Properties

Label 63.4.s.a.47.12
Level $63$
Weight $4$
Character 63.47
Analytic conductor $3.717$
Analytic rank $0$
Dimension $44$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.12
Character \(\chi\) \(=\) 63.47
Dual form 63.4.s.a.59.12

$q$-expansion

\(f(q)\) \(=\) \(q+(0.647627 - 0.373907i) q^{2} +(4.16400 - 3.10824i) q^{3} +(-3.72039 + 6.44390i) q^{4} +8.70220 q^{5} +(1.53452 - 3.56993i) q^{6} +(18.2993 + 2.85258i) q^{7} +11.5468i q^{8} +(7.67775 - 25.8854i) q^{9} +O(q^{10})\) \(q+(0.647627 - 0.373907i) q^{2} +(4.16400 - 3.10824i) q^{3} +(-3.72039 + 6.44390i) q^{4} +8.70220 q^{5} +(1.53452 - 3.56993i) q^{6} +(18.2993 + 2.85258i) q^{7} +11.5468i q^{8} +(7.67775 - 25.8854i) q^{9} +(5.63577 - 3.25382i) q^{10} -41.5070i q^{11} +(4.53747 + 38.3962i) q^{12} +(-33.0053 + 19.0556i) q^{13} +(12.9177 - 4.99482i) q^{14} +(36.2359 - 27.0485i) q^{15} +(-25.4456 - 44.0731i) q^{16} +(39.9685 + 69.2274i) q^{17} +(-4.70642 - 19.6348i) q^{18} +(-49.4113 - 28.5276i) q^{19} +(-32.3755 + 56.0761i) q^{20} +(85.0645 - 45.0003i) q^{21} +(-15.5198 - 26.8811i) q^{22} +177.014i q^{23} +(35.8903 + 48.0810i) q^{24} -49.2718 q^{25} +(-14.2501 + 24.6818i) q^{26} +(-48.4877 - 131.651i) q^{27} +(-86.4620 + 107.306i) q^{28} +(-60.1430 - 34.7236i) q^{29} +(13.3537 - 31.0662i) q^{30} +(-225.864 - 130.403i) q^{31} +(-112.957 - 65.2160i) q^{32} +(-129.014 - 172.835i) q^{33} +(51.7693 + 29.8890i) q^{34} +(159.244 + 24.8237i) q^{35} +(138.238 + 145.778i) q^{36} +(-74.9359 + 129.793i) q^{37} -42.6668 q^{38} +(-78.2046 + 181.936i) q^{39} +100.483i q^{40} +(-54.7122 - 94.7643i) q^{41} +(38.2641 - 60.9496i) q^{42} +(124.193 - 215.108i) q^{43} +(267.467 + 154.422i) q^{44} +(66.8133 - 225.260i) q^{45} +(66.1867 + 114.639i) q^{46} +(147.528 + 255.526i) q^{47} +(-242.945 - 104.429i) q^{48} +(326.726 + 104.400i) q^{49} +(-31.9097 + 18.4231i) q^{50} +(381.604 + 164.031i) q^{51} -283.577i q^{52} +(263.613 - 152.197i) q^{53} +(-80.6271 - 67.1307i) q^{54} -361.202i q^{55} +(-32.9382 + 211.299i) q^{56} +(-294.419 + 34.7930i) q^{57} -51.9336 q^{58} +(360.346 - 624.138i) q^{59} +(39.4860 + 334.131i) q^{60} +(-561.494 + 324.179i) q^{61} -195.034 q^{62} +(214.337 - 451.782i) q^{63} +309.591 q^{64} +(-287.218 + 165.826i) q^{65} +(-148.177 - 63.6935i) q^{66} +(97.4263 - 168.747i) q^{67} -594.793 q^{68} +(550.200 + 737.084i) q^{69} +(112.412 - 43.4659i) q^{70} -98.7349i q^{71} +(298.894 + 88.6537i) q^{72} +(226.289 - 130.648i) q^{73} +112.076i q^{74} +(-205.168 + 153.148i) q^{75} +(367.658 - 212.268i) q^{76} +(118.402 - 759.548i) q^{77} +(17.3797 + 147.068i) q^{78} +(577.124 + 999.608i) q^{79} +(-221.433 - 383.533i) q^{80} +(-611.104 - 397.483i) q^{81} +(-70.8661 - 40.9146i) q^{82} +(-285.406 + 494.337i) q^{83} +(-26.4957 + 715.566i) q^{84} +(347.813 + 602.431i) q^{85} -185.746i q^{86} +(-358.365 + 42.3497i) q^{87} +479.275 q^{88} +(89.5115 - 155.038i) q^{89} +(-40.9561 - 170.866i) q^{90} +(-658.330 + 254.553i) q^{91} +(-1140.66 - 658.559i) q^{92} +(-1345.82 + 159.042i) q^{93} +(191.086 + 110.324i) q^{94} +(-429.987 - 248.253i) q^{95} +(-673.061 + 79.5390i) q^{96} +(-956.569 - 552.275i) q^{97} +(250.632 - 54.5529i) q^{98} +(-1074.42 - 318.681i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44q - 3q^{2} - 3q^{3} + 81q^{4} - 6q^{5} - 24q^{6} + 5q^{7} - 3q^{9} + O(q^{10}) \) \( 44q - 3q^{2} - 3q^{3} + 81q^{4} - 6q^{5} - 24q^{6} + 5q^{7} - 3q^{9} - 6q^{10} - 3q^{12} + 36q^{13} + 129q^{14} - 141q^{15} - 263q^{16} + 72q^{17} - 15q^{18} - 6q^{19} - 24q^{20} - 306q^{21} + 14q^{22} - 66q^{24} + 698q^{25} + 96q^{26} - 432q^{27} - 156q^{28} - 132q^{29} + 852q^{30} + 177q^{31} - 501q^{32} + 849q^{33} - 24q^{34} - 765q^{35} + 1122q^{36} + 82q^{37} - 1746q^{38} - 645q^{39} - 618q^{41} - 963q^{42} + 82q^{43} - 603q^{44} + 303q^{45} + 266q^{46} - 201q^{47} + 1569q^{48} + 515q^{49} - 1845q^{50} + 417q^{51} - 564q^{53} - 684q^{54} + 3600q^{56} + 1170q^{57} - 538q^{58} + 747q^{59} - 516q^{60} - 1209q^{61} + 2904q^{62} + 1557q^{63} - 1144q^{64} - 831q^{65} + 1029q^{66} + 295q^{67} + 7008q^{68} + 1005q^{69} - 390q^{70} - 1119q^{72} - 6q^{73} - 1788q^{75} + 144q^{76} - 1203q^{77} - 5985q^{78} - 551q^{79} + 4239q^{80} + 3741q^{81} + 18q^{82} - 1830q^{83} - 7725q^{84} - 237q^{85} - 2130q^{87} + 1246q^{88} - 4266q^{89} - 9993q^{90} - 1140q^{91} + 7896q^{92} - 1479q^{93} - 3q^{94} - 1053q^{95} + 5034q^{96} + 792q^{97} - 5667q^{98} + 4335q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.647627 0.373907i 0.228971 0.132196i −0.381126 0.924523i \(-0.624464\pi\)
0.610097 + 0.792327i \(0.291130\pi\)
\(3\) 4.16400 3.10824i 0.801362 0.598180i
\(4\) −3.72039 + 6.44390i −0.465048 + 0.805487i
\(5\) 8.70220 0.778348 0.389174 0.921164i \(-0.372760\pi\)
0.389174 + 0.921164i \(0.372760\pi\)
\(6\) 1.53452 3.56993i 0.104411 0.242903i
\(7\) 18.2993 + 2.85258i 0.988067 + 0.154025i
\(8\) 11.5468i 0.510303i
\(9\) 7.67775 25.8854i 0.284361 0.958717i
\(10\) 5.63577 3.25382i 0.178219 0.102895i
\(11\) 41.5070i 1.13771i −0.822437 0.568856i \(-0.807386\pi\)
0.822437 0.568856i \(-0.192614\pi\)
\(12\) 4.53747 + 38.3962i 0.109155 + 0.923669i
\(13\) −33.0053 + 19.0556i −0.704155 + 0.406544i −0.808893 0.587956i \(-0.799933\pi\)
0.104738 + 0.994500i \(0.466600\pi\)
\(14\) 12.9177 4.99482i 0.246600 0.0953516i
\(15\) 36.2359 27.0485i 0.623738 0.465592i
\(16\) −25.4456 44.0731i −0.397588 0.688643i
\(17\) 39.9685 + 69.2274i 0.570222 + 0.987654i 0.996543 + 0.0830818i \(0.0264763\pi\)
−0.426320 + 0.904572i \(0.640190\pi\)
\(18\) −4.70642 19.6348i −0.0616285 0.257110i
\(19\) −49.4113 28.5276i −0.596617 0.344457i 0.171092 0.985255i \(-0.445270\pi\)
−0.767710 + 0.640798i \(0.778604\pi\)
\(20\) −32.3755 + 56.0761i −0.361969 + 0.626949i
