Properties

Label 63.4.s.a.47.13
Level $63$
Weight $4$
Character 63.47
Analytic conductor $3.717$
Analytic rank $0$
Dimension $44$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.13
Character \(\chi\) \(=\) 63.47
Dual form 63.4.s.a.59.13

$q$-expansion

\(f(q)\) \(=\) \(q+(0.725355 - 0.418784i) q^{2} +(0.141982 - 5.19421i) q^{3} +(-3.64924 + 6.32067i) q^{4} -21.9169 q^{5} +(-2.07226 - 3.82711i) q^{6} +(2.19637 - 18.3896i) q^{7} +12.8135i q^{8} +(-26.9597 - 1.47497i) q^{9} +O(q^{10})\) \(q+(0.725355 - 0.418784i) q^{2} +(0.141982 - 5.19421i) q^{3} +(-3.64924 + 6.32067i) q^{4} -21.9169 q^{5} +(-2.07226 - 3.82711i) q^{6} +(2.19637 - 18.3896i) q^{7} +12.8135i q^{8} +(-26.9597 - 1.47497i) q^{9} +(-15.8975 + 9.17842i) q^{10} +15.4606i q^{11} +(32.3128 + 19.8524i) q^{12} +(33.3594 - 19.2600i) q^{13} +(-6.10810 - 14.2588i) q^{14} +(-3.11180 + 113.841i) q^{15} +(-23.8278 - 41.2710i) q^{16} +(-34.8682 - 60.3936i) q^{17} +(-20.1730 + 10.2204i) q^{18} +(-55.4679 - 32.0244i) q^{19} +(79.9799 - 138.529i) q^{20} +(-95.2074 - 14.0194i) q^{21} +(6.47465 + 11.2144i) q^{22} +69.8230i q^{23} +(66.5561 + 1.81929i) q^{24} +355.349 q^{25} +(16.1316 - 27.9407i) q^{26} +(-11.4891 + 139.825i) q^{27} +(108.219 + 80.9905i) q^{28} +(-168.609 - 97.3466i) q^{29} +(45.4175 + 83.8781i) q^{30} +(68.0764 + 39.3039i) q^{31} +(-123.342 - 71.2115i) q^{32} +(80.3057 + 2.19513i) q^{33} +(-50.5837 - 29.2045i) q^{34} +(-48.1376 + 403.041i) q^{35} +(107.705 - 165.021i) q^{36} +(3.34533 - 5.79428i) q^{37} -53.6452 q^{38} +(-95.3043 - 176.010i) q^{39} -280.832i q^{40} +(9.21172 + 15.9552i) q^{41} +(-74.9303 + 29.7023i) q^{42} +(-12.2255 + 21.1752i) q^{43} +(-97.7214 - 56.4195i) q^{44} +(590.872 + 32.3267i) q^{45} +(29.2407 + 50.6465i) q^{46} +(-138.270 - 239.491i) q^{47} +(-217.754 + 117.907i) q^{48} +(-333.352 - 80.7806i) q^{49} +(257.754 - 148.814i) q^{50} +(-318.648 + 172.538i) q^{51} +281.138i q^{52} +(-95.3706 + 55.0622i) q^{53} +(50.2227 + 106.234i) q^{54} -338.848i q^{55} +(235.635 + 28.1432i) q^{56} +(-174.217 + 283.565i) q^{57} -163.069 q^{58} +(176.782 - 306.196i) q^{59} +(-708.194 - 435.101i) q^{60} +(-460.697 + 265.983i) q^{61} +65.8393 q^{62} +(-86.3376 + 492.537i) q^{63} +261.957 q^{64} +(-731.132 + 422.120i) q^{65} +(59.1694 - 32.0385i) q^{66} +(-262.021 + 453.834i) q^{67} +508.970 q^{68} +(362.676 + 9.91363i) q^{69} +(133.870 + 312.507i) q^{70} +43.3150i q^{71} +(18.8996 - 345.448i) q^{72} +(54.9811 - 31.7433i) q^{73} -5.60388i q^{74} +(50.4532 - 1845.76i) q^{75} +(404.831 - 233.729i) q^{76} +(284.314 + 33.9572i) q^{77} +(-142.840 - 87.7579i) q^{78} +(-606.173 - 1049.92i) q^{79} +(522.231 + 904.531i) q^{80} +(724.649 + 79.5295i) q^{81} +(13.3635 + 7.71543i) q^{82} +(111.327 - 192.824i) q^{83} +(436.047 - 550.615i) q^{84} +(764.202 + 1323.64i) q^{85} +20.4793i q^{86} +(-529.578 + 861.971i) q^{87} -198.105 q^{88} +(-35.2649 + 61.0806i) q^{89} +(442.129 - 223.999i) q^{90} +(-280.914 - 655.766i) q^{91} +(-441.328 - 254.801i) q^{92} +(213.818 - 348.023i) q^{93} +(-200.590 - 115.811i) q^{94} +(1215.68 + 701.874i) q^{95} +(-387.400 + 630.553i) q^{96} +(483.359 + 279.067i) q^{97} +(-275.628 + 81.0077i) q^{98} +(22.8040 - 416.813i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44q - 3q^{2} - 3q^{3} + 81q^{4} - 6q^{5} - 24q^{6} + 5q^{7} - 3q^{9} + O(q^{10}) \) \( 44q - 3q^{2} - 3q^{3} + 81q^{4} - 6q^{5} - 24q^{6} + 5q^{7} - 3q^{9} - 6q^{10} - 3q^{12} + 36q^{13} + 129q^{14} - 141q^{15} - 263q^{16} + 72q^{17} - 15q^{18} - 6q^{19} - 24q^{20} - 306q^{21} + 14q^{22} - 66q^{24} + 698q^{25} + 96q^{26} - 432q^{27} - 156q^{28} - 132q^{29} + 852q^{30} + 177q^{31} - 501q^{32} + 849q^{33} - 24q^{34} - 765q^{35} + 1122q^{36} + 82q^{37} - 1746q^{38} - 645q^{39} - 618q^{41} - 963q^{42} + 82q^{43} - 603q^{44} + 303q^{45} + 266q^{46} - 201q^{47} + 1569q^{48} + 515q^{49} - 1845q^{50} + 417q^{51} - 564q^{53} - 684q^{54} + 3600q^{56} + 1170q^{57} - 538q^{58} + 747q^{59} - 516q^{60} - 1209q^{61} + 2904q^{62} + 1557q^{63} - 1144q^{64} - 831q^{65} + 1029q^{66} + 295q^{67} + 7008q^{68} + 1005q^{69} - 390q^{70} - 1119q^{72} - 6q^{73} - 1788q^{75} + 144q^{76} - 1203q^{77} - 5985q^{78} - 551q^{79} + 4239q^{80} + 3741q^{81} + 18q^{82} - 1830q^{83} - 7725q^{84} - 237q^{85} - 2130q^{87} + 1246q^{88} - 4266q^{89} - 9993q^{90} - 1140q^{91} + 7896q^{92} - 1479q^{93} - 3q^{94} - 1053q^{95} + 5034q^{96} + 792q^{97} - 5667q^{98} + 4335q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.725355 0.418784i 0.256452 0.148062i −0.366263 0.930511i \(-0.619363\pi\)
0.622715 + 0.782449i \(0.286030\pi\)
\(3\) 0.141982 5.19421i 0.0273245 0.999627i
\(4\) −3.64924 + 6.32067i −0.456155 + 0.790084i
\(5\) −21.9169 −1.96030 −0.980152 0.198249i \(-0.936475\pi\)
−0.980152 + 0.198249i \(0.936475\pi\)
\(6\) −2.07226 3.82711i −0.141000 0.260402i
\(7\) 2.19637 18.3896i 0.118593 0.992943i
\(8\) 12.8135i 0.566282i
\(9\) −26.9597 1.47497i −0.998507 0.0546286i
\(10\) −15.8975 + 9.17842i −0.502723 + 0.290247i
\(11\) 15.4606i 0.423777i 0.977294 + 0.211889i \(0.0679614\pi\)
−0.977294 + 0.211889i \(0.932039\pi\)
\(12\) 32.3128 + 19.8524i 0.777325 + 0.477573i
\(13\) 33.3594 19.2600i 0.711709 0.410906i −0.0999842 0.994989i \(-0.531879\pi\)
0.811694 + 0.584083i \(0.198546\pi\)
\(14\) −6.10810 14.2588i −0.116604 0.272201i
\(15\) −3.11180 + 113.841i −0.0535643 + 1.95957i
\(16\) −23.8278 41.2710i −0.372310 0.644860i
\(17\) −34.8682 60.3936i −0.497458 0.861623i 0.502537 0.864555i \(-0.332400\pi\)
−0.999996 + 0.00293248i \(0.999067\pi\)
\(18\) −20.1730 + 10.2204i −0.264157 + 0.133832i
\(19\) −55.4679 32.0244i −0.669748 0.386679i 0.126233 0.992001i \(-0.459711\pi\)
−0.795981 + 0.605322i \(0.793045\pi\)
\(20\) 79.9799 138.529i 0.894202 1.54880i
\(21\) −95.2074 14.0194i −0.989332 0.145680i
\(22\) 6.47465 + 11.2144i 0.0627455 + 0.108678i
\(23\) 69.8230i 0.633005i 0.948592 + 0.316502i \(0.102509\pi\)
−0.948592 + 0.316502i \(0.897491\pi\)
\(24\) 66.5561 + 1.81929i 0.566071 + 0.0154734i
\(25\) 355.349 2.84279
\(26\) 16.1316 27.9407i 0.121679 0.210755i
