611 0.466330i \(-0.845576\pi\)
0.846159 + 0.532931i \(0.178909\pi\)
\(594\) −469.538 + 336.935i −0.0324333 + 0.0232738i
\(595\) 9318.94 + 24555.5i 0.642083 + 1.69189i
\(596\) 5109.74 + 2950.11i 0.351179 + 0.202754i
\(597\) 620.481 20.4492i 0.0425370 0.00140189i
\(598\) 2832.72 + 1635.47i 0.193710 + 0.111838i
\(599\) −16879.0 9745.10i −1.15135 0.664731i −0.202133 0.979358i \(-0.564787\pi\)
−0.949215 + 0.314627i \(0.898121\pi\)
\(600\) −1225.09 + 2293.20i −0.0833569 + 0.156032i
\(601\) 18365.6 + 10603.4i 1.24650 + 0.719669i 0.970410 0.241462i \(-0.0776270\pi\)
0.276093 + 0.961131i \(0.410960\pi\)
\(602\) −592.716 + 3652.29i −0.0401284 + 0.247269i
\(603\) 2607.01 172.025i 0.176062 0.0116176i
\(604\) 348.067 602.871i 0.0234481 0.0406133i
\(605\) 16429.8 1.10408
\(606\) 3436.39 113.253i 0.230353 0.00759173i
\(607\) 6606.80i 0.441782i −0.975298 0.220891i \(-0.929103\pi\)
0.975298 0.220891i \(-0.0708966\pi\)
\(608\) −3298.58 5713.30i −0.220025 0.381094i
\(609\) 6209.42 + 14866.2i 0.413166 + 0.989177i
\(610\) 2458.98 4259.07i 0.163215 0.282696i
\(611\) 10483.5 + 6052.66i 0.694137 + 0.400760i
\(612\) 11561.2 + 17286.1i 0.763619 + 1.14175i
\(613\) −4381.85 7589.58i −0.288713 0.500066i 0.684790 0.728741i \(-0.259894\pi\)
−0.973503 + 0.228675i \(0.926561\pi\)
\(614\) −2402.83 4161.82i −0.157932 0.273546i
\(615\) 812.202 + 24644.4i 0.0532539 + 1.61586i
\(616\) 1112.61 + 180.562i 0.0727735 + 0.0118101i
\(617\) −10903.4 + 6295.11i −0.711436 + 0.410748i −0.811593 0.584224i \(-0.801399\pi\)
0.100156 + 0.994972i \(0.468066\pi\)
\(618\) 98.2728 + 2981.85i 0.00639662 + 0.194090i
\(619\) 14475.9i 0.939962i −0.882677 0.469981i \(-0.844261\pi\)
0.882677 0.469981i \(-0.155739\pi\)
\(620\) 15542.2 8973.29i 1.00676 0.581252i
\(621\) −5250.79 + 520.659i −0.339303 + 0.0336446i
\(622\) 1370.59i 0.0883531i
\(623\) 1743.50 2136.37i 0.112122 0.137387i
\(624\) −7784.63 12512.6i −0.499414 0.802730i
\(625\) −18513.3 −1.18485
\(626\) 236.945 410.401i 0.0151282 0.0262028i
\(627\) −634.227 + 394.581i −0.0403964 + 0.0251325i
\(628\) −4728.10 + 2729.77i −0.300433 + 0.173455i
\(629\) −30014.7 −1.90264
\(630\) −5624.88 4003.71i −0.355715 0.253193i
\(631\) 4746.41 0.299448 0.149724 0.988728i \(-0.452162\pi\)
0.149724 + 0.988728i \(0.452162\pi\)
\(632\) −5805.84 + 3352.00i −0.365418 + 0.210974i
\(633\) −807.131 24490.5i −0.0506802 1.53777i
\(634\) 2371.84 4108.15i 0.148577 0.257343i
\(635\) 20517.4 1.28222
\(636\) 3104.59 5811.35i 0.193561 0.362319i
\(637\) 26402.6 5402.44i 1.64224 0.336032i