\(21\) 85.0645 45.0003i 0.883933 0.467613i
\(22\) −15.5198 26.8811i −0.150401 0.260503i
\(23\) 177.014i 1.60478i 0.596802 + 0.802389i \(0.296438\pi\)
−0.596802 + 0.802389i \(0.703562\pi\)
\(24\) 35.8903 + 48.0810i 0.305253 + 0.408937i
\(25\) −49.2718 −0.394174
\(26\) −14.2501 + 24.6818i −0.107487 + 0.186173i
\(27\) −48.4877 131.651i −0.345610 0.938378i
\(28\) −86.4620 + 107.306i −0.583564 + 0.724247i
\(29\) −60.1430 34.7236i −0.385113 0.222345i 0.294927 0.955520i \(-0.404705\pi\)
−0.680041 + 0.733174i \(0.738038\pi\)
\(30\) 13.3537 31.0662i 0.0812682 0.189063i
\(31\) −225.864 130.403i −1.30859 0.755517i −0.326732 0.945117i \(-0.605947\pi\)
−0.981861 + 0.189601i \(0.939281\pi\)
\(32\) −112.957 65.2160i −0.624007 0.360271i
\(33\) −129.014 172.835i −0.680557 0.911720i
\(34\) 51.7693 + 29.8890i 0.261128 + 0.150762i
\(35\) 159.244 + 24.8237i 0.769060 + 0.119885i
\(36\) 138.238 + 145.778i 0.639993 + 0.674899i
\(37\) −74.9359 + 129.793i −0.332957 + 0.576698i −0.983090 0.183122i \(-0.941380\pi\)
0.650134 + 0.759820i \(0.274713\pi\)
\(38\) −42.6668 −0.182144
\(39\) −78.2046 + 181.936i −0.321096 + 0.747000i
\(40\) 100.483i 0.397193i
\(41\) −54.7122 94.7643i −0.208405 0.360968i 0.742807 0.669505i \(-0.233494\pi\)
−0.951212 + 0.308537i \(0.900161\pi\)
\(42\) 38.2641 60.9496i 0.140578 0.223922i
\(43\) 124.193 215.108i 0.440446 0.762875i −0.557276 0.830327i \(-0.688154\pi\)
0.997723 + 0.0674517i \(0.0214869\pi\)
\(44\) 267.467 + 154.422i 0.916413 + 0.529092i
\(45\) 66.8133 225.260i 0.221332 0.746216i
\(46\) 66.1867 + 114.639i 0.212146 + 0.367447i
\(47\) 147.528 + 255.526i 0.457855 + 0.793029i 0.998847 0.0479988i \(-0.0152844\pi\)
−0.540992 + 0.841028i \(0.681951\pi\)
\(48\) −242.945 104.429i −0.730544 0.314023i
\(49\) 326.726 + 104.400i 0.952553 + 0.304373i
\(50\) −31.9097 + 18.4231i −0.0902543 + 0.0521084i
\(51\) 381.604 + 164.031i 1.04775 + 0.450372i
\(52\) 283.577i 0.756251i
\(53\) 263.613 152.197i 0.683208 0.394450i −0.117855 0.993031i \(-0.537602\pi\)
0.801062 + 0.598581i \(0.204268\pi\)
\(54\) −80.6271 67.1307i −0.203185 0.169173i
\(55\) 361.202i 0.885537i
\(56\) −32.9382 + 211.299i −0.0785992 + 0.504214i
\(57\) −294.419 + 34.7930i −0.684154 + 0.0808499i
\(58\) −51.9336 −0.117573
\(59\) 360.346 624.138i 0.795137 1.37722i −0.127615 0.991824i \(-0.540732\pi\)
0.922752 0.385394i \(-0.125935\pi\)
\(60\) 39.4860 + 334.131i 0.0849603 + 0.718936i
\(61\) −561.494 + 324.179i −1.17856 + 0.680440i −0.955680 0.294407i \(-0.904878\pi\)
−0.222876 + 0.974847i \(0.571544\pi\)
\(62\) −195.034 −0.399506
\(63\) 214.337 451.782i 0.428634 0.903478i
\(64\) 309.591 0.604671
\(65\) −287.218 + 165.826i −0.548078 + 0.316433i
\(66\) −148.177 63.6935i −0.276353 0.118790i
\(67\) 97.4263 168.747i 0.177649 0.307698i −0.763426 0.645896i \(-0.776484\pi\)
0.941075 + 0.338198i \(0.109817\pi\)
\(68\) −594.793 −1.06072
\(69\) 550.200 + 737.084i 0.959946 + 1.28601i
\(70\) 112.412 43.4659i 0.191940 0.0742168i
\(71\) 98.7349i 0.165038i −0.996590 0.0825188i \(-0.973704\pi\)
0.996590 0.0825188i \(-0.0262965\pi\)
\(72\) 298.894 + 88.6537i 0.489236 + 0.145110i
\(73\) 226.289 130.648i 0.362809 0.209468i −0.307503 0.951547i \(-0.599493\pi\)
0.670312 + 0.742079i \(0.266160\pi\)
\(74\) 112.076i 0.176062i
\(75\) −205.168 + 153.148i −0.315876 + 0.235787i
\(76\) 367.658 212.268i 0.554912 0.320379i
\(77\) 118.402 759.548i 0.175236 1.12414i
\(78\) 17.3797 + 147.068i 0.0252290 + 0.213489i
\(79\) 577.124 + 999.608i 0.821918 + 1.42360i 0.904252 + 0.426999i \(0.140429\pi\)
−0.0823344 + 0.996605i \(0.526238\pi\)
\(80\) −221.433 383.533i −0.309462 0.536004i
\(81\) −611.104 397.483i −0.838278 0.545244i
\(82\) −70.8661 40.9146i −0.0954372 0.0551007i
\(83\) −285.406 + 494.337i −0.377438 + 0.653741i −0.990689 0.136147i \(-0.956528\pi\)
0.613251 + 0.789888i \(0.289861\pi\)
\(84\) −26.4957 + 715.566i −0.0344157 + 0.929460i
\(85\) 347.813 + 602.431i 0.443831 + 0.768739i
\(86\) 185.746i 0.232901i
\(87\) −358.365 + 42.3497i −0.441617 + 0.0521881i
\(88\) 479.275 0.580578
\(89\) 89.5115 155.038i 0.106609 0.184652i −0.807785 0.589477i \(-0.799334\pi\)
0.914394 + 0.404824i \(0.132667\pi\)
\(90\) −40.9561 170.866i −0.0479684 0.200121i
\(91\) −658.330 + 254.553i −0.758370 + 0.293236i
\(92\) −1140.66 658.559i −1.29263 0.746299i
\(93\) −1345.82 + 159.042i −1.50059 + 0.177332i
\(94\) 191.086 + 110.324i 0.209671 + 0.121054i
\(95\) −429.987 248.253i −0.464376 0.268108i
\(96\) −673.061 + 79.5390i −0.715562 + 0.0845616i
\(97\) −956.569 552.275i −1.00129 0.578093i −0.0926581 0.995698i \(-0.529536\pi\)
−0.908629 + 0.417605i \(0.862870\pi\)
\(98\) 250.632 54.5529i 0.258344 0.0562314i
\(99\) −1074.42 318.681i −1.09075 0.323521i
\(100\) 183.310 317.502i 0.183310 0.317502i
\(101\) −0.750795 −0.000739672 −0.000369836 1.00000i \(-0.500118\pi\)
−0.000369836 1.00000i \(0.500118\pi\)
\(102\) 308.469 36.4534i 0.299441 0.0353865i
\(103\) 753.027i 0.720369i 0.932881 + 0.360184i \(0.117286\pi\)
−0.932881 + 0.360184i \(0.882714\pi\)
\(104\) −220.032 381.107i −0.207461 0.359332i
\(105\) 740.248 391.601i 0.688008 0.363965i
\(106\) 113.815 197.134i 0.104290 0.180635i
\(107\) 1089.54 + 629.045i 0.984388 + 0.568337i 0.903592 0.428394i \(-0.140920\pi\)
0.0807962 + 0.996731i \(0.474254\pi\)
\(108\) 1028.74 + 177.342i 0.916577 + 0.158007i
\(109\) −110.812 191.932i −0.0973748 0.168658i 0.813222 0.581953i \(-0.197711\pi\)
−0.910597 + 0.413295i \(0.864378\pi\)
\(110\) −135.056 233.924i −0.117065 0.202762i
\(111\) 91.3937 + 773.376i 0.0781505 + 0.661311i
\(112\) −339.914 879.091i −0.286776 0.741664i
\(113\) 1345.36 776.746i 1.12001 0.646638i 0.178607 0.983921i \(-0.442841\pi\)
0.941404 + 0.337282i \(0.109508\pi\)
\(114\) −177.664 + 132.618i −0.145963 + 0.108955i