\(27\) −11.4891 + 139.825i −0.0818919 + 0.996641i
\(28\) 108.219 + 80.9905i 0.730411 + 0.546634i
\(29\) −168.609 97.3466i −1.07965 0.623338i −0.148851 0.988860i \(-0.547557\pi\)
−0.930803 + 0.365521i \(0.880891\pi\)
\(30\) 45.4175 + 83.8781i 0.276402 + 0.510466i
\(31\) 68.0764 + 39.3039i 0.394415 + 0.227716i 0.684071 0.729415i \(-0.260208\pi\)
−0.289656 + 0.957131i \(0.593541\pi\)
\(32\) −123.342 71.2115i −0.681374 0.393391i
\(33\) 80.3057 + 2.19513i 0.423619 + 0.0115795i
\(34\) −50.5837 29.2045i −0.255148 0.147310i
\(35\) −48.1376 + 403.041i −0.232478 + 1.94647i
\(36\) 107.705 165.021i 0.498635 0.763985i
\(37\) 3.34533 5.79428i 0.0148640 0.0257453i −0.858498 0.512817i \(-0.828602\pi\)
0.873362 + 0.487072i \(0.161935\pi\)
\(38\) −53.6452 −0.229010
\(39\) −95.3043 176.010i −0.391305 0.722672i
\(40\) 280.832i 1.11009i
\(41\) 9.21172 + 15.9552i 0.0350885 + 0.0607751i 0.883036 0.469305i \(-0.155495\pi\)
−0.847948 + 0.530080i \(0.822162\pi\)
\(42\) −74.9303 + 29.7023i −0.275285 + 0.109123i
\(43\) −12.2255 + 21.1752i −0.0433574 + 0.0750973i −0.886890 0.461981i \(-0.847139\pi\)
0.843532 + 0.537078i \(0.180472\pi\)
\(44\) −97.7214 56.4195i −0.334819 0.193308i
\(45\) 590.872 + 32.3267i 1.95738 + 0.107089i
\(46\) 29.2407 + 50.6465i 0.0937242 + 0.162335i
\(47\) −138.270 239.491i −0.429124 0.743264i 0.567672 0.823255i \(-0.307844\pi\)
−0.996796 + 0.0799909i \(0.974511\pi\)
\(48\) −217.754 + 117.907i −0.654792 + 0.354550i
\(49\) −333.352 80.7806i −0.971871 0.235512i
\(50\) 257.754 148.814i 0.729038 0.420910i
\(51\) −318.648 + 172.538i −0.874894 + 0.473729i
\(52\) 281.138i 0.749747i
\(53\) −95.3706 + 55.0622i −0.247173 + 0.142705i −0.618469 0.785809i \(-0.712247\pi\)
0.371296 + 0.928514i \(0.378913\pi\)
\(54\) 50.2227 + 106.234i 0.126564 + 0.267715i
\(55\) 338.848i 0.830732i
\(56\) 235.635 + 28.1432i 0.562286 + 0.0671571i
\(57\) −174.217 + 283.565i −0.404835 + 0.658932i
\(58\) −163.069 −0.369172
\(59\) 176.782 306.196i 0.390086 0.675649i −0.602374 0.798214i \(-0.705779\pi\)
0.992461 + 0.122565i \(0.0391119\pi\)
\(60\) −708.194 435.101i −1.52379 0.936189i
\(61\) −460.697 + 265.983i −0.966986 + 0.558290i −0.898316 0.439350i \(-0.855209\pi\)
−0.0686701 + 0.997639i \(0.521876\pi\)
\(62\) 65.8393 0.134865
\(63\) −86.3376 + 492.537i −0.172659 + 0.984982i
\(64\) 261.957 0.511634
\(65\) −731.132 + 422.120i −1.39517 + 0.805500i
\(66\) 59.1694 32.0385i 0.110352 0.0597525i
\(67\) −262.021 + 453.834i −0.477776 + 0.827532i −0.999675 0.0254747i \(-0.991890\pi\)
0.521899 + 0.853007i \(0.325224\pi\)
\(68\) 508.970 0.907672
\(69\) 362.676 + 9.91363i 0.632768 + 0.0172965i
\(70\) 133.870 + 312.507i 0.228580 + 0.533596i
\(71\) 43.3150i 0.0724020i 0.999345 + 0.0362010i \(0.0115256\pi\)
−0.999345 + 0.0362010i \(0.988474\pi\)
\(72\) 18.8996 345.448i 0.0309352 0.565437i
\(73\) 54.9811 31.7433i 0.0881513 0.0508942i −0.455276 0.890350i \(-0.650460\pi\)
0.543428 + 0.839456i \(0.317126\pi\)
\(74\) 5.60388i 0.00880322i
\(75\) 50.4532 1845.76i 0.0776778 2.84173i
\(76\) 404.831 233.729i 0.611018 0.352771i
\(77\) 284.314 + 33.9572i 0.420787 + 0.0502570i
\(78\) −142.840 87.7579i −0.207351 0.127393i
\(79\) −606.173 1049.92i −0.863289 1.49526i −0.868736 0.495275i \(-0.835067\pi\)
0.00544698 0.999985i \(-0.498266\pi\)
\(80\) 522.231 + 904.531i 0.729840 + 1.26412i
\(81\) 724.649 + 79.5295i 0.994031 + 0.109094i
\(82\) 13.3635 + 7.71543i 0.0179970 + 0.0103906i
\(83\) 111.327 192.824i 0.147226 0.255003i −0.782975 0.622053i \(-0.786299\pi\)
0.930201 + 0.367050i \(0.119632\pi\)
\(84\) 436.047 550.615i 0.566388 0.715202i
\(85\) 764.202 + 1323.64i 0.975169 + 1.68904i
\(86\) 20.4793i 0.0256784i
\(87\) −529.578 + 861.971i −0.652607 + 1.06222i
\(88\) −198.105 −0.239978
\(89\) −35.2649 + 61.0806i −0.0420008 + 0.0727475i −0.886262 0.463185i \(-0.846707\pi\)
0.844261 + 0.535933i \(0.180040\pi\)
\(90\) 442.129 223.999i 0.517828 0.262351i
\(91\) −280.914 655.766i −0.323602 0.755417i
\(92\) −441.328 254.801i −0.500127 0.288748i
\(93\) 213.818 348.023i 0.238408 0.388046i
\(94\) −200.590 115.811i −0.220099 0.127074i
\(95\) 1215.68 + 701.874i 1.31291 + 0.758008i
\(96\) −387.400 + 630.553i −0.411863 + 0.670370i
\(97\) 483.359 + 279.067i 0.505955 + 0.292114i 0.731170 0.682196i \(-0.238975\pi\)
−0.225214 + 0.974309i \(0.572308\pi\)
\(98\) −275.628 + 81.0077i −0.284108 + 0.0835002i
\(99\) 22.8040 416.813i 0.0231503 0.423144i
\(100\) −1296.75 + 2246.04i −1.29675 + 2.24604i
\(101\) 734.157 0.723281 0.361641 0.932318i \(-0.382217\pi\)
0.361641 + 0.932318i \(0.382217\pi\)
\(102\) −158.876 + 258.596i −0.154227 + 0.251027i
\(103\) 748.708i 0.716237i −0.933676 0.358119i \(-0.883418\pi\)
0.933676 0.358119i \(-0.116582\pi\)
\(104\) 246.789 + 427.451i 0.232689 + 0.403029i
\(105\) 2086.65 + 307.261i 1.93939 + 0.285578i
\(106\) −46.1183 + 79.8793i −0.0422586 + 0.0731940i
\(107\) 682.104 + 393.813i 0.616276 + 0.355807i 0.775418 0.631449i \(-0.217539\pi\)
−0.159142 + 0.987256i \(0.550873\pi\)
\(108\) −841.860 582.874i −0.750075 0.519324i
\(109\) −798.482 1383.01i −0.701658 1.21531i −0.967884 0.251396i \(-0.919110\pi\)
0.266227 0.963910i \(-0.414223\pi\)
\(110\) −141.904 245.785i −0.123000 0.213042i
\(111\) −29.6218 18.1990i −0.0253295 0.0155620i
\(112\) −811.291 + 347.537i −0.684462 + 0.293207i
\(113\) 1648.59 951.814i 1.37245 0.792382i 0.381210 0.924489i \(-0.375508\pi\)
0.991235 + 0.132107i \(0.0421743\pi\)
\(114\) −7.61666 + 278.644i −0.00625759 + 0.228925i
\(115\) 1530.30i 1.24088i
\(116\) 1230.59 710.482i 0.984979 0.568678i
\(117\) −927.766 + 470.040i −0.733094 + 0.371412i
\(118\) 296.134i 0.231028i
\(119\) −1187.19 + 508.565i −0.914537 + 0.391765i
\(120\) −1458.70 39.8731i −1.10967 0.0303325i
\(121\) 1091.97 0.820413
\(122\) −222.779 + 385.864i −0.165323 + 0.286349i
\(123\) 84.1824 45.5823i 0.0617111 0.0334147i
\(124\) −496.854 + 286.859i −0.359829 + 0.207747i
\(125\) −5048.52 −3.61243
\(126\) 143.641 + 393.421i 0.101560 + 0.278164i
\(127\) 141.535 0.0988916 0.0494458 0.998777i \(-0.484254\pi\)
0.0494458 + 0.998777i \(0.484254\pi\)