\(638\) 689.624i 0.0427938i
\(639\) −15823.2 + 10582.8i −0.979586 + 0.655162i
\(640\) 15952.0 9209.91i 0.985249 0.568834i
\(641\) 16884.3i 1.04039i 0.854047 + 0.520195i \(0.174141\pi\)
−0.854047 + 0.520195i \(0.825859\pi\)
\(642\) −3799.55 2029.83i −0.233577 0.124783i
\(643\) 7268.42 4196.42i 0.445783 0.257373i −0.260265 0.965537i \(-0.583810\pi\)
0.706048 + 0.708164i \(0.250476\pi\)
\(644\) 3655.99 + 2983.66i 0.223705 + 0.182566i
\(645\) 9933.09 6179.82i 0.606380 0.377256i
\(646\) −2430.52 4209.79i −0.148030 0.256396i
\(647\) −1835.83 3179.75i −0.111552 0.193213i 0.804844 0.593486i \(-0.202249\pi\)
−0.916396 + 0.400273i \(0.868915\pi\)
\(648\) −11018.7 4552.75i −0.667988 0.276001i
\(649\) −1509.26 871.374i −0.0912848 0.0527033i
\(650\) 1330.42 2304.35i 0.0802818 0.139052i
\(651\) 7876.81 + 18858.2i 0.474219 + 1.13534i
\(652\) 311.703 + 539.885i 0.0187227 + 0.0324287i
\(653\) 6596.57i 0.395319i 0.980271 + 0.197660i \(0.0633341\pi\)
−0.980271 + 0.197660i \(0.936666\pi\)
\(654\) −558.426 897.582i −0.0333887 0.0536670i
\(655\) −35243.0 −2.10238
\(656\) 6865.90 11892.1i 0.408641 0.707786i
\(657\) −17673.2 8705.76i −1.04946 0.516962i
\(658\) −2447.00 1997.00i −0.144976 0.118315i
\(659\) −21380.3 12343.9i −1.26382 0.729666i −0.290008 0.957024i \(-0.593658\pi\)
−0.973811 + 0.227358i \(0.926991\pi\)
\(660\) −863.235 1387.51i −0.0509112 0.0818317i
\(661\) −384.039 221.725i −0.0225982 0.0130471i 0.488658 0.872475i \(-0.337486\pi\)
−0.511257 + 0.859428i \(0.670820\pi\)
\(662\) −9932.91 5734.77i −0.583163 0.336689i
\(663\) −24519.1 39410.7i −1.43627 2.30857i
\(664\) 9105.13 + 5256.85i 0.532150 + 0.307237i
\(665\) −6913.58 5642.19i −0.403154 0.329014i
\(666\) 6558.50 4386.43i 0.381587 0.255211i
\(667\) 3148.22 5452.87i 0.182758 0.316546i
\(668\) −26010.0 −1.50652
\(669\) −7514.92 12079.0i −0.434295 0.698061i
\(670\) 1336.07i 0.0770402i
\(671\) 662.764 + 1147.94i 0.0381307 + 0.0660444i
\(672\) 6334.59 + 15165.9i 0.363634 + 0.870589i
\(673\) −12123.6 + 20998.6i −0.694397 + 1.20273i 0.275986 + 0.961162i \(0.410996\pi\)
−0.970383 + 0.241570i \(0.922338\pi\)
\(674\) 1726.58 + 996.840i 0.0986725 + 0.0569686i
\(675\) 423.543 + 4271.39i 0.0241514 + 0.243564i
\(676\) 13469.3 + 23329.5i 0.766345 + 1.32735i
\(677\) −12638.5 21890.5i −0.717485 1.24272i −0.961993 0.273073i \(-0.911960\pi\)
0.244509 0.969647i \(-0.421373\pi\)
\(678\) −7634.15 + 4749.55i −0.432430 + 0.269034i
\(679\) 10025.2 + 8181.57i 0.566614 + 0.462415i
\(680\) 20085.4 11596.3i 1.13270 0.653967i