\(115\) 1540.41i 1.24908i
\(116\) 447.511 258.370i 0.358192 0.206803i
\(117\) 239.855 + 1000.66i 0.189527 + 0.790691i
\(118\) 538.945i 0.420457i
\(119\) 533.917 + 1380.82i 0.411295 + 1.06370i
\(120\) 312.324 + 418.410i 0.237593 + 0.318296i
\(121\) −391.834 −0.294391
\(122\) −242.426 + 419.893i −0.179903 + 0.311601i
\(123\) −522.371 224.540i −0.382932 0.164602i
\(124\) 1680.60 970.297i 1.21712 0.702703i
\(125\) −1516.55 −1.08515
\(126\) −30.1141 372.728i −0.0212919 0.263534i
\(127\) 2425.06 1.69440 0.847202 0.531271i \(-0.178285\pi\)
0.847202 + 0.531271i \(0.178285\pi\)
\(128\) 1104.16 637.486i 0.762459 0.440206i
\(129\) −151.468 1281.73i −0.103380 0.874805i
\(130\) −124.007 + 214.786i −0.0836624 + 0.144908i
\(131\) −48.8347 −0.0325703 −0.0162851 0.999867i \(-0.505184\pi\)
−0.0162851 + 0.999867i \(0.505184\pi\)
\(132\) 1593.71 188.337i 1.05087 0.124187i
\(133\) −822.813 662.984i −0.536443 0.432241i
\(134\) 145.714i 0.0939384i
\(135\) −421.949 1145.65i −0.269005 0.730385i
\(136\) −799.358 + 461.510i −0.504003 + 0.290986i
\(137\) 1532.32i 0.955583i 0.878473 + 0.477792i \(0.158563\pi\)
−0.878473 + 0.477792i \(0.841437\pi\)
\(138\) 631.925 + 271.631i 0.389805 + 0.167557i
\(139\) 638.674 368.739i 0.389724 0.225007i −0.292317 0.956322i \(-0.594426\pi\)
0.682040 + 0.731314i \(0.261093\pi\)
\(140\) −752.409 + 933.797i −0.454216 + 0.563716i
\(141\) 1408.54 + 605.459i 0.841282 + 0.361623i
\(142\) −36.9177 63.9433i −0.0218174 0.0377888i
\(143\) 790.942 + 1369.95i 0.462531 + 0.801126i
\(144\) −1336.21 + 320.287i −0.773272 + 0.185351i
\(145\) −523.376 302.172i −0.299752 0.173062i
\(146\) 97.7003 169.222i 0.0553817 0.0959240i
\(147\) 1684.98 580.819i 0.945409 0.325885i
\(148\) −557.581 965.759i −0.309682 0.536385i
\(149\) 1475.76i 0.811400i −0.914006 0.405700i \(-0.867028\pi\)
0.914006 0.405700i \(-0.132972\pi\)
\(150\) −75.6087 + 175.897i −0.0411562 + 0.0957460i
\(151\) −1274.88 −0.687073 −0.343536 0.939139i \(-0.611625\pi\)
−0.343536 + 0.939139i \(0.611625\pi\)
\(152\) 329.404 570.544i 0.175778 0.304456i
\(153\) 2098.85 503.088i 1.10903 0.265832i
\(154\) −207.320 536.175i −0.108483 0.280560i
\(155\) −1965.51 1134.79i −1.01854 0.588055i
\(156\) −881.423 1180.81i −0.452374 0.606030i
\(157\) −1718.19 991.999i −0.873418 0.504268i −0.00493568 0.999988i \(-0.501571\pi\)
−0.868483 + 0.495719i \(0.834904\pi\)
\(158\) 747.522 + 431.582i 0.376390 + 0.217309i
\(159\) 624.619 1453.12i 0.311544 0.724778i
\(160\) −982.977 567.522i −0.485695 0.280416i
\(161\) −504.945 + 3239.22i −0.247175 + 1.58563i
\(162\) −544.389 28.9239i −0.264020 0.0140276i
\(163\) −1836.59 + 3181.06i −0.882532 + 1.52859i −0.0340145 + 0.999421i \(0.510829\pi\)
−0.848517 + 0.529168i \(0.822504\pi\)
\(164\) 814.202 0.387674
\(165\) −1122.70 1504.05i −0.529710 0.709635i
\(166\) 426.861i 0.199583i
\(167\) 2007.55 + 3477.17i 0.930231 + 1.61121i 0.782925 + 0.622116i \(0.213727\pi\)
0.147306 + 0.989091i \(0.452940\pi\)
\(168\) 519.611 + 982.226i 0.238624 + 0.451074i
\(169\) −372.268 + 644.787i −0.169444 + 0.293485i
\(170\) 450.507 + 260.100i 0.203249 + 0.117346i
\(171\) −1117.82 + 1060.00i −0.499892 + 0.474037i
\(172\) 924.089 + 1600.57i 0.409658 + 0.709548i
\(173\) −1046.75 1813.03i −0.460019 0.796776i 0.538943 0.842342i \(-0.318824\pi\)
−0.998961 + 0.0455667i \(0.985491\pi\)
\(174\) −216.252 + 161.422i −0.0942183 + 0.0703297i
\(175\) −901.637 140.552i −0.389471 0.0607125i
\(176\) −1829.35 + 1056.17i −0.783478 + 0.452341i
\(177\) −439.487 3718.95i −0.186632 1.57929i
\(178\) 133.876i 0.0563732i
\(179\) 3194.00 1844.06i 1.33369 0.770008i 0.347829 0.937558i \(-0.386919\pi\)
0.985863 + 0.167551i \(0.0535857\pi\)
\(180\) 1202.98 + 1268.59i 0.498137 + 0.525306i
\(181\) 1648.55i 0.676995i −0.940967 0.338497i \(-0.890081\pi\)
0.940967 0.338497i \(-0.109919\pi\)
\(182\) −331.172 + 411.010i −0.134880 + 0.167396i
\(183\) −1330.44 + 3095.13i −0.537424 + 1.25027i
\(184\) −2043.95 −0.818923
\(185\) −652.107 + 1129.48i −0.259156 + 0.448871i
\(186\) −812.122 + 606.212i −0.320149 + 0.238976i
\(187\) 2873.43 1658.97i 1.12367 0.648749i
\(188\) −2195.45 −0.851700
\(189\) −511.745 2547.43i −0.196952 0.980413i
\(190\) −371.295 −0.141771
\(191\) 3175.89 1833.60i 1.20314 0.694631i 0.241885 0.970305i \(-0.422234\pi\)
0.961251 + 0.275674i \(0.0889010\pi\)
\(192\) 1289.14 962.283i 0.484560 0.361702i
\(193\) 171.063 296.289i 0.0637998 0.110504i −0.832361 0.554234i \(-0.813011\pi\)
0.896161 + 0.443729i \(0.146345\pi\)
\(194\) −825.999 −0.305687
\(195\) −680.551 + 1583.24i −0.249925 + 0.581426i
\(196\) −1888.29 + 1716.98i −0.688152 + 0.625721i
\(197\) 468.339i 0.169380i −0.996407 0.0846898i \(-0.973010\pi\)
0.996407 0.0846898i \(-0.0269899\pi\)
\(198\) −814.983 + 195.349i −0.292517 + 0.0701155i
\(199\) −1359.11 + 784.682i −0.484144 + 0.279521i −0.722142 0.691745i \(-0.756842\pi\)
0.237998 + 0.971266i \(0.423509\pi\)
\(200\) 568.933i 0.201148i
\(201\) −118.823 1005.49i −0.0416973 0.352844i
\(202\) −0.486235 + 0.280728i −0.000169363 + 9.77818e-5i
\(203\) −1001.52 806.979i −0.346271 0.279009i
\(204\) −2476.72 + 1848.76i −0.850023 + 0.634504i
\(205\) −476.116 824.657i −0.162212 0.280959i
\(206\) 281.563 + 487.681i 0.0952300 + 0.164943i
\(207\) 4582.06 + 1359.07i 1.53853 + 0.456336i
\(208\) 1679.68 + 969.764i 0.559927 + 0.323274i
\(209\) −1184.10 + 2050.92i −0.391893 + 0.678779i
\(210\) 332.982 530.396i 0.109419 0.174289i
\(211\) 1244.68 + 2155.85i 0.406101 + 0.703387i 0.994449 0.105221i \(-0.0335549\pi\)
−0.588348 + 0.808608i \(0.700222\pi\)
\(212\) 2264.93i 0.733753i
\(213\) −306.891 411.132i −0.0987222 0.132255i
\(214\) 940.818 0.300528
\(215\) 1080.75 1871.91i 0.342821 0.593783i
\(216\) 1520.15 559.879i 0.478857 0.176366i