\(128\) 1176.75 679.395i 0.812583 0.469145i
\(129\) 108.253 + 66.5083i 0.0738845 + 0.0453933i
\(130\) −353.554 + 612.373i −0.238528 + 0.413143i
\(131\) −1136.92 −0.758270 −0.379135 0.925341i \(-0.623778\pi\)
−0.379135 + 0.925341i \(0.623778\pi\)
\(132\) −306.929 + 499.575i −0.202385 + 0.329412i
\(133\) −710.743 + 949.693i −0.463378 + 0.619164i
\(134\) 438.921i 0.282963i
\(135\) 251.805 3064.52i 0.160533 1.95372i
\(136\) 773.853 446.785i 0.487922 0.281702i
\(137\) 872.712i 0.544240i −0.962263 0.272120i \(-0.912275\pi\)
0.962263 0.272120i \(-0.0877247\pi\)
\(138\) 267.220 144.692i 0.164835 0.0892535i
\(139\) 920.123 531.233i 0.561466 0.324163i −0.192268 0.981343i \(-0.561584\pi\)
0.753734 + 0.657180i \(0.228251\pi\)
\(140\) −2371.83 1775.06i −1.43183 1.07157i
\(141\) −1263.60 + 684.202i −0.754712 + 0.408654i
\(142\) 18.1396 + 31.4187i 0.0107200 + 0.0185676i
\(143\) 297.772 + 515.756i 0.174132 + 0.301606i
\(144\) 581.517 + 1147.80i 0.336526 + 0.664236i
\(145\) 3695.39 + 2133.53i 2.11645 + 1.22193i
\(146\) 26.5872 46.0504i 0.0150710 0.0261038i
\(147\) −466.922 + 1720.03i −0.261980 + 0.965073i
\(148\) 24.4158 + 42.2895i 0.0135606 + 0.0234877i
\(149\) 2426.93i 1.33437i 0.744890 + 0.667187i \(0.232502\pi\)
−0.744890 + 0.667187i \(0.767498\pi\)
\(150\) −736.376 1359.96i −0.400832 0.740267i
\(151\) 667.648 0.359817 0.179909 0.983683i \(-0.442420\pi\)
0.179909 + 0.983683i \(0.442420\pi\)
\(152\) 410.345 710.738i 0.218970 0.379266i
\(153\) 850.958 + 1679.62i 0.449646 + 0.887512i
\(154\) 220.449 94.4349i 0.115353 0.0494142i
\(155\) −1492.02 861.418i −0.773174 0.446392i
\(156\) 1460.29 + 39.9166i 0.749467 + 0.0204864i
\(157\) −1937.34 1118.52i −0.984818 0.568585i −0.0810967 0.996706i \(-0.525842\pi\)
−0.903721 + 0.428121i \(0.859176\pi\)
\(158\) −879.381 507.711i −0.442784 0.255641i
\(159\) 272.464 + 503.193i 0.135898 + 0.250980i
\(160\) 2703.27 + 1560.73i 1.33570 + 0.771167i
\(161\) 1284.01 + 153.357i 0.628538 + 0.0750699i
\(162\) 558.933 245.784i 0.271074 0.119201i
\(163\) −405.745 + 702.771i −0.194972 + 0.337701i −0.946891 0.321554i \(-0.895795\pi\)
0.751919 + 0.659255i \(0.229128\pi\)
\(164\) −134.463 −0.0640232
\(165\) −1760.05 48.1104i −0.830422 0.0226993i
\(166\) 186.488i 0.0871944i
\(167\) −927.945 1607.25i −0.429979 0.744746i 0.566892 0.823792i \(-0.308146\pi\)
−0.996871 + 0.0790465i \(0.974812\pi\)
\(168\) 179.638 1219.94i 0.0824962 0.560241i
\(169\) −356.602 + 617.652i −0.162313 + 0.281134i
\(170\) 1108.64 + 640.071i 0.500167 + 0.288772i
\(171\) 1448.16 + 945.181i 0.647624 + 0.422689i
\(172\) −89.2275 154.547i −0.0395554 0.0685120i
\(173\) 290.151 + 502.557i 0.127513 + 0.220859i 0.922713 0.385489i \(-0.125967\pi\)
−0.795199 + 0.606348i \(0.792634\pi\)
\(174\) −23.1529 + 847.013i −0.0100874 + 0.369034i
\(175\) 780.478 6534.71i 0.337135 2.82273i
\(176\) 638.075 368.393i 0.273277 0.157776i
\(177\) −1565.35 961.718i −0.664738 0.408402i
\(178\) 59.0735i 0.0248750i
\(179\) −23.5912 + 13.6204i −0.00985077 + 0.00568735i −0.504917 0.863168i \(-0.668477\pi\)
0.495067 + 0.868855i \(0.335144\pi\)
\(180\) −2360.56 + 3616.74i −0.977476 + 1.49764i
\(181\) 2680.82i 1.10090i −0.834867 0.550452i \(-0.814455\pi\)
0.834867 0.550452i \(-0.185545\pi\)
\(182\) −478.387 358.021i −0.194837 0.145815i
\(183\) 1316.16 + 2430.72i 0.531659 + 0.981880i
\(184\) −894.678 −0.358459
\(185\) −73.3192 + 126.993i −0.0291380 + 0.0504685i
\(186\) 9.34801 341.983i 0.00368511 0.134814i
\(187\) 933.721 539.084i 0.365136 0.210811i
\(188\) 2018.33 0.782988
\(189\) 2546.08 + 518.387i 0.979896 + 0.199509i
\(190\) 1175.73 0.448930
\(191\) 3219.66 1858.87i 1.21972 0.704206i 0.254863 0.966977i \(-0.417970\pi\)
0.964858 + 0.262771i \(0.0846364\pi\)
\(192\) 37.1932 1360.66i 0.0139801 0.511443i
\(193\) −858.493 + 1486.95i −0.320185 + 0.554577i −0.980526 0.196389i \(-0.937078\pi\)
0.660341 + 0.750966i \(0.270412\pi\)
\(194\) 467.476 0.173004
\(195\) 2088.77 + 3857.59i 0.767077 + 1.41666i
\(196\) 1727.07 1812.22i 0.629398 0.660430i
\(197\) 2991.54i 1.08192i −0.841048 0.540961i \(-0.818061\pi\)
0.841048 0.540961i \(-0.181939\pi\)
\(198\) −158.014 311.887i −0.0567148 0.111944i
\(199\) −4369.83 + 2522.93i −1.55663 + 0.898721i −0.559054 + 0.829131i \(0.688836\pi\)
−0.997576 + 0.0695896i \(0.977831\pi\)
\(200\) 4553.26i 1.60982i
\(201\) 2320.11 + 1425.43i 0.814168 + 0.500209i
\(202\) 532.524 307.453i 0.185487 0.107091i
\(203\) −2160.49 + 2886.84i −0.746979 + 0.998111i
\(204\) 72.2647 2643.70i 0.0248017 0.907333i
\(205\) −201.892 349.687i −0.0687841 0.119138i
\(206\) −313.547 543.079i −0.106048 0.183680i
\(207\) 102.987 1882.41i 0.0345801 0.632059i
\(208\) −1589.76 917.850i −0.529953 0.305968i
\(209\) 495.117 857.567i 0.163866 0.283824i
\(210\) 1642.24 650.981i 0.539643 0.213914i
\(211\) 2012.27 + 3485.36i 0.656543 + 1.13717i 0.981505 + 0.191438i \(0.0613151\pi\)
−0.324962 + 0.945727i \(0.605352\pi\)
\(212\) 803.741i 0.260383i
\(213\) 224.987 + 6.14995i 0.0723749 + 0.00197835i
\(214\) 659.690 0.210726
\(215\) 267.944 464.093i 0.0849937 0.147213i
\(216\) −1791.65 147.216i −0.564380 0.0463739i
\(217\) 872.303 1165.57i 0.272884 0.364626i
\(218\) −1158.36 668.782i −0.359882 0.207778i
\(219\) −157.075 290.090i −0.0484665 0.0895091i
\(220\) 2141.75 + 1236.54i 0.656348 + 0.378943i
\(221\) −2326.36 1343.13i −0.708092 0.408817i
\(222\) −29.1078 0.795651i −0.00879993 0.000240543i
\(223\) −3886.54 2243.90i −1.16709 0.673822i −0.214101 0.976812i \(-0.568682\pi\)
−0.952994 + 0.302989i \(0.902015\pi\)
\(224\) −1580.45 + 2111.80i −0.471421 + 0.629912i
\(225\) −9580.09 524.129i −2.83854 0.155298i
\(226\) 797.208 1380.81i 0.234644 0.406415i
\(227\) −5451.53 −1.59397 −0.796984 0.604000i \(-0.793573\pi\)
−0.796984 + 0.604000i \(0.793573\pi\)
\(228\) −1156.56 2135.97i −0.335944 0.620429i
\(229\) 6015.51i 1.73588i 0.496670 + 0.867940i \(0.334556\pi\)
−0.496670 + 0.867940i \(0.665444\pi\)
\(230\) −640.865 1110.01i −0.183728 0.318226i
\(231\) 216.749 1471.96i 0.0617360 0.419256i
\(232\) 1247.35 2160.48i 0.352986 0.611389i