\(681\) 23261.9 + 12427.2i 1.30896 + 0.699281i
\(682\) 874.806i 0.0491174i
\(683\) −15251.8 + 8805.63i −0.854457 + 0.493321i −0.862152 0.506650i \(-0.830884\pi\)
0.00769531 + 0.999970i \(0.497550\pi\)
\(684\) −6338.43 3122.30i −0.354322 0.174538i
\(685\) 9694.97i 0.540768i
\(686\) −7025.65 + 287.847i −0.391021 + 0.0160205i
\(687\) −4507.82 + 8438.00i −0.250341 + 0.468602i
\(688\) −6514.89 −0.361014
\(689\) −7352.74 + 12735.3i −0.406556 + 0.704176i
\(690\) 88.8801 + 2696.86i 0.00490378 + 0.148794i
\(691\) 25261.4 14584.7i 1.39072 0.802934i 0.397327 0.917677i \(-0.369938\pi\)
0.993395 + 0.114743i \(0.0366045\pi\)
\(692\) 529.917 0.0291104
\(693\) 1692.57 773.395i 0.0927786 0.0423937i
\(694\) 3514.71 0.192243
\(695\) −18370.0 + 10605.9i −1.00261 + 0.578856i
\(696\) 12079.6 7515.30i 0.657871 0.409291i
\(697\) 21625.4 37456.3i 1.17521 2.03552i
\(698\) 8224.81 0.446008
\(699\) 8765.28 + 14088.8i 0.474297 + 0.762357i
\(700\) 2427.13 2974.06i 0.131053 0.160584i
\(701\) 21991.9i 1.18491i 0.805603 + 0.592456i \(0.201841\pi\)
−0.805603 + 0.592456i \(0.798159\pi\)
\(702\) 11117.3 + 5028.32i 0.597712 + 0.270344i
\(703\) 8831.65 5098.95i 0.473815 0.273557i
\(704\) 371.097i 0.0198668i
\(705\) 328.933 + 9980.70i 0.0175721 + 0.533184i
\(706\) −5843.09 + 3373.51i −0.311484 + 0.179835i
\(707\) −10928.2 1773.50i −0.581326 0.0943412i
\(708\) −543.013 16476.4i −0.0288244 0.874607i
\(709\) −8680.05 15034.3i −0.459783 0.796367i 0.539166 0.842199i \(-0.318739\pi\)
−0.998949 + 0.0458321i \(0.985406\pi\)
\(710\) 4867.31 + 8430.43i 0.257277 + 0.445617i
\(711\) −4890.87 + 9928.72i −0.257977 + 0.523707i
\(712\) −2108.78 1217.50i −0.110997 0.0640841i
\(713\) 3993.59 6917.11i 0.209763 0.363321i
\(714\) 4667.57 + 11174.8i 0.244649 + 0.585724i
\(715\) 1823.64 + 3158.63i 0.0953849 + 0.165212i
\(716\) 1667.04i 0.0870116i
\(717\) 2330.61 76.8099i 0.121392 0.00400072i
\(718\) −8996.24 −0.467600
\(719\) −12003.3 + 20790.4i −0.622599 + 1.07837i 0.366401 + 0.930457i \(0.380590\pi\)
−0.989000 + 0.147916i \(0.952744\pi\)
\(720\) 5371.96 10905.4i 0.278057 0.564471i
\(721\) 1538.91 9482.71i 0.0794898 0.489812i
\(722\) −5144.75 2970.32i −0.265191 0.153108i
\(723\) −2702.43 + 5058.57i −0.139010 + 0.260208i
\(724\) 24729.3 + 14277.5i 1.26942 + 0.732899i
\(725\) −4435.77 2561.00i −0.227228 0.131190i
\(726\) 7571.67 249.539i 0.387067 0.0127566i
\(727\) −16384.0 9459.32i −0.835831 0.482568i 0.0200136 0.999800i \(-0.493629\pi\)
−0.855845 + 0.517232i \(0.826962\pi\)