\(217\) −3761.16 3030.57i −1.17661 0.948057i
\(218\) −143.530 82.8668i −0.0445920 0.0257452i
\(219\) 536.181 1247.37i 0.165442 0.384885i
\(220\) 2327.55 + 1343.81i 0.713289 + 0.411817i
\(221\) −2638.34 1523.25i −0.803050 0.463641i
\(222\) 348.360 + 466.686i 0.105317 + 0.141090i
\(223\) 858.894 + 495.883i 0.257918 + 0.148909i 0.623385 0.781915i \(-0.285757\pi\)
−0.365466 + 0.930825i \(0.619090\pi\)
\(224\) −1881.00 1515.62i −0.561071 0.452084i
\(225\) −378.296 + 1275.42i −0.112088 + 0.377902i
\(226\) 580.862 1006.08i 0.170966 0.296122i
\(227\) 603.465 0.176447 0.0882233 0.996101i \(-0.471881\pi\)
0.0882233 + 0.996101i \(0.471881\pi\)
\(228\) 871.151 2026.65i 0.253041 0.588676i
\(229\) 1295.25i 0.373765i −0.982382 0.186883i \(-0.940162\pi\)
0.982382 0.186883i \(-0.0598384\pi\)
\(230\) 575.969 + 997.608i 0.165123 + 0.286002i
\(231\) −1867.83 3530.78i −0.532009 1.00566i
\(232\) 400.948 694.462i 0.113463 0.196524i
\(233\) −3699.70 2136.02i −1.04024 0.600581i −0.120336 0.992733i \(-0.538397\pi\)
−0.919900 + 0.392152i \(0.871731\pi\)
\(234\) 529.490 + 558.369i 0.147922 + 0.155990i
\(235\) 1283.82 + 2223.64i 0.356371 + 0.617253i
\(236\) 2681.26 + 4644.07i 0.739555 + 1.28095i
\(237\) 5510.16 + 2368.53i 1.51022 + 0.649166i
\(238\) 862.079 + 694.623i 0.234791 + 0.189184i
\(239\) 2074.66 1197.80i 0.561500 0.324182i −0.192247 0.981346i \(-0.561578\pi\)
0.753747 + 0.657164i \(0.228244\pi\)
\(240\) −2114.16 908.765i −0.568618 0.244419i
\(241\) 818.126i 0.218673i −0.994005 0.109336i \(-0.965127\pi\)
0.994005 0.109336i \(-0.0348726\pi\)
\(242\) −253.762 + 146.510i −0.0674068 + 0.0389174i
\(243\) −3780.11 + 244.339i −0.997917 + 0.0645036i
\(244\) 4824.28i 1.26575i
\(245\) 2843.23 + 908.509i 0.741418 + 0.236908i
\(246\) −422.258 + 49.9004i −0.109440 + 0.0129331i
\(247\) 2174.44 0.560148
\(248\) 1505.74 2608.02i 0.385542 0.667779i
\(249\) 348.087 + 2945.53i 0.0885910 + 0.749659i
\(250\) −982.156 + 567.048i −0.248468 + 0.143453i
\(251\) −7516.24 −1.89012 −0.945062 0.326891i \(-0.893999\pi\)
−0.945062 + 0.326891i \(0.893999\pi\)
\(252\) 2113.82 + 3061.97i 0.528405 + 0.765420i
\(253\) 7347.31 1.82578
\(254\) 1570.53 906.748i 0.387969 0.223994i
\(255\) 3320.79 + 1427.43i 0.815514 + 0.350546i
\(256\) −761.644 + 1319.21i −0.185948 + 0.322072i
\(257\) 5548.61 1.34674 0.673372 0.739304i \(-0.264845\pi\)
0.673372 + 0.739304i \(0.264845\pi\)
\(258\) −577.343 773.446i −0.139317 0.186638i
\(259\) −1741.52 + 2161.35i −0.417809 + 0.518532i
\(260\) 2467.74i 0.588626i
\(261\) −1360.60 + 1290.23i −0.322677 + 0.305988i
\(262\) −31.6267 + 18.2597i −0.00745764 + 0.00430567i
\(263\) 6373.65i 1.49436i −0.664623 0.747179i \(-0.731408\pi\)
0.664623 0.747179i \(-0.268592\pi\)
\(264\) 1995.70 1489.70i 0.465253 0.347290i
\(265\) 2294.01 1324.45i 0.531773 0.307019i
\(266\) −780.770 121.710i −0.179970 0.0280546i
\(267\) −109.170 923.802i −0.0250229 0.211745i
\(268\) 724.927 + 1255.61i 0.165231 + 0.286189i
\(269\) 2137.07 + 3701.52i 0.484385 + 0.838979i 0.999839 0.0179379i \(-0.00571013\pi\)
−0.515454 + 0.856917i \(0.672377\pi\)
\(270\) −701.633 584.184i −0.158148 0.131675i
\(271\) −1818.38 1049.84i −0.407597 0.235326i 0.282160 0.959367i \(-0.408949\pi\)
−0.689757 + 0.724041i \(0.742283\pi\)
\(272\) 2034.05 3523.07i 0.453427 0.785359i
\(273\) −1950.07 + 3106.20i −0.432321 + 0.688630i
\(274\) 572.946 + 992.371i 0.126325 + 0.218800i
\(275\) 2045.13i 0.448457i
\(276\) −6796.65 + 803.194i −1.48228 + 0.175169i
\(277\) 4410.66 0.956718 0.478359 0.878164i \(-0.341232\pi\)
0.478359 + 0.878164i \(0.341232\pi\)
\(278\) 275.748 477.610i 0.0594902 0.103040i
\(279\) −5109.65 + 4845.38i −1.09644 + 1.03973i
\(280\) −286.635 + 1838.76i −0.0611775 + 0.392454i
\(281\) −4392.19 2535.83i −0.932443 0.538346i −0.0448593 0.998993i \(-0.514284\pi\)
−0.887583 + 0.460647i \(0.847617\pi\)
\(282\) 1138.60 134.554i 0.240434 0.0284133i
\(283\) 478.561 + 276.297i 0.100521 + 0.0580360i 0.549418 0.835548i \(-0.314850\pi\)
−0.448897 + 0.893584i \(0.648183\pi\)
\(284\) 636.238 + 367.332i 0.132936 + 0.0767505i
\(285\) −2562.09 + 302.775i −0.532510 + 0.0629293i
\(286\) 1024.47 + 591.478i 0.211812 + 0.122290i
\(287\) −730.870 1890.19i −0.150320 0.388760i
\(288\) −2555.40 + 2423.23i −0.522841 + 0.495800i
\(289\) −738.458 + 1279.05i −0.150307 + 0.260339i
\(290\) −451.937 −0.0915125
\(291\) −5699.75 + 673.568i −1.14820 + 0.135688i
\(292\) 1944.24i 0.389651i
\(293\) 496.106 + 859.280i 0.0989174 + 0.171330i 0.911237 0.411883i \(-0.135129\pi\)
−0.812319 + 0.583213i \(0.801795\pi\)
\(294\) 874.068 1006.18i 0.173390 0.199598i
\(295\) 3135.80 5431.37i 0.618894 1.07196i
\(296\) −1498.70 865.273i −0.294291 0.169909i
\(297\) −5464.44 + 2012.58i −1.06761 + 0.393204i
\(298\) −551.796 955.739i −0.107264 0.185787i
\(299\) −3373.10 5842.38i −0.652413 1.13001i
\(300\) −223.569 1891.85i −0.0430259 0.364087i
\(301\) 2886.24 3582.05i 0.552692 0.685933i
\(302\) −825.644 + 476.686i −0.157319 + 0.0908284i
\(303\) −3.12631 + 2.33365i −0.000592745 + 0.000442457i
\(304\) 2903.62i 0.547808i
\(305\) −4886.23 + 2821.07i −0.917327 + 0.529619i
\(306\) 1171.16 1110.59i 0.218793 0.207477i
\(307\) 256.830i 0.0477462i −0.999715 0.0238731i \(-0.992400\pi\)
0.999715 0.0238731i \(-0.00759977\pi\)
\(308\) 4453.95 + 3588.78i 0.823985 + 0.663928i
\(309\) 2340.59 + 3135.60i 0.430910 + 0.577276i
\(310\) −1697.22 −0.310955
\(311\) −361.742 + 626.556i −0.0659566 + 0.114240i −0.897118 0.441791i \(-0.854343\pi\)
0.831161 + 0.556031i \(0.187677\pi\)
\(312\) −2100.78 903.016i −0.381197 0.163856i
\(313\) −5961.98 + 3442.15i −1.07665 + 0.621604i −0.929991 0.367584i \(-0.880185\pi\)
−0.146659 + 0.989187i \(0.546852\pi\)
\(314\) −1483.66 −0.266649
\(315\) 1865.20 3931.49i 0.333626 0.703221i