\(233\) 2153.30 + 1243.21i 0.605440 + 0.349551i 0.771179 0.636619i \(-0.219667\pi\)
−0.165739 + 0.986170i \(0.553001\pi\)
\(234\) −476.114 + 729.479i −0.133011 + 0.203793i
\(235\) 3030.45 + 5248.90i 0.841213 + 1.45702i
\(236\) 1290.24 + 2234.76i 0.355879 + 0.616401i
\(237\) −5539.59 + 2999.52i −1.51829 + 0.822110i
\(238\) −648.159 + 866.068i −0.176529 + 0.235877i
\(239\) 1860.18 1073.98i 0.503453 0.290669i −0.226685 0.973968i \(-0.572789\pi\)
0.730138 + 0.683299i \(0.239456\pi\)
\(240\) 4772.47 2584.15i 1.28359 0.695026i
\(241\) 3019.11i 0.806961i 0.914988 + 0.403481i \(0.132200\pi\)
−0.914988 + 0.403481i \(0.867800\pi\)
\(242\) 792.065 457.299i 0.210396 0.121472i
\(243\) 515.980 3752.69i 0.136215 0.990679i
\(244\) 3882.55i 1.01867i
\(245\) 7306.03 + 1770.46i 1.90516 + 0.461675i
\(246\) 41.9730 68.3175i 0.0108785 0.0177064i
\(247\) −2467.16 −0.635554
\(248\) −503.621 + 872.297i −0.128951 + 0.223350i
\(249\) −985.763 605.634i −0.250884 0.154139i
\(250\) −3661.97 + 2114.24i −0.926413 + 0.534865i
\(251\) −4007.26 −1.00771 −0.503856 0.863788i \(-0.668086\pi\)
−0.503856 + 0.863788i \(0.668086\pi\)
\(252\) −2798.10 2343.10i −0.699459 0.585719i
\(253\) −1079.51 −0.268253
\(254\) 102.663 59.2727i 0.0253609 0.0146421i
\(255\) 6983.76 3781.50i 1.71506 0.928653i
\(256\) −478.787 + 829.284i −0.116891 + 0.202462i
\(257\) 2856.75 0.693383 0.346692 0.937979i \(-0.387305\pi\)
0.346692 + 0.937979i \(0.387305\pi\)
\(258\) 106.374 + 2.90770i 0.0256688 + 0.000701650i
\(259\) −99.2068 74.2456i −0.0238008 0.0178123i
\(260\) 6161.66i 1.46973i
\(261\) 4402.07 + 2873.13i 1.04399 + 0.681387i
\(262\) −824.672 + 476.124i −0.194460 + 0.112271i
\(263\) 2104.93i 0.493520i 0.969077 + 0.246760i \(0.0793659\pi\)
−0.969077 + 0.246760i \(0.920634\pi\)
\(264\) −28.1273 + 1029.00i −0.00655726 + 0.239888i
\(265\) 2090.22 1206.79i 0.484534 0.279746i
\(266\) −117.825 + 986.511i −0.0271590 + 0.227394i
\(267\) 312.259 + 191.846i 0.0715727 + 0.0439729i
\(268\) −1912.36 3312.30i −0.435880 0.754966i
\(269\) −1624.71 2814.07i −0.368253 0.637833i 0.621039 0.783779i \(-0.286711\pi\)
−0.989293 + 0.145946i \(0.953377\pi\)
\(270\) −1100.72 2328.32i −0.248103 0.524803i
\(271\) −5975.60 3450.02i −1.33945 0.773334i −0.352728 0.935726i \(-0.614746\pi\)
−0.986726 + 0.162392i \(0.948079\pi\)
\(272\) −1661.67 + 2878.10i −0.370417 + 0.641582i
\(273\) −3446.07 + 1366.02i −0.763978 + 0.302840i
\(274\) −365.478 633.026i −0.0805814 0.139571i
\(275\) 5493.91i 1.20471i
\(276\) −1386.15 + 2256.18i −0.302306 + 0.492050i
\(277\) −531.341 −0.115253 −0.0576267 0.998338i \(-0.518353\pi\)
−0.0576267 + 0.998338i \(0.518353\pi\)
\(278\) 444.944 770.665i 0.0959926 0.166264i
\(279\) −1777.34 1160.03i −0.381387 0.248922i
\(280\) −5164.37 616.811i −1.10225 0.131648i
\(281\) 4234.76 + 2444.94i 0.899020 + 0.519049i 0.876882 0.480705i \(-0.159619\pi\)
0.0221380 + 0.999755i \(0.492953\pi\)
\(282\) −630.026 + 1025.46i −0.133041 + 0.216544i
\(283\) −3948.09 2279.43i −0.829291 0.478792i 0.0243187 0.999704i \(-0.492258\pi\)
−0.853610 + 0.520913i \(0.825592\pi\)
\(284\) −273.780 158.067i −0.0572036 0.0330265i
\(285\) 3818.29 6214.86i 0.793600 1.29171i
\(286\) 431.980 + 249.404i 0.0893131 + 0.0515649i
\(287\) 313.641 134.356i 0.0645074 0.0276334i
\(288\) 3220.22 + 2101.76i 0.658866 + 0.430026i
\(289\) 24.9118 43.1484i 0.00507058 0.00878250i
\(290\) 3573.95 0.723689
\(291\) 1518.16 2471.05i 0.305829 0.497785i
\(292\) 463.356i 0.0928626i
\(293\) 2199.14 + 3809.02i 0.438482 + 0.759473i 0.997573 0.0696337i \(-0.0221830\pi\)
−0.559091 + 0.829106i \(0.688850\pi\)
\(294\) 381.637 + 1443.17i 0.0757059 + 0.286284i
\(295\) −3874.51 + 6710.85i −0.764687 + 1.32448i
\(296\) 74.2451 + 42.8654i 0.0145791 + 0.00841724i
\(297\) −2161.78 177.629i −0.422354 0.0347039i
\(298\) 1016.36 + 1760.38i 0.197571 + 0.342203i
\(299\) 1344.79 + 2329.25i 0.260105 + 0.450515i
\(300\) 11482.3 + 7054.51i 2.20977 + 1.35764i
\(301\) 362.550 + 271.330i 0.0694254 + 0.0519575i
\(302\) 484.282 279.600i 0.0922757 0.0532754i
\(303\) 104.237 3813.37i 0.0197633 0.723011i
\(304\) 3052.29i 0.575858i
\(305\) 10097.0 5829.52i 1.89559 1.09442i
\(306\) 1320.64 + 861.954i 0.246720 + 0.161028i
\(307\) 5046.53i 0.938179i 0.883151 + 0.469089i \(0.155418\pi\)
−0.883151 + 0.469089i \(0.844582\pi\)
\(308\) −1252.16 + 1673.14i −0.231651 + 0.309532i
\(309\) −3888.95 106.303i −0.715970 0.0195708i
\(310\) −1442.99 −0.264376
\(311\) 1016.19 1760.10i 0.185283 0.320920i −0.758389 0.651803i \(-0.774013\pi\)
0.943672 + 0.330883i \(0.107346\pi\)
\(312\) 2255.31 1221.18i 0.409236 0.221589i
\(313\) 7783.59 4493.86i 1.40561 0.811527i 0.410645 0.911795i \(-0.365304\pi\)
0.994960 + 0.100269i \(0.0319702\pi\)
\(314\) −1873.68 −0.336744
\(315\) 1892.25 10794.9i 0.338464 1.93086i
\(316\) 8848.29 1.57517
\(317\) −2476.58 + 1429.85i −0.438797 + 0.253339i −0.703087 0.711104i \(-0.748196\pi\)
0.264290 + 0.964443i \(0.414862\pi\)
\(318\) 408.362 + 250.890i 0.0720120 + 0.0442428i
\(319\) 1505.04 2606.80i 0.264157 0.457533i
\(320\) −5741.26 −1.00296
\(321\) 2142.39 3487.08i 0.372513 0.606323i
\(322\) 995.590 426.486i 0.172304 0.0738110i
\(323\) 4466.54i 0.769427i
\(324\) −3147.10 + 4290.04i −0.539626 + 0.735604i
\(325\) 11854.2 6844.03i 2.02324 1.16812i
\(326\) 679.678i 0.115472i
\(327\) −7297.02 + 3951.12i −1.23403 + 0.668188i
\(328\) −204.442 + 118.034i −0.0344158 + 0.0198700i
\(329\) −4707.83 + 2016.72i −0.788910 + 0.337949i
\(330\) −1296.81 + 702.182i −0.216324 + 0.117133i
\(331\) 2938.58 + 5089.76i 0.487972 + 0.845193i 0.999904 0.0138333i \(-0.00440343\pi\)
−0.511932 + 0.859026i \(0.671070\pi\)
\(332\) 812.519 + 1407.32i 0.134316 + 0.232641i
\(333\) −98.7355 + 151.278i −0.0162483 + 0.0248948i
\(334\) −1346.18 777.216i −0.220538 0.127328i
\(335\) 5742.68 9946.62i 0.936586 1.62221i
\(336\) 1689.99 + 4263.36i 0.274395 + 0.692218i
\(337\) 859.112 + 1488.03i 0.138869 + 0.240528i 0.927069 0.374891i \(-0.122320\pi\)
−0.788200 + 0.615419i \(0.788987\pi\)
\(338\) 597.356i 0.0961299i
\(339\) −4709.85 8698.27i −0.754584 1.39358i