\(728\) −8443.79 22249.4i −0.429873 1.13272i
\(729\) −19299.7 + 3865.45i −0.980527 + 0.196385i
\(730\) −5037.36 + 8724.96i −0.255398 + 0.442363i
\(731\) −20519.8 −1.03824
\(732\) −5908.27 + 11059.5i −0.298328 + 0.558428i
\(733\) 34371.7i 1.73199i 0.500056 + 0.865993i \(0.333313\pi\)
−0.500056 + 0.865993i \(0.666687\pi\)
\(734\) −93.6265 162.166i −0.00470820 0.00815484i
\(735\) 15289.7 + 16139.2i 0.767306 + 0.809938i
\(736\) 3211.68 5562.79i 0.160848 0.278597i
\(737\) 311.864 + 180.055i 0.0155870 + 0.00899918i
\(738\) 748.605 + 11345.0i 0.0373395 + 0.565873i
\(739\) −10959.7 18982.8i −0.545549 0.944919i −0.998572 0.0534199i \(-0.982988\pi\)
0.453023 0.891499i \(-0.350346\pi\)
\(740\) 11155.1 + 19321.2i 0.554149 + 0.959815i
\(741\) 13909.8 + 7431.00i 0.689594 + 0.368400i
\(742\) 2425.95 2972.60i 0.120026 0.147072i
\(743\) 32847.1 18964.3i 1.62186 0.936382i 0.635439 0.772151i \(-0.280819\pi\)
0.986422 0.164231i \(-0.0525142\pi\)
\(744\) 15323.4 9533.35i 0.755082 0.469771i
\(745\) 10863.5i 0.534241i
\(746\) 13098.9 7562.68i 0.642877 0.371165i
\(747\) 17319.9 1142.86i 0.848329 0.0559775i
\(748\) 2866.34i 0.140112i
\(749\) 10746.5 + 8770.23i 0.524257 + 0.427847i
\(750\) −6769.39 + 223.098i −0.329577 + 0.0108619i
\(751\) −14761.9 −0.717269 −0.358635 0.933478i \(-0.616758\pi\)
−0.358635 + 0.933478i \(0.616758\pi\)
\(752\) 2780.62 4816.17i 0.134839 0.233547i
\(753\) 18961.0 + 10129.5i 0.917634 + 0.490226i
\(754\) −12609.3 + 7279.96i −0.609022 + 0.351619i
\(755\) −1281.73 −0.0617841
\(756\) 14669.5 + 9729.87i 0.705723 + 0.468085i
\(757\) 32881.1 1.57871 0.789355 0.613937i \(-0.210415\pi\)
0.789355 + 0.613937i \(0.210415\pi\)
\(758\) 4513.32 2605.77i 0.216268 0.124862i
\(759\) −641.474 342.693i −0.0306772 0.0163886i
\(760\) −3940.00 + 6824.29i −0.188051 + 0.325714i
\(761\) −25237.9 −1.20220 −0.601099 0.799174i \(-0.705270\pi\)
−0.601099 + 0.799174i \(0.705270\pi\)
\(762\) 9455.43 311.622i 0.449520 0.0148148i
\(763\) 1207.75 + 3182.44i 0.0573049 + 0.150999i
\(764\) 18258.2i 0.864605i
\(765\) 16920.0 34348.5i 0.799665 1.62336i
\(766\) 11857.3 6845.81i 0.559297 0.322910i
\(767\) 36794.4i 1.73216i
\(768\) 3691.95 2296.93i 0.173466 0.107921i
\(769\) −2558.83 + 1477.34i −0.119992 + 0.0692775i −0.558795 0.829306i \(-0.688736\pi\)
0.438803 + 0.898583i \(0.355403\pi\)
\(770\) −337.651 889.711i −0.0158027 0.0416402i
\(771\) 7396.30 + 3951.31i 0.345488 + 0.184569i
\(772\) −411.557 712.837i −0.0191868 0.0332326i
\(773\) 15778.4 + 27329.0i 0.734165 + 1.27161i