\(316\) −8588.50 −1.52893
\(317\) −318.148 + 183.683i −0.0563690 + 0.0325447i −0.527920 0.849294i \(-0.677028\pi\)
0.471551 + 0.881839i \(0.343694\pi\)
\(318\) −138.812 1174.63i −0.0244785 0.207138i
\(319\) −1441.27 + 2496.36i −0.252965 + 0.438148i
\(320\) 2694.12 0.470644
\(321\) 6492.05 767.198i 1.12882 0.133398i
\(322\) 884.152 + 2286.61i 0.153018 + 0.395738i
\(323\) 4560.82i 0.785669i
\(324\) 4834.88 2459.11i 0.829026 0.421657i
\(325\) 1626.23 938.904i 0.277560 0.160249i
\(326\) 2746.85i 0.466669i
\(327\) −1057.99 454.774i −0.178920 0.0769085i
\(328\) 1094.23 631.753i 0.184203 0.106350i
\(329\) 1970.75 + 5096.78i 0.330246 + 0.854087i
\(330\) −1289.47 554.273i −0.215099 0.0924599i
\(331\) −1912.88 3313.20i −0.317647 0.550182i 0.662349 0.749195i \(-0.269560\pi\)
−0.979997 + 0.199014i \(0.936226\pi\)
\(332\) −2123.64 3678.25i −0.351054 0.608043i
\(333\) 2784.40 + 2936.26i 0.458210 + 0.483202i
\(334\) 2600.28 + 1501.27i 0.425991 + 0.245946i
\(335\) 847.823 1468.47i 0.138273 0.239496i
\(336\) −4147.83 2604.00i −0.673460 0.422797i
\(337\) −477.374 826.836i −0.0771639 0.133652i 0.824861 0.565335i \(-0.191253\pi\)
−0.902025 + 0.431683i \(0.857920\pi\)
\(338\) 556.775i 0.0895993i
\(339\) 3187.78 7416.08i 0.510727 1.18816i
\(340\) −5176.00 −0.825612
\(341\) −5412.63 + 9374.95i −0.859561 + 1.48880i
\(342\) −327.585 + 1104.44i −0.0517946 + 0.174624i
\(343\) 5681.03 + 2842.45i 0.894305 + 0.447458i
\(344\) 2483.82 + 1434.03i 0.389298 + 0.224761i
\(345\) 4787.95 + 6414.25i 0.747172 + 1.00096i
\(346\) −1355.81 782.778i −0.210662 0.121625i
\(347\) −4912.79 2836.40i −0.760036 0.438807i 0.0692728 0.997598i \(-0.477932\pi\)
−0.829309 + 0.558791i \(0.811265\pi\)
\(348\) 1060.36 2466.82i 0.163337 0.379987i
\(349\) −163.883 94.6178i −0.0251360 0.0145123i 0.487379 0.873190i \(-0.337953\pi\)
−0.512515 + 0.858678i \(0.671286\pi\)
\(350\) −636.478 + 246.104i −0.0972033 + 0.0375852i
\(351\) 4109.04 + 3421.21i 0.624855 + 0.520258i
\(352\) −2706.92 + 4688.53i −0.409885 + 0.709941i
\(353\) −10440.7 −1.57422 −0.787110 0.616812i \(-0.788424\pi\)
−0.787110 + 0.616812i \(0.788424\pi\)
\(354\) −1675.17 2244.16i −0.251509 0.336938i
\(355\) 859.210i 0.128457i
\(356\) 666.035 + 1153.61i 0.0991566 + 0.171744i
\(357\) 6515.15 + 4090.21i 0.965878 + 0.606377i
\(358\) 1379.01 2388.52i 0.203584 0.352618i
\(359\) 9191.43 + 5306.67i 1.35127 + 0.780155i 0.988427 0.151697i \(-0.0484737\pi\)
0.362840 + 0.931851i \(0.381807\pi\)
\(360\) 2601.04 + 771.482i 0.380796 + 0.112946i
\(361\) −1801.85 3120.89i −0.262698 0.455007i
\(362\) −616.407 1067.65i −0.0894962 0.155012i
\(363\) −1631.60 + 1217.91i −0.235914 + 0.176099i
\(364\) 808.924 5189.25i 0.116481 0.747226i
\(365\) 1969.21 1136.92i 0.282392 0.163039i
\(366\) 295.668 + 2501.95i 0.0422263 + 0.357320i
\(367\) 882.734i 0.125554i −0.998028 0.0627770i \(-0.980004\pi\)
0.998028 0.0627770i \(-0.0199957\pi\)
\(368\) 7801.55 4504.22i 1.10512 0.638041i
\(369\) −2873.07 + 688.668i −0.405329 + 0.0971562i
\(370\) 975.311i 0.137038i
\(371\) 5258.07 2033.11i 0.735810 0.284512i
\(372\) 3982.12 9264.02i 0.555009 1.29118i
\(373\) 2616.16 0.363162 0.181581 0.983376i \(-0.441879\pi\)
0.181581 + 0.983376i \(0.441879\pi\)
\(374\) 1240.60 2148.79i 0.171524 0.297089i
\(375\) −6314.90 + 4713.79i −0.869600 + 0.649117i
\(376\) −2950.52 + 1703.48i −0.404685 + 0.233645i
\(377\) 2646.72 0.361573
\(378\) −1283.92 1458.44i −0.174703 0.198449i
\(379\) 636.672 0.0862892 0.0431446 0.999069i \(-0.486262\pi\)
0.0431446 + 0.999069i \(0.486262\pi\)
\(380\) 3199.43 1847.19i 0.431915 0.249366i
\(381\) 10097.9 7537.66i 1.35783 1.01356i
\(382\) 1371.19 2374.97i 0.183655 0.318100i
\(383\) −7569.77 −1.00991 −0.504957 0.863145i \(-0.668492\pi\)
−0.504957 + 0.863145i \(0.668492\pi\)
\(384\) 2616.26 6086.48i 0.347683 0.808852i
\(385\) 1030.36 6609.73i 0.136394 0.874970i
\(386\) 255.846i 0.0337364i
\(387\) −4614.63 4866.32i −0.606136 0.639196i
\(388\) 7117.61 4109.35i 0.931294 0.537683i
\(389\) 11135.5i 1.45139i 0.688015 + 0.725697i \(0.258482\pi\)
−0.688015 + 0.725697i \(0.741518\pi\)
\(390\) 151.242 + 1279.81i 0.0196370 + 0.166169i
\(391\) −12254.2 + 7074.96i −1.58496 + 0.915080i
\(392\) −1205.49 + 3772.65i −0.155323 + 0.486091i
\(393\) −203.348 + 151.790i −0.0261006 + 0.0194829i
\(394\) −175.115 303.309i −0.0223913 0.0387829i
\(395\) 5022.24 + 8698.78i 0.639738 + 1.10806i
\(396\) 6050.82 5737.87i 0.767841 0.728128i
\(397\) −777.013 448.609i −0.0982297 0.0567129i 0.450080 0.892988i \(-0.351395\pi\)
−0.548310 + 0.836275i \(0.684729\pi\)
\(398\) −586.797 + 1016.36i −0.0739032 + 0.128004i
\(399\) −5486.90 203.167i −0.688443 0.0254914i
\(400\) 1253.75 + 2171.56i 0.156719 + 0.271445i
\(401\) 4026.51i 0.501432i 0.968061 + 0.250716i \(0.0806660\pi\)
−0.968061 + 0.250716i \(0.919334\pi\)
\(402\) −452.912 606.751i −0.0561921 0.0752786i
\(403\) 9939.61 1.22860
\(404\) 2.79325 4.83804i 0.000343983 0.000595796i
\(405\) −5317.95 3458.97i −0.652472 0.424389i
\(406\) −950.347 148.145i −0.116170 0.0181091i
\(407\) 5387.32 + 3110.37i 0.656116 + 0.378809i
\(408\) −1894.04 + 4406.32i −0.229826 + 0.534670i
\(409\) −9468.68 5466.74i −1.14473 0.660912i −0.197135 0.980376i \(-0.563164\pi\)
−0.947598 + 0.319464i \(0.896497\pi\)
\(410\) −616.691 356.047i −0.0742834 0.0428875i
\(411\) 4762.81 + 6380.58i 0.571611 + 0.765768i
\(412\) −4852.43 2801.55i −0.580248 0.335006i
\(413\) 8374.47 10393.4i 0.997774 1.23831i
\(414\) 3475.63 833.099i 0.412604 0.0989000i
\(415\) −2483.66 + 4301.82i −0.293778 + 0.508838i
\(416\) 4970.92 0.585864
\(417\) 1513.31 3520.58i 0.177715 0.413437i
\(418\) 1770.97i 0.207227i
\(419\) −2433.63 4215.18i −0.283749 0.491467i 0.688556 0.725183i \(-0.258245\pi\)