\(340\) −11155.0 −1.77931
\(341\) −607.662 + 1052.50i −0.0965007 + 0.167144i
\(342\) 1446.26 + 79.1251i 0.228669 + 0.0125105i
\(343\) −2217.68 + 5952.77i −0.349107 + 0.937083i
\(344\) −271.328 156.651i −0.0425263 0.0245526i
\(345\) −7948.71 217.276i −1.24042 0.0339064i
\(346\) 420.925 + 243.021i 0.0654019 + 0.0377598i
\(347\) −5147.27 2971.78i −0.796311 0.459750i 0.0458688 0.998947i \(-0.485394\pi\)
−0.842179 + 0.539197i \(0.818728\pi\)
\(348\) −3515.67 6492.83i −0.541551 1.00015i
\(349\) 5172.94 + 2986.60i 0.793414 + 0.458078i 0.841163 0.540782i \(-0.181872\pi\)
−0.0477492 + 0.998859i \(0.515205\pi\)
\(350\) −2170.51 5066.83i −0.331481 0.773810i
\(351\) 2309.76 + 4885.75i 0.351242 + 0.742969i
\(352\) 1100.97 1906.94i 0.166710 0.288751i
\(353\) −463.073 −0.0698212 −0.0349106 0.999390i \(-0.511115\pi\)
−0.0349106 + 0.999390i \(0.511115\pi\)
\(354\) −1538.18 42.0458i −0.230942 0.00631273i
\(355\) 949.328i 0.141930i
\(356\) −257.380 445.796i −0.0383178 0.0663683i
\(357\) 2473.03 + 6238.75i 0.366630 + 0.924901i
\(358\) −11.4080 + 19.7592i −0.00168416 + 0.00291706i
\(359\) −6957.39 4016.85i −1.02283 0.590532i −0.107909 0.994161i \(-0.534416\pi\)
−0.914923 + 0.403628i \(0.867749\pi\)
\(360\) −414.219 + 7571.14i −0.0606424 + 1.10843i
\(361\) −1378.38 2387.42i −0.200959 0.348071i
\(362\) −1122.68 1944.54i −0.163003 0.282329i
\(363\) 155.040 5671.92i 0.0224174 0.820107i
\(364\) 5170.01 + 617.484i 0.744456 + 0.0889147i
\(365\) −1205.01 + 695.714i −0.172803 + 0.0997681i
\(366\) 1972.63 + 1211.95i 0.281724 + 0.173086i
\(367\) 7641.16i 1.08683i −0.839465 0.543413i \(-0.817132\pi\)
0.839465 0.543413i \(-0.182868\pi\)
\(368\) 2881.67 1663.73i 0.408199 0.235674i
\(369\) −224.812 443.733i −0.0317160 0.0626011i
\(370\) 122.819i 0.0172570i
\(371\) 803.101 + 1874.76i 0.112385 + 0.262352i
\(372\) 1419.46 + 2621.49i 0.197838 + 0.365371i
\(373\) −9981.85 −1.38563 −0.692816 0.721115i \(-0.743630\pi\)
−0.692816 + 0.721115i \(0.743630\pi\)
\(374\) 451.519 782.054i 0.0624265 0.108126i
\(375\) −716.800 + 26223.1i −0.0987077 + 3.61108i
\(376\) 3068.73 1771.73i 0.420897 0.243005i
\(377\) −7499.60 −1.02453
\(378\) 2063.91 690.244i 0.280836 0.0939215i
\(379\) 1375.75 0.186458 0.0932292 0.995645i \(-0.470281\pi\)
0.0932292 + 0.995645i \(0.470281\pi\)
\(380\) −8872.63 + 5122.62i −1.19778 + 0.691538i
\(381\) 20.0955 735.165i 0.00270216 0.0988547i
\(382\) 1556.93 2696.69i 0.208533 0.361190i
\(383\) 9171.81 1.22365 0.611825 0.790993i \(-0.290436\pi\)
0.611825 + 0.790993i \(0.290436\pi\)
\(384\) −3361.84 6208.73i −0.446767 0.825099i
\(385\) −6231.27 744.236i −0.824869 0.0985189i
\(386\) 1438.09i 0.189629i
\(387\) 360.828 552.844i 0.0473952 0.0726166i
\(388\) −3527.79 + 2036.77i −0.461588 + 0.266498i
\(389\) 12181.2i 1.58769i −0.608120 0.793845i \(-0.708076\pi\)
0.608120 0.793845i \(-0.291924\pi\)
\(390\) 3130.60 + 1923.38i 0.406471 + 0.249728i
\(391\) 4216.86 2434.61i 0.545411 0.314893i
\(392\) 1035.08 4271.41i 0.133366 0.550354i
\(393\) −161.423 + 5905.41i −0.0207193 + 0.757987i
\(394\) −1252.81 2169.93i −0.160192 0.277460i
\(395\) 13285.4 + 23011.0i 1.69231 + 2.93116i
\(396\) 2551.32 + 1665.19i 0.323759 + 0.211310i
\(397\) −7055.50 4073.50i −0.891953 0.514970i −0.0173725 0.999849i \(-0.505530\pi\)
−0.874581 + 0.484880i \(0.838863\pi\)
\(398\) −2113.12 + 3660.03i −0.266133 + 0.460957i
\(399\) 4831.99 + 3826.59i 0.606271 + 0.480123i
\(400\) −8467.19 14665.6i −1.05840 1.83320i
\(401\) 11486.4i 1.43043i −0.698903 0.715217i \(-0.746328\pi\)
0.698903 0.715217i \(-0.253672\pi\)
\(402\) 2279.85 + 62.3190i 0.282857 + 0.00773181i
\(403\) 3027.98 0.374279
\(404\) −2679.12 + 4640.37i −0.329928 + 0.571453i
\(405\) −15882.0 1743.04i −1.94860 0.213857i
\(406\) −358.159 + 2998.76i −0.0437812 + 0.366567i
\(407\) 89.5832 + 51.7209i 0.0109103 + 0.00629904i
\(408\) −2210.82 4082.99i −0.268264 0.495437i
\(409\) 5198.69 + 3001.46i 0.628505 + 0.362868i 0.780173 0.625564i \(-0.215131\pi\)
−0.151668 + 0.988432i \(0.548464\pi\)
\(410\) −292.886 169.098i −0.0352796 0.0203687i
\(411\) −4533.05 123.910i −0.544036 0.0148711i
\(412\) 4732.34 + 2732.22i 0.565887 + 0.326715i
\(413\) −5242.53 3923.47i −0.624619 0.467460i
\(414\) −713.619 1408.54i −0.0847161 0.167213i
\(415\) −2439.94 + 4226.10i −0.288607 + 0.499882i
\(416\) −5486.14 −0.646587
\(417\) −2628.70 4854.74i −0.308700 0.570114i
\(418\) 829.387i 0.0970494i
\(419\) −2054.99 3559.35i −0.239601 0.415001i 0.720999 0.692936i \(-0.243683\pi\)
−0.960600 + 0.277935i \(0.910350\pi\)
\(420\) −9556.78 + 12067.7i −1.11029 + 1.40201i
\(421\) 4576.65 7926.99i 0.529816 0.917668i −0.469579 0.882890i \(-0.655594\pi\)
0.999395 0.0347773i \(-0.0110722\pi\)
\(422\) 2919.22 + 1685.41i 0.336743 + 0.194419i
\(423\) 3374.48 + 6660.56i 0.387879 + 0.765597i
\(424\) −705.540 1222.03i −0.0808115 0.139970i
\(425\) −12390.4 21460.8i −1.41417 2.44941i
\(426\) 165.771 89.7600i 0.0188536 0.0102087i
\(427\) 3879.46 + 9056.21i 0.439672 + 1.02637i
\(428\) −4978.32 + 2874.24i −0.562234 + 0.324606i
\(429\) 2721.22 1473.46i 0.306252 0.165826i
\(430\) 448.843i 0.0503375i
\(431\) −4959.23 + 2863.21i −0.554241 + 0.319991i −0.750831 0.660495i \(-0.770347\pi\)
0.196590 + 0.980486i \(0.437013\pi\)
\(432\) 6044.48 2857.56i 0.673183 0.318251i
\(433\) 7458.28i 0.827764i 0.910331 + 0.413882i \(0.135827\pi\)
−0.910331 + 0.413882i \(0.864173\pi\)
\(434\) 144.608 1210.76i 0.0159940 0.133913i
\(435\) 11606.7 18891.7i 1.27931 2.08227i
\(436\) 11655.4 1.28026
\(437\) 2236.04 3872.94i 0.244770 0.423953i
\(438\) −235.420 144.638i −0.0256822 0.0157787i
\(439\) 12038.5 6950.44i 1.30881 0.755641i 0.326911 0.945055i \(-0.393992\pi\)
0.981897 + 0.189415i \(0.0606590\pi\)
\(440\) 4341.83 0.470429
\(441\) 8867.91 + 2669.50i 0.957554 + 0.288252i
\(442\) −2249.92 −0.242122
\(443\) 12562.8 7253.12i 1.34735 0.777892i 0.359476 0.933154i \(-0.382956\pi\)
0.987873 + 0.155262i \(0.0496223\pi\)
\(444\) 223.127 120.817i 0.0238494 0.0129138i
\(445\) 772.896 1338.69i 0.0823343 0.142607i
\(446\) −3758.83 −0.399071