−0.972305 + 0.233716i \(0.924912\pi\)
\(420\) −230.571 + 6226.99i −0.0267874 + 0.723443i
\(421\) −5868.66 + 10164.8i −0.679385 + 1.17673i 0.295781 + 0.955256i \(0.404420\pi\)
−0.975166 + 0.221474i \(0.928913\pi\)
\(422\) 1612.17 + 930.789i 0.185970 + 0.107370i
\(423\) 7747.08 1856.96i 0.890487 0.213447i
\(424\) 1757.39 + 3043.89i 0.201289 + 0.348643i
\(425\) −1969.32 3410.96i −0.224767 0.389308i
\(426\) −352.476 151.511i −0.0400881 0.0172318i
\(427\) −11199.7 + 4330.52i −1.26930 + 0.490793i
\(428\) −8107.00 + 4680.58i −0.915576 + 0.528608i
\(429\) 7551.61 + 3246.04i 0.849872 + 0.365315i
\(430\) 1616.40i 0.181278i
\(431\) 8093.99 4673.07i 0.904580 0.522260i 0.0258967 0.999665i \(-0.491756\pi\)
0.878683 + 0.477405i \(0.158423\pi\)
\(432\) −4568.47 + 5486.95i −0.508797 + 0.611090i
\(433\) 582.680i 0.0646693i −0.999477 0.0323346i \(-0.989706\pi\)
0.999477 0.0323346i \(-0.0102942\pi\)
\(434\) −3568.98 556.350i −0.394738 0.0615337i
\(435\) −3118.56 + 368.536i −0.343732 + 0.0406205i
\(436\) 1649.05 0.181136
\(437\) 5049.78 8746.47i 0.552777 0.957438i
\(438\) −119.158 1008.32i −0.0129990 0.109998i
\(439\) 5577.42 3220.13i 0.606369 0.350087i −0.165174 0.986264i \(-0.552819\pi\)
0.771543 + 0.636177i \(0.219485\pi\)
\(440\) 4170.75 0.451892
\(441\) 5210.95 7655.86i 0.562677 0.826677i
\(442\) −2278.21 −0.245166
\(443\) −10151.6 + 5861.05i −1.08876 + 0.628593i −0.933245 0.359241i \(-0.883036\pi\)
−0.155511 + 0.987834i \(0.549702\pi\)
\(444\) −5323.57 2288.32i −0.569022 0.244593i
\(445\) 778.946 1349.17i 0.0829789 0.143724i
\(446\) 741.657 0.0787409
\(447\) −4587.00 6145.04i −0.485364 0.650225i
\(448\) 5665.29 + 883.133i 0.597455 + 0.0931341i
\(449\) 10126.0i 1.06431i 0.846648 + 0.532153i \(0.178617\pi\)
−0.846648 + 0.532153i \(0.821383\pi\)
\(450\) 231.894 + 967.443i 0.0242924 + 0.101346i
\(451\) −3933.38 + 2270.94i −0.410678 + 0.237105i
\(452\) 11559.2i 1.20287i
\(453\) −5308.58 + 3962.61i −0.550594 + 0.410993i
\(454\) 390.820 225.640i 0.0404011 0.0233256i
\(455\) −5728.91 + 2215.17i −0.590276 + 0.228239i
\(456\) −401.749 3399.61i −0.0412579 0.349126i
\(457\) 3527.39 + 6109.61i 0.361059 + 0.625373i 0.988135 0.153585i \(-0.0490818\pi\)
−0.627076 + 0.778958i \(0.715748\pi\)
\(458\) −484.302 838.835i −0.0494104 0.0855812i
\(459\) 7175.87 8618.56i 0.729719 0.876427i
\(460\) −9926.22 5730.91i −1.00611 0.580880i
\(461\) 1300.85 2253.14i 0.131425 0.227634i −0.792801 0.609480i \(-0.791378\pi\)
0.924226 + 0.381846i \(0.124712\pi\)
\(462\) −2529.84 1588.23i −0.254759 0.159938i
\(463\) −4858.94 8415.93i −0.487719 0.844755i 0.512181 0.858878i \(-0.328838\pi\)
−0.999900 + 0.0141228i \(0.995504\pi\)
\(464\) 3534.26i 0.353607i
\(465\) −11711.6 + 1384.02i −1.16798 + 0.138026i
\(466\) −3194.70 −0.317578
\(467\) −4239.34 + 7342.76i −0.420072 + 0.727585i −0.995946 0.0899527i \(-0.971328\pi\)
0.575874 + 0.817538i \(0.304662\pi\)
\(468\) −7340.49 2177.23i −0.725031 0.215048i
\(469\) 2264.19 2810.03i 0.222923 0.276664i
\(470\) 1662.87 + 960.059i 0.163197 + 0.0942218i
\(471\) −10237.9 + 1209.87i −1.00157 + 0.118360i
\(472\) 7206.82 + 4160.86i 0.702799 + 0.405761i
\(473\) −8928.49 5154.87i −0.867933 0.501102i
\(474\) 4454.14 526.367i 0.431614 0.0510060i
\(475\) 2434.58 + 1405.61i 0.235171 + 0.135776i
\(476\) −10884.3 1696.69i −1.04807 0.163378i
\(477\) −1915.72 7992.24i −0.183888 0.767169i
\(478\) 895.736 1551.46i 0.0857113 0.148456i
\(479\) −19701.4 −1.87929 −0.939645 0.342150i \(-0.888845\pi\)
−0.939645 + 0.342150i \(0.888845\pi\)
\(480\) −5857.11 + 692.164i −0.556957 + 0.0658183i
\(481\) 5711.80i 0.541446i
\(482\) −305.903 529.840i −0.0289077 0.0500696i
\(483\) 7965.66 + 15057.6i 0.750414 + 1.41852i
\(484\) 1457.77 2524.94i 0.136906 0.237128i
\(485\) −8324.25 4806.01i −0.779350 0.449958i
\(486\) −2356.74 + 1571.65i −0.219967 + 0.146690i
\(487\) −7141.08 12368.7i −0.664463 1.15088i −0.979431 0.201781i \(-0.935327\pi\)
0.314968 0.949102i \(-0.398006\pi\)
\(488\) −3743.24 6483.48i −0.347230 0.601421i
\(489\) 2239.95 + 18954.5i 0.207145 + 1.75287i
\(490\) 2181.05 474.730i 0.201081 0.0437676i
\(491\) 9090.51 5248.41i 0.835537 0.482398i −0.0202074 0.999796i \(-0.506433\pi\)
0.855745 + 0.517398i \(0.173099\pi\)
\(492\) 3390.33 2530.73i 0.310667 0.231899i
\(493\) 5551.40i 0.507145i
\(494\) 1408.23 813.041i 0.128257 0.0740495i
\(495\) −9349.86 2773.22i −0.848979 0.251812i
\(496\) 13272.7i 1.20154i
\(497\) 281.649 1806.77i 0.0254199 0.163068i
\(498\) 1326.78 + 1777.45i 0.119387 + 0.159938i
\(499\) 16828.4 1.50970 0.754850 0.655897i \(-0.227710\pi\)
0.754850 + 0.655897i \(0.227710\pi\)
\(500\) 5642.14 9772.48i 0.504649 0.874077i
\(501\) 19167.3 + 8239.01i 1.70924 + 0.734714i
\(502\) −4867.72 + 2810.38i −0.432783 + 0.249867i
\(503\) 12335.3 1.09344 0.546722 0.837314i \(-0.315875\pi\)
0.546722 + 0.837314i \(0.315875\pi\)
\(504\) 5216.65 + 2474.92i 0.461048 + 0.218733i
\(505\) −6.53356 −0.000575722
\(506\) 4758.31 2747.21i 0.418049 0.241361i
\(507\) 454.027 + 3841.99i 0.0397713 + 0.336546i
\(508\) −9022.16 + 15626.8i −0.787980 + 1.36482i
\(509\) 14453.1 1.25859 0.629295 0.777166i \(-0.283344\pi\)
0.629295 + 0.777166i \(0.283344\pi\)
\(510\) 2684.36 317.224i 0.233070 0.0275430i
\(511\) 4513.59 1745.25i 0.390743 0.151087i
\(512\) 11338.9i 0.978739i
\(513\) −1359.85 + 7888.28i −0.117035 + 0.678901i
\(514\) 3593.43 2074.67i 0.308365 0.178034i
\(515\) 6552.99i 0.560698i
\(516\) 8822.85 + 3792.48i 0.752721 + 0.323555i
\(517\) 10606.1 6123.46i 0.902239 0.520908i
\(518\) −319.706 + 2050.91i −0.0271179 + 0.173961i
\(519\) −9994.01 4295.90i −0.845257 0.363332i
\(520\) −1914.76 3316.46i −0.161477 0.279686i
\(521\) 3797.90 + 6578.16i 0.319365 + 0.553156i 0.980356 0.197238i \(-0.0631971\pi\)
−0.660991 + 0.750394i \(0.729864\pi\)
\(522\) −398.733 + 1344.32i −0.0334331 + 0.112719i
\(523\) 15947.4 + 9207.24i 1.33333 + 0.769799i 0.985809 0.167873i \(-0.0536900\pi\)
0.347522 + 0.937672i \(0.387023\pi\)
\(524\) 181.684 314.686i 0.0151468 0.0262350i
\(525\) −4191.28 + 2217.24i −0.348424 + 0.184321i
\(526\) −2383.15 4127.74i −0.197548 0.342164i
\(527\) 20848.0i 1.72325i
\(528\) −4334.56 + 10083.9i −0.357268 + 0.831150i
\(529\) −19166.8 −1.57531
\(530\) 990.441 1715.49i 0.0811736 0.140597i
\(531\) −13389.4 14119.7i −1.09426 1.15394i
\(532\) 7333.38 2835.57i 0.597636 0.231085i
\(533\) 3611.58 + 2085.15i 0.293499 + 0.169452i
\(534\) −416.118 557.459i −0.0337213 0.0451753i
\(535\) 9481.37 + 5474.07i 0.766197 + 0.442364i
\(536\) 1948.50 + 1124.97i 0.157019 + 0.0906551i
\(537\) 7568.05 17606.4i 0.608167 1.41484i
\(538\) 2768.05 + 1598.13i 0.221820 + 0.128068i
\(539\) 4333.34 13561.4i 0.346289 1.08373i
\(540\) 8952.28 + 1543.27i 0.713416 + 0.122985i
\(541\) 10525.6 18230.9i 0.836474 1.44882i −0.0563503 0.998411i \(-0.517946\pi\)
0.892825 0.450405i \(-0.148720\pi\)
\(542\) −1570.18 −0.124437
\(543\) −5124.09 6864.58i −0.404965 0.542518i
\(544\) 10426.3i 0.821738i
\(545\) −964.307 1670.23i −0.0757915 0.131275i
\(546\) −101.486 + 2740.81i −0.00795455 + 0.214827i
\(547\) −8242.69 + 14276.8i −0.644300 + 1.11596i 0.340163 + 0.940367i \(0.389518\pi\)
−0.984463 + 0.175594i \(0.943815\pi\)
\(548\) −9874.11 5700.82i −0.769710 0.444392i
\(549\) 4080.47 + 17023.4i 0.317214 + 1.32339i
\(550\) 764.688 + 1324.48i 0.0592844 + 0.102684i
\(551\) 1981.16 + 3431.48i 0.153177 + 0.265310i
\(552\) −8510.99 + 6353.07i −0.656253 + 0.489863i
\(553\) 7709.48 + 19938.4i 0.592840 + 1.53321i
\(554\) 2856.46 1649.18i 0.219060 0.126474i
\(555\) 795.325 + 6730.07i 0.0608283 + 0.514730i
\(556\) 5487.40i 0.418557i
\(557\) −5731.63 + 3309.16i −0.436009 + 0.251730i −0.701903 0.712272i \(-0.747666\pi\)
0.265894 + 0.964002i \(0.414333\pi\)
\(558\) −1497.42 + 5048.53i −0.113604 + 0.383013i
\(559\) 9466.26i 0.716243i
\(560\) −2958.00 7650.03i −0.223211 0.577272i
\(561\) 6808.46 15839.2i 0.512395 1.19204i
\(562\) −3792.67 −0.284669
\(563\) 8503.32 14728.2i 0.636540 1.10252i −0.349647 0.936882i \(-0.613698\pi\)
0.986187 0.165638i \(-0.0529683\pi\)
\(564\) −9141.84 + 6823.97i −0.682520 + 0.509470i
\(565\) 11707.6 6759.40i 0.871758 0.503310i
\(566\) 413.239 0.0306885
\(567\) −10048.9 9016.86i −0.744293 0.667853i
\(568\) 1140.08 0.0842192
\(569\) −9769.80 + 5640.60i −0.719809 + 0.415582i −0.814682 0.579907i \(-0.803089\pi\)
0.0948734 + 0.995489i \(0.469755\pi\)
\(570\) −1546.07 + 1154.07i −0.113610 + 0.0848047i
\(571\) 12233.2 21188.5i 0.896571 1.55291i 0.0647233 0.997903i \(-0.479384\pi\)
0.831848 0.555004i \(-0.187283\pi\)
\(572\) −11770.4 −0.860396
\(573\) 7525.13 17506.5i 0.548633 1.27634i
\(574\) −1180.09 950.857i −0.0858115 0.0691429i
\(575\) 8721.78i 0.632562i
\(576\) 2376.96 8013.89i 0.171945 0.579708i
\(577\) −14445.8 + 8340.28i −1.04226 + 0.601751i −0.920474 0.390805i \(-0.872197\pi\)
−0.121790 + 0.992556i \(0.538863\pi\)
\(578\) 1104.46i 0.0794801i
\(579\) −208.632 1765.45i −0.0149749 0.126718i
\(580\) 3894.33 2248.39i 0.278798 0.160964i
\(581\) −6632.84 + 8231.86i −0.473626 + 0.587806i
\(582\) −3439.46 + 2567.40i −0.244966 + 0.182856i
\(583\) −6317.24 10941.8i −0.448771 0.777294i
\(584\) 1508.57 + 2612.92i 0.106892 + 0.185143i
\(585\) 2087.27 + 8707.92i 0.147518 + 0.615433i
\(586\) 642.582 + 370.995i 0.0452984 + 0.0261530i
\(587\) 7866.86 13625.8i 0.553152 0.958087i −0.444893 0.895584i \(-0.646758\pi\)
0.998045 0.0625029i \(-0.0199083\pi\)
\(588\) −2526.06 + 13018.7i −0.177165 + 0.913068i
\(589\) 7440.16 + 12886.7i 0.520486 + 0.901509i
\(590\) 4690.00i 0.327262i
\(591\) −1455.71 1950.16i −0.101319 0.135734i
\(592\) 7627.17 0.529518
\(593\) 2335.26 4044.79i 0.161716 0.280101i −0.773768 0.633469i \(-0.781630\pi\)
0.935484 + 0.353368i \(0.114964\pi\)
\(594\) −2786.40 + 3346.59i −0.192470 + 0.231166i
\(595\) 4646.25 + 12016.2i 0.320131 + 0.827926i
\(596\) 9509.62 + 5490.38i 0.653573 + 0.377340i
\(597\) −3220.35 + 7491.85i −0.220771 + 0.513603i
\(598\) −4369.02 2522.45i −0.298767 0.172493i
\(599\) −11047.3 6378.15i −0.753556 0.435066i 0.0734215 0.997301i \(-0.476608\pi\)
−0.826977 + 0.562235i \(0.809941\pi\)
\(600\) −1768.38 2369.04i −0.120323 0.161193i
\(601\) 17937.2 + 10356.0i 1.21743 + 0.702882i 0.964367 0.264569i \(-0.0852297\pi\)
0.253060 + 0.967451i \(0.418563\pi\)
\(602\) 529.855 3399.02i 0.0358725 0.230122i
\(603\) −3620.07 3817.51i −0.244479 0.257813i
\(604\) 4743.03 8215.17i 0.319522 0.553428i
\(605\) −3409.82 −0.229139
\(606\) −1.15211 + 2.68028i −7.72299e−5 + 0.000179668i
\(607\) 24485.0i 1.63726i 0.574325 + 0.818628i \(0.305265\pi\)
−0.574325 + 0.818628i \(0.694735\pi\)
\(608\) 3720.91 + 6444.81i 0.248196 + 0.429888i
\(609\) −6678.61 247.293i −0.444386 0.0164546i
\(610\) −2109.63 + 3653.99i −0.140027 + 0.242534i
\(611\) −9738.42 5622.48i −0.644803 0.372277i
\(612\) −4566.67 + 15396.4i −0.301629 + 1.01693i
\(613\) −2415.65 4184.03i −0.159164 0.275679i 0.775404 0.631466i \(-0.217546\pi\)
−0.934567 + 0.355786i \(0.884213\pi\)
\(614\) −96.0308 166.330i −0.00631187 0.0109325i
\(615\) −4545.77 1953.99i −0.298054 0.128118i
\(616\) 8770.38 + 1367.17i 0.573650 + 0.0894233i
\(617\) −5042.06 + 2911.04i −0.328988 + 0.189942i −0.655392 0.755289i \(-0.727497\pi\)
0.326404 + 0.945231i \(0.394163\pi\)
\(618\) 2688.25 + 1155.54i 0.174980 + 0.0752145i
\(619\) 1448.25i 0.0940388i −0.998894 0.0470194i \(-0.985028\pi\)
0.998894 0.0470194i \(-0.0149723\pi\)
\(620\) 14624.9 8443.71i 0.947341 0.546948i
\(621\) 23304.0 8582.98i 1.50589 0.554626i
\(622\) 541.032i 0.0348769i
\(623\) 2080.25 2581.75i 0.133778 0.166028i