\(447\) 12606.0 + 344.581i 1.33388 + 0.0364611i
\(448\) 575.354 4817.27i 0.0606762 0.508023i
\(449\) 2949.31i 0.309993i −0.987915 0.154996i \(-0.950463\pi\)
0.987915 0.154996i \(-0.0495366\pi\)
\(450\) −7168.46 + 3631.81i −0.750943 + 0.380455i
\(451\) −246.676 + 142.419i −0.0257551 + 0.0148697i
\(452\) 13893.6i 1.44580i
\(453\) 94.7941 3467.91i 0.00983183 0.359683i
\(454\) −3954.29 + 2283.01i −0.408776 + 0.236007i
\(455\) 6156.75 + 14372.3i 0.634358 + 1.48085i
\(456\) −3633.46 2232.33i −0.373142 0.229251i
\(457\) 7953.13 + 13775.2i 0.814074 + 1.41002i 0.909991 + 0.414628i \(0.136088\pi\)
−0.0959168 + 0.995389i \(0.530578\pi\)
\(458\) 2519.20 + 4363.38i 0.257018 + 0.445169i
\(459\) 8845.13 4181.58i 0.899467 0.425227i
\(460\) 9672.53 + 5584.44i 0.980400 + 0.566034i
\(461\) −1398.44 + 2422.16i −0.141283 + 0.244710i −0.927980 0.372629i \(-0.878456\pi\)
0.786697 + 0.617340i \(0.211790\pi\)
\(462\) −459.215 1158.47i −0.0462438 0.116660i
\(463\) 2736.29 + 4739.39i 0.274657 + 0.475719i 0.970048 0.242911i \(-0.0781024\pi\)
−0.695392 + 0.718631i \(0.744769\pi\)
\(464\) 9278.24i 0.928300i
\(465\) −4686.23 + 7627.56i −0.467352 + 0.760688i
\(466\) 2082.54 0.207021
\(467\) −5003.44 + 8666.21i −0.495785 + 0.858724i −0.999988 0.00486046i \(-0.998453\pi\)
0.504203 + 0.863585i \(0.331786\pi\)
\(468\) 414.671 7579.39i 0.0409576 0.748627i
\(469\) 7770.31 + 5815.24i 0.765032 + 0.572544i
\(470\) 4396.31 + 2538.21i 0.431461 + 0.249104i
\(471\) −6084.91 + 9904.14i −0.595282 + 0.968914i
\(472\) 3923.44 + 2265.20i 0.382608 + 0.220899i
\(473\) −327.381 189.014i −0.0318245 0.0183739i
\(474\) −2762.02 + 4495.61i −0.267645 + 0.435633i
\(475\) −19710.4 11379.8i −1.90395 1.09925i
\(476\) 1117.89 9359.74i 0.107644 0.901267i
\(477\) 2652.38 1343.79i 0.254599 0.128989i
\(478\) 899.528 1558.03i 0.0860742 0.149085i
\(479\) −11987.7 −1.14349 −0.571744 0.820432i \(-0.693733\pi\)
−0.571744 + 0.820432i \(0.693733\pi\)
\(480\) 8490.59 13819.7i 0.807376 1.31413i
\(481\) 257.725i 0.0244309i
\(482\) 1264.35 + 2189.92i 0.119481 + 0.206947i
\(483\) 978.878 6647.67i 0.0922163 0.626252i
\(484\) −3984.86 + 6901.98i −0.374235 + 0.648195i
\(485\) −10593.7 6116.28i −0.991826 0.572631i
\(486\) −1197.30 2938.11i −0.111750 0.274230i
\(487\) −4178.18 7236.82i −0.388771 0.673371i 0.603513 0.797353i \(-0.293767\pi\)
−0.992285 + 0.123982i \(0.960434\pi\)
\(488\) −3408.18 5903.14i −0.316150 0.547587i
\(489\) 3592.73 + 2207.31i 0.332248 + 0.204127i
\(490\) 6040.90 1775.44i 0.556939 0.163686i
\(491\) −5884.50 + 3397.42i −0.540863 + 0.312268i −0.745429 0.666585i \(-0.767755\pi\)
0.204565 + 0.978853i \(0.434422\pi\)
\(492\) −19.0914 + 698.430i −0.00174940 + 0.0639993i
\(493\) 13577.2i 1.24034i
\(494\) −1789.57 + 1033.21i −0.162989 + 0.0941017i
\(495\) −499.791 + 9135.23i −0.0453817 + 0.829491i
\(496\) 3746.11i 0.339123i
\(497\) 796.543 + 95.1358i 0.0718910 + 0.00858636i
\(498\) −968.658 26.4780i −0.0871618 0.00238254i
\(499\) −10956.2 −0.982901 −0.491451 0.870905i \(-0.663533\pi\)
−0.491451 + 0.870905i \(0.663533\pi\)
\(500\) 18423.3 31910.0i 1.64783 2.85412i
\(501\) −8480.14 + 4591.74i −0.756217 + 0.409469i
\(502\) −2906.68 + 1678.17i −0.258429 + 0.149204i
\(503\) 20300.4 1.79950 0.899752 0.436402i \(-0.143747\pi\)
0.899752 + 0.436402i \(0.143747\pi\)
\(504\) −6311.13 1106.29i −0.557778 0.0977737i
\(505\) −16090.4 −1.41785
\(506\) −783.025 + 452.080i −0.0687939 + 0.0397182i
\(507\) 3157.59 + 1939.96i 0.276594 + 0.169934i
\(508\) −516.497 + 894.599i −0.0451099 + 0.0781327i
\(509\) 22338.8 1.94528 0.972641 0.232313i \(-0.0746293\pi\)
0.972641 + 0.232313i \(0.0746293\pi\)
\(510\) 3482.07 5667.61i 0.302331 0.492090i
\(511\) −462.987 1080.80i −0.0400809 0.0935650i
\(512\) 11672.3i 1.00752i
\(513\) 5115.08 7387.86i 0.440227 0.635832i
\(514\) 2072.16 1196.36i 0.177819 0.102664i
\(515\) 16409.3i 1.40404i
\(516\) −815.417 + 441.524i −0.0695673 + 0.0376686i
\(517\) 3702.68 2137.74i 0.314978 0.181853i
\(518\) −103.053 12.3082i −0.00874109 0.00104400i
\(519\) 2651.58 1435.75i 0.224261 0.121431i
\(520\) −5408.83 9368.37i −0.456140 0.790058i
\(521\) −8830.18 15294.3i −0.742528 1.28610i −0.951341 0.308141i \(-0.900293\pi\)
0.208812 0.977956i \(-0.433040\pi\)
\(522\) 4396.28 + 240.522i 0.368621 + 0.0201673i
\(523\) −2859.14 1650.72i −0.239046 0.138014i 0.375692 0.926745i \(-0.377405\pi\)
−0.614738 + 0.788731i \(0.710738\pi\)
\(524\) 4148.90 7186.11i 0.345889 0.599097i
\(525\) −33831.8 4981.78i −2.81246 0.414138i
\(526\) 881.511 + 1526.82i 0.0730717 + 0.126564i
\(527\) 5481.83i 0.453116i
\(528\) −1822.92 3366.60i −0.150250 0.277486i
\(529\) 7291.74 0.599305
\(530\) 1010.77 1750.70i 0.0828396 0.143482i
\(531\) −5217.62 + 7994.19i −0.426413 + 0.653330i
\(532\) −3409.02 7958.03i −0.277819 0.648542i
\(533\) 614.594 + 354.836i 0.0499456 + 0.0288361i
\(534\) 306.840 + 8.38738i 0.0248657 + 0.000679696i
\(535\) −14949.6 8631.14i −1.20809 0.697489i
\(536\) −5815.21 3357.41i −0.468617 0.270556i
\(537\) 67.3976 + 124.472i 0.00541606 + 0.0100025i
\(538\) −2356.98 1360.80i −0.188878 0.109049i
\(539\) 1248.92 5153.82i 0.0998046 0.411857i
\(540\) 18450.9 + 12774.8i 1.47037 + 1.01803i
\(541\) 6388.13 11064.6i 0.507666 0.879303i −0.492295 0.870429i \(-0.663842\pi\)
0.999961 0.00887458i \(-0.00282490\pi\)
\(542\) −5779.24 −0.458007
\(543\) −13924.7 380.629i −1.10049 0.0300817i
\(544\) 9932.07i 0.782783i
\(545\) 17500.2 + 30311.3i 1.37546 + 2.38237i
\(546\) −1927.56 + 2434.01i −0.151084 + 0.190780i
\(547\) −2018.12 + 3495.49i −0.157749 + 0.273229i −0.934057 0.357125i \(-0.883757\pi\)
0.776308 + 0.630354i \(0.217090\pi\)
\(548\) 5516.13 + 3184.74i 0.429995 + 0.248258i
\(549\) 12812.6 6491.31i 0.996041 0.504631i
\(550\) 2300.76 + 3985.03i 0.178372 + 0.308950i
\(551\) 6234.93 + 10799.2i 0.482064 + 0.834959i
\(552\) −127.028 + 4647.15i −0.00979472 + 0.358326i
\(553\) −20639.0 + 8841.24i −1.58709 + 0.679869i
\(554\) −385.411 + 222.517i −0.0295569 + 0.0170647i
\(555\) 649.216 + 398.866i 0.0496535 + 0.0305062i
\(556\) 7754.39i 0.591474i
\(557\) −16380.5 + 9457.30i −1.24608 + 0.719423i −0.970325 0.241806i \(-0.922260\pi\)
−0.275752 + 0.961229i \(0.588927\pi\)
\(558\) −1775.01 97.1111i −0.134663 0.00736746i
\(559\) 941.854i 0.0712633i
\(560\) 17780.9 7616.92i 1.34175 0.574774i
\(561\) −2667.55 4926.49i −0.200756 0.370760i
\(562\) 4095.60 0.307407
\(563\) −4725.13 + 8184.17i −0.353713 + 0.612650i −0.986897 0.161352i \(-0.948415\pi\)
0.633183 + 0.774002i \(0.281748\pi\)
\(564\) 286.567 10483.6i 0.0213947 0.782695i
\(565\) −36131.9 + 20860.8i −2.69041 + 1.55331i
\(566\) −3818.35 −0.283564
\(567\) 3054.11 13151.3i 0.226209 0.974079i
\(568\) −555.017 −0.0410000
\(569\) 877.171 506.435i 0.0646273 0.0373126i −0.467338 0.884079i \(-0.654787\pi\)
0.531965 + 0.846766i \(0.321454\pi\)
\(570\) 166.933 6107.01i 0.0122668 0.448762i
\(571\) 4817.96 8344.96i 0.353109 0.611603i −0.633683 0.773593i \(-0.718458\pi\)
0.986793 + 0.161989i \(0.0517910\pi\)
\(572\) −4346.57 −0.317726
\(573\) −9198.25 16987.5i −0.670615 1.23851i
\(574\) 171.235 228.803i 0.0124516 0.0166377i
\(575\) 24811.5i 1.79950i
\(576\) −7062.27 386.378i −0.510870 0.0279498i
\(577\) 6716.95 3878.03i 0.484628 0.279800i −0.237715 0.971335i \(-0.576399\pi\)
0.722343 + 0.691535i \(0.243065\pi\)
\(578\) 41.7305i 0.00300305i
\(579\) 7601.66 + 4670.32i 0.545621 + 0.335219i
\(580\) −26970.7 + 15571.5i −1.93086 + 1.11478i
\(581\) −3301.44 2470.77i −0.235743 0.176428i
\(582\) 66.3732 2428.17i 0.00472725 0.172940i
\(583\) −851.296 1474.49i −0.0604752 0.104746i
\(584\) 406.744 + 704.501i 0.0288205 + 0.0499186i
\(585\) 20333.7 10301.8i 1.43709 0.728081i
\(586\) 3190.31 + 1841.93i 0.224899 + 0.129845i
\(587\) 4195.04 7266.02i 0.294970 0.510904i −0.680008 0.733205i \(-0.738024\pi\)
0.974978 + 0.222301i \(0.0713568\pi\)
\(588\) −9167.84 9228.07i −0.642985 0.647209i
\(589\) −2517.37 4360.21i −0.176106 0.305024i
\(590\) 6490.33i 0.452886i
\(591\) −15538.7 424.746i −1.08152 0.0295629i
\(592\) −318.848 −0.0221361
\(593\) −3762.06 + 6516.09i −0.260522 + 0.451237i −0.966381 0.257115i \(-0.917228\pi\)
0.705859 + 0.708353i \(0.250561\pi\)
\(594\) −1642.44 + 776.474i −0.113452 + 0.0536348i
\(595\) 26019.6 11146.1i 1.79277 0.767979i
\(596\) −15339.8 8856.45i −1.05427 0.608682i
\(597\) 12484.2 + 23056.1i 0.855851 + 1.58061i
\(598\) 1950.91 + 1126.36i 0.133409 + 0.0770236i
\(599\) −2801.79 1617.62i −0.191116 0.110341i 0.401389 0.915908i \(-0.368528\pi\)
−0.592505 + 0.805567i \(0.701861\pi\)
\(600\) 23650.6 + 646.482i 1.60922 + 0.0439876i
\(601\) 4501.29 + 2598.82i 0.305510 + 0.176386i 0.644916 0.764254i \(-0.276893\pi\)
−0.339405 + 0.940640i \(0.610226\pi\)
\(602\) 376.606 + 44.9803i 0.0254972 + 0.00304528i
\(603\) 7733.40 11848.8i 0.522269 0.800196i
\(604\) −2436.41 + 4219.98i −0.164133 + 0.284286i
\(605\) −23932.5 −1.60826
\(606\) −1521.37 2809.70i −0.101982 0.188344i
\(607\) 12070.8i 0.807149i −0.914947 0.403575i \(-0.867768\pi\)
0.914947 0.403575i \(-0.132232\pi\)
\(608\) 4561.01 + 7899.90i 0.304232 + 0.526946i
\(609\) 14688.1 + 11631.9i 0.977327 + 0.773973i
\(610\) 4882.62 8456.94i 0.324084 0.561330i
\(611\) −9225.23 5326.19i −0.610823 0.352659i
\(612\) −13721.7 750.717i −0.906317 0.0495848i
\(613\) 2363.66 + 4093.98i 0.155738 + 0.269746i 0.933327 0.359026i \(-0.116891\pi\)
−0.777590 + 0.628772i \(0.783558\pi\)
\(614\) 2113.41 + 3660.53i 0.138909 + 0.240597i
\(615\) −1845.01 + 999.020i −0.120973 + 0.0655030i
\(616\) −435.111 + 3643.06i −0.0284596 + 0.238284i
\(617\) 21673.5 12513.2i 1.41417 0.816473i 0.418394 0.908266i \(-0.362593\pi\)
0.995778 + 0.0917932i \(0.0292599\pi\)
\(618\) −2865.39 + 1551.52i −0.186509 + 0.100989i
\(619\) 10903.0i 0.707961i −0.935253 0.353980i \(-0.884828\pi\)
0.935253 0.353980i \(-0.115172\pi\)
\(620\) 10889.5 6287.04i 0.705374 0.407248i
\(621\) −9763.00 802.204i −0.630879 0.0518379i
\(622\) 1702.26i 0.109734i
\(623\) 1045.79 + 782.662i 0.0672532 + 0.0503318i
\(624\) −4993.23 + 8127.25i −0.320335 + 0.521395i
\(625\) 66229.1 4.23866
\(626\) 3763.91 6519.28i 0.240313 0.416235i
\(627\) −4384.09 2693.50i −0.279240 0.171560i
\(628\) 14139.6 8163.52i 0.898459 0.518726i
\(629\) −466.583 −0.0295769
\(630\) −3148.16 8622.55i −0.199089 0.545287i
\(631\) −18322.8 −1.15598 −0.577988 0.816046i \(-0.696162\pi\)
−0.577988 + 0.816046i \(0.696162\pi\)
\(632\) 13453.2 7767.21i 0.846740 0.488865i
\(633\) 18389.4 9957.31i 1.15468 0.625225i
\(634\) −1197.60 + 2074.30i −0.0750201 + 0.129939i
\(635\) −3102.01 −0.193858
\(636\) −4174.80 114.117i −0.260286 0.00711483i
\(637\) −12676.2 + 3725.58i −0.788463 + 0.231731i
\(638\) 2521.14i 0.156447i
\(639\) 63.8883 1167.76i 0.00395522 0.0722939i
\(640\) −25790.6 + 14890.2i −1.59291 + 0.919667i
\(641\) 15760.0i 0.971111i 0.874206 + 0.485555i \(0.161383\pi\)
−0.874206 + 0.485555i \(0.838617\pi\)
\(642\) 93.6642 3426.57i 0.00575799 0.210648i
\(643\) −22823.4 + 13177.1i −1.39979 + 0.808170i −0.994370 0.105961i \(-0.966208\pi\)
−0.405421 + 0.914130i \(0.632875\pi\)
\(644\) −5655.00 + 7556.20i −0.346022 + 0.462354i
\(645\) −2372.56 1457.65i −0.144836 0.0889845i
\(646\) 1870.51 + 3239.82i 0.113923 + 0.197321i
\(647\) 1173.51 + 2032.57i 0.0713065 + 0.123507i 0.899474 0.436974i \(-0.143950\pi\)
−0.828168 + 0.560480i \(0.810616\pi\)
\(648\) −1019.05 + 9285.30i −0.0617780 + 0.562903i
\(649\) 4733.97 + 2733.16i 0.286325 + 0.165310i
\(650\) 5732.34 9928.70i 0.345909 0.599132i
\(651\) −5930.36 4696.41i −0.357034 0.282745i
\(652\) −2961.32 5129.16i −0.177875 0.308088i
\(653\) 16913.9i 1.01362i −0.862058 0.506809i \(-0.830825\pi\)
0.862058 0.506809i \(-0.169175\pi\)
\(654\) −3638.26 + 5921.84i −0.217534 + 0.354071i
\(655\) 24917.8 1.48644
\(656\) 438.990 760.354i 0.0261276 0.0452543i
\(657\) −1529.09 + 774.695i −0.0908000 + 0.0460026i
\(658\) −2570.28 + 3434.40i −0.152280 + 0.203476i
\(659\) −12126.6 7001.31i −0.716822 0.413858i 0.0967597 0.995308i \(-0.469152\pi\)
−0.813582 + 0.581450i \(0.802486\pi\)
\(660\) 6726.93 10949.1i 0.396735 0.645748i
\(661\) 2921.69 + 1686.84i 0.171922 + 0.0992593i 0.583492 0.812119i \(-0.301686\pi\)
−0.411570 + 0.911378i \(0.635019\pi\)
\(662\) 4263.02 + 2461.26i 0.250282 + 0.144501i
\(663\) −7306.79 + 11892.9i −0.428012 + 0.696656i
\(664\) 2470.75 + 1426.49i 0.144403 + 0.0833714i
\(665\) 15577.2 20814.3i 0.908361 1.21375i
\(666\) −8.26557 + 151.079i −0.000480907 + 0.00879007i
\(667\) 6797.04 11772.8i 0.394576 0.683426i
\(668\) 13545.2 0.784549
\(669\) −12207.1 + 19868.9i −0.705461 + 1.14825i
\(670\) 9619.77i 0.554693i
\(671\) −4112.26 7122.65i −0.236590 0.409787i
\(672\) 10744.7 + 8509.04i 0.616795 + 0.488457i
\(673\) 10197.9 17663.3i 0.584102 1.01169i −0.410884 0.911687i \(-0.634780\pi\)
0.994987 0.100007i \(-0.0318866\pi\)
\(674\) 1246.32 + 719.564i 0.0712263 + 0.0411225i
\(675\) −4082.64 + 49686.6i −0.232801 + 2.83324i
\(676\) −2602.65 4507.92i −0.148080 0.256482i
\(677\) 2168.44 + 3755.85i 0.123102 + 0.213219i 0.920989 0.389588i \(-0.127382\pi\)
−0.797888 + 0.602806i \(0.794049\pi\)
\(678\) −7059.01 4336.92i −0.399852 0.245661i
\(679\) 6193.56 8275.83i 0.350055 0.467742i
\(680\) −16960.4 + 9792.11i −0.956475 + 0.552221i
\(681\) −774.021 + 28316.4i −0.0435544 + 1.59337i
\(682\) 1017.92i 0.0571525i
\(683\) 25968.2 14992.7i 1.45483 0.839944i 0.456076 0.889941i \(-0.349255\pi\)
0.998749 + 0.0499974i \(0.0159213\pi\)
\(684\) −11258.9 + 5704.16i −0.629377 + 0.318865i
\(685\) 19127.1i 1.06687i
\(686\) 884.315 + 5246.60i 0.0492177 + 0.292006i
\(687\) 31245.9 + 854.096i 1.73523 + 0.0474320i
\(688\) 1165.23 0.0645696
\(689\) −2121.00 + 3673.68i −0.117277 + 0.203129i
\(690\) −5856.63 + 3171.19i −0.323127 + 0.174964i
\(691\) −1394.23 + 804.961i −0.0767570 + 0.0443157i −0.537887 0.843017i \(-0.680777\pi\)
0.461130 + 0.887332i \(0.347444\pi\)
\(692\) −4235.33 −0.232663
\(693\) −7614.92 1334.83i −0.417413 0.0731689i
\(694\) −4978.13 −0.272287
\(695\) −20166.2 + 11643.0i −1.10064 + 0.635457i
\(696\) −11044.9 6785.76i −0.601515 0.369560i
\(697\) 642.393 1112.66i 0.0349101 0.0604661i
\(698\) 5002.96 0.271296
\(699\) 6763.23 11008.2i 0.365964 0.595663i
\(700\) 38455.6 + 28779.9i 2.07641 + 1.55397i
\(701\) 9944.60i 0.535809i −0.963445 0.267905i \(-0.913669\pi\)
0.963445 0.267905i \(-0.0863312\pi\)
\(702\) 3721.47 + 2576.61i 0.200082 + 0.138530i
\(703\) −371.117 + 214.264i −0.0199103 + 0.0114952i
\(704\) 4050.01i 0.216819i
\(705\) 27694.2 14995.6i 1.47946 0.801086i
\(706\) −335.892 + 193.927i −0.0179058 + 0.0103379i
\(707\) 1612.48 13500.8i 0.0857760 0.718177i
\(708\) 11791.0 6384.49i 0.625895 0.338904i
\(709\) −9535.18 16515.4i −0.505079 0.874823i −0.999983 0.00587486i \(-0.998130\pi\)
0.494904 0.868948i \(-0.335203\pi\)
\(710\) −397.563 688.599i −0.0210145 0.0363981i
\(711\) 14793.6 + 29199.7i 0.780316 + 1.54019i
\(712\) −782.657 451.867i −0.0411957 0.0237843i
\(713\) −2744.32 + 4753.30i −0.144145 + 0.249667i
\(714\) 4406.51 + 3489.64i 0.230966 + 0.182908i
\(715\) −6526.22 11303.8i −0.341352 0.591240i
\(716\) 198.816i 0.0103772i
\(717\) −5314.35 9814.67i −0.276804 0.511207i
\(718\) −6728.76 −0.349743
\(719\) −15050.6 + 26068.3i −0.780655 + 1.35213i 0.150906 + 0.988548i \(0.451781\pi\)
−0.931561 + 0.363586i \(0.881552\pi\)
\(720\) −12745.0 25156.1i −0.659693 1.30210i
\(721\) −13768.4 1644.44i −0.711183 0.0849406i
\(722\) −1999.62 1154.48i −0.103072 0.0595089i
\(723\) 15681.9 + 428.659i 0.806660 + 0.0220498i
\(724\) 16944.6 + 9782.95i 0.869807 + 0.502183i
\(725\) −59915.1 34592.0i −3.06923 1.77202i
\(726\) −2262.85 4179.08i −0.115678 0.213637i
\(727\) 11506.5 + 6643.29i 0.587005 + 0.338908i 0.763912 0.645320i \(-0.223276\pi\)
−0.176907 + 0.984228i \(0.556609\pi\)
\(728\) 8402.67 3599.50i 0.427780 0.183250i
\(729\) −19419.0 3212.93i −0.986587 0.163234i
\(730\) −582.708 + 1009.28i −0.0295438 + 0.0511714i
\(731\) 1705.13 0.0862741
\(732\) −20166.8 551.253i −1.01829 0.0278345i
\(733\) 7447.71i 0.375290i 0.982237 + 0.187645i \(0.0600855\pi\)
−0.982237 + 0.187645i \(0.939915\pi\)
\(734\) −3199.99 5542.55i −0.160918 0.278718i
\(735\) 10233.5 37697.7i 0.513560 1.89184i
\(736\) 4972.20 8612.10i 0.249019 0.431313i
\(737\) −7016.55 4051.01i −0.350689 0.202471i
\(738\) −348.896 227.716i −0.0174025 0.0113582i
\(739\) −9760.23 16905.2i −0.485840 0.841500i 0.514028 0.857774i \(-0.328153\pi\)
−0.999868 + 0.0162741i \(0.994820\pi\)
\(740\) −535.119 926.852i −0.0265829 0.0460429i
\(741\) −350.293 + 12815.0i −0.0173662 + 0.635317i
\(742\) 1367.65 + 1023.54i 0.0676659 + 0.0506406i
\(743\) −30522.1 + 17621.9i −1.50706 + 0.870103i −0.507097 + 0.861889i \(0.669281\pi\)
−0.999966 + 0.00821382i \(0.997385\pi\)
\(744\) 4459.39 + 2739.76i 0.219744 + 0.135006i
\(745\) 53190.7i 2.61578i
\(746\) −7240.38 + 4180.24i −0.355347 + 0.205160i
\(747\) −3285.75 + 5034.28i −0.160936 + 0.246579i
\(748\) 7868.99i 0.384651i
\(749\) 8740.20 11678.6i 0.426382 0.569730i
\(750\) 10461.9 + 19321.2i 0.509351 + 0.940682i
\(751\) −19406.0 −0.942922 −0.471461 0.881887i \(-0.656273\pi\)
−0.471461 + 0.881887i \(0.656273\pi\)
\(752\) −6589.37 + 11413.1i −0.319534 + 0.553449i
\(753\) −568.959 + 20814.5i −0.0275352 + 1.00734i
\(754\) −5439.87 + 3140.71i −0.262743 + 0.151695i
\(755\) −14632.7 −0.705351
\(756\) −12567.8 + 14201.2i −0.604613 + 0.683193i
\(757\) 25155.3 1.20777 0.603886 0.797071i \(-0.293618\pi\)
0.603886 + 0.797071i \(0.293618\pi\)
\(758\) 997.909 576.143i 0.0478175 0.0276075i
\(759\) −153.271 + 5607.19i −0.00732987 + 0.268153i
\(760\) −8993.47 + 15577.1i −0.429247 + 0.743477i
\(761\) −25985.8 −1.23782 −0.618912 0.785461i \(-0.712426\pi\)
−0.618912 + 0.785461i \(0.712426\pi\)
\(762\) −293.299 541.671i −0.0139437 0.0257515i
\(763\) −27186.7 + 11646.1i −1.28994 + 0.552579i
\(764\) 27133.9i 1.28491i
\(765\) −18650.3 36812.0i −0.881443 1.73979i
\(766\) 6652.82 3841.00i 0.313807 0.181176i
\(767\) 13619.3i 0.641154i
\(768\) 4239.50 + 2604.67i 0.199192 + 0.122380i
\(769\) 21774.7 12571.6i 1.02109 0.589525i 0.106668 0.994295i \(-0.465982\pi\)
0.914419 + 0.404770i \(0.132648\pi\)
\(770\) −4831.55 + 2069.72i −0.226126 + 0.0968668i
\(771\) 405.608 14838.6i 0.0189463 0.693124i
\(772\) −6265.70 10852.5i −0.292108 0.505946i
\(773\) 12751.7 + 22086.6i