\(624\) 10008.4 1182.75i 0.642081 0.0758779i
\(625\) −7038.32 −0.450452
\(626\) −2574.09 + 4458.46i −0.164347 + 0.284658i
\(627\) 1444.15 + 12220.5i 0.0919839 + 0.778371i
\(628\) 12784.7 7381.24i 0.812363 0.469018i
\(629\) −11980.3 −0.759437
\(630\) −262.059 3243.55i −0.0165725 0.205121i
\(631\) −22632.9 −1.42790 −0.713948 0.700199i \(-0.753095\pi\)
−0.713948 + 0.700199i \(0.753095\pi\)
\(632\) −11542.3 + 6663.96i −0.726469 + 0.419427i
\(633\) 11883.7 + 5108.19i 0.746185 + 0.320746i
\(634\) −137.361 + 237.916i −0.00860456 + 0.0149035i
\(635\) 21103.4 1.31884
\(636\) 7039.92 + 9431.14i 0.438917 + 0.588002i
\(637\) −12773.1 + 2780.20i −0.794486 + 0.172929i
\(638\) 2155.61i 0.133764i
\(639\) −2555.79 758.062i −0.158224 0.0469303i
\(640\) 9608.61 5547.53i 0.593459 0.342633i
\(641\) 15231.9i 0.938571i 0.883046 + 0.469286i \(0.155489\pi\)
−0.883046 + 0.469286i \(0.844511\pi\)
\(642\) 3917.56 2924.28i 0.240832 0.179770i
\(643\) −12428.6 + 7175.65i −0.762264 + 0.440093i −0.830108 0.557603i \(-0.811721\pi\)
0.0678441 + 0.997696i \(0.478388\pi\)
\(644\) −18994.6 15305.0i −1.16225 0.936490i
\(645\) −1318.11 11153.9i −0.0804657 0.680903i
\(646\) −1705.33 2953.71i −0.103862 0.179895i
\(647\) 14009.3 + 24264.9i 0.851258 + 1.47442i 0.880073 + 0.474838i \(0.157493\pi\)
−0.0288151 + 0.999585i \(0.509173\pi\)
\(648\) 4589.67 7056.32i 0.278239 0.427776i
\(649\) −25906.1 14956.9i −1.56688 0.904638i
\(650\) 702.126 1216.12i 0.0423687 0.0733847i
\(651\) −25081.2 928.698i −1.51000 0.0559117i
\(652\) −13665.6 23669.6i −0.820840 1.42174i
\(653\) 12216.5i 0.732113i 0.930593 + 0.366057i \(0.119292\pi\)
−0.930593 + 0.366057i \(0.880708\pi\)
\(654\) −855.226 + 101.066i −0.0511345 + 0.00604282i
\(655\) −424.969 −0.0253510
\(656\) −2784.37 + 4822.67i −0.165719 + 0.287033i
\(657\) −1644.48 6860.64i −0.0976517 0.407396i
\(658\) 3182.03 + 2563.93i 0.188524 + 0.151903i
\(659\) 5703.43 + 3292.88i 0.337138 + 0.194647i 0.659006 0.752138i \(-0.270977\pi\)
−0.321868 + 0.946785i \(0.604311\pi\)
\(660\) 13868.8 1638.95i 0.817943 0.0966604i
\(661\) −6336.72 3658.51i −0.372874 0.215279i 0.301839 0.953359i \(-0.402399\pi\)
−0.674713 + 0.738080i \(0.735733\pi\)
\(662\) −2477.66 1430.48i −0.145464 0.0839836i
\(663\) −15720.7 + 1857.79i −0.920874 + 0.108824i
\(664\) −5708.03 3295.53i −0.333606 0.192608i
\(665\) −7160.28 5769.42i −0.417539 0.336434i
\(666\) 2901.14 + 860.494i 0.168794 + 0.0500653i
\(667\) 6146.55 10646.1i 0.356815 0.618021i
\(668\) −29875.4 −1.73041
\(669\) 5117.75 604.790i 0.295760 0.0349515i
\(670\) 1268.03i 0.0731167i
\(671\) 13455.7 + 23305.9i 0.774145 + 1.34086i
\(672\) −12543.4 464.453i −0.720048 0.0266617i
\(673\) 1486.23 2574.23i 0.0851263 0.147443i −0.820319 0.571907i \(-0.806204\pi\)
0.905445 + 0.424464i \(0.139537\pi\)
\(674\) −618.320 356.987i −0.0353365 0.0204015i
\(675\) 2389.07 + 6486.67i 0.136230 + 0.369885i
\(676\) −2769.96 4797.71i −0.157599 0.272970i
\(677\) 8554.38 + 14816.6i 0.485630 + 0.841136i 0.999864 0.0165140i \(-0.00525681\pi\)
−0.514233 + 0.857650i \(0.671923\pi\)
\(678\) −708.433 5994.78i −0.0401286 0.339570i
\(679\) −15929.1 12834.9i −0.900298 0.725418i
\(680\) −6956.17 + 4016.15i −0.392290 + 0.226488i
\(681\) 2512.83 1875.71i 0.141397 0.105547i
\(682\) 8095.29i 0.454523i
\(683\) 4555.42 2630.07i 0.255210 0.147346i −0.366938 0.930246i \(-0.619594\pi\)
0.622147 + 0.782900i \(0.286260\pi\)
\(684\) −2671.84 11146.7i −0.149357 0.623107i
\(685\) 13334.5i 0.743776i
\(686\) 4742.00 283.330i 0.263922 0.0157691i
\(687\) −4025.93 5393.40i −0.223579 0.299521i
\(688\) −12640.6 −0.700465
\(689\) −5800.41 + 10046.6i −0.320723 + 0.555508i
\(690\) 5499.14 + 2363.79i 0.303404 + 0.130417i
\(691\) −16770.2 + 9682.26i −0.923252 + 0.533040i −0.884671 0.466216i \(-0.845617\pi\)
−0.0385810 + 0.999255i \(0.512284\pi\)
\(692\) 15577.3 0.855724
\(693\) −18752.1 8896.50i −1.02790 0.487662i
\(694\) −4242.21 −0.232034
\(695\) 5557.87 3208.84i 0.303341 0.175134i
\(696\) −489.005 4137.98i −0.0266318 0.225359i
\(697\) 4373.52 7575.17i 0.237674 0.411664i
\(698\) −141.513 −0.00767386
\(699\) −22044.8 + 2605.14i −1.19286 + 0.140966i
\(700\) 4260.14 5287.15i 0.230026 0.285479i
\(701\) 23797.7i 1.28221i 0.767455 + 0.641103i \(0.221523\pi\)
−0.767455 + 0.641103i \(0.778477\pi\)
\(702\) 3940.34 + 679.268i 0.211850 + 0.0365204i
\(703\) 7405.36 4275.49i 0.397295 0.229379i
\(704\) 12850.2i 0.687942i
\(705\) 12257.4 + 5268.82i 0.654810 + 0.281469i
\(706\) −6761.64 + 3903.84i −0.360450 + 0.208106i
\(707\) −13.7390 2.14170i −0.000730845 0.000113928i
\(708\) 25599.6 + 11003.9i 1.35889 + 0.584114i
\(709\) −7213.51 12494.2i −0.382100 0.661817i 0.609262 0.792969i \(-0.291466\pi\)
−0.991362 + 0.131152i \(0.958132\pi\)
\(710\) −321.265 556.447i −0.0169815 0.0294128i
\(711\) 30306.2 7264.33i 1.59855 0.383169i
\(712\) 1790.20 + 1033.57i 0.0942285 + 0.0544029i
\(713\) 23083.0 39981.0i 1.21244 2.10000i
\(714\) 5748.75 + 212.863i 0.301318 + 0.0111571i
\(715\) 6882.93 + 11921.6i 0.360010 + 0.623555i
\(716\) 27442.4i 1.43236i
\(717\) 4915.81 11436.2i 0.256045 0.595665i
\(718\) 7936.82 0.412534
\(719\) 2139.85 3706.33i 0.110992 0.192243i −0.805179 0.593032i \(-0.797931\pi\)
0.916170 + 0.400789i \(0.131264\pi\)
\(720\) −11628.0 + 2787.20i −0.601875 + 0.144268i
\(721\) −2148.07 + 13779.8i −0.110955 + 0.711773i
\(722\) −2333.85 1347.45i −0.120300 0.0694555i
\(723\) −2542.93 3406.68i −0.130806 0.175236i
\(724\) 10623.1 + 6133.26i 0.545311 + 0.314835i
\(725\) 2963.36 + 1710.89i 0.151802 + 0.0876428i
\(726\) −601.279 + 1398.82i −0.0307377 + 0.0715083i
\(727\) 8438.47 + 4871.95i 0.430489 + 0.248543i 0.699555 0.714579i \(-0.253382\pi\)
−0.269066 + 0.963122i \(0.586715\pi\)
\(728\) −2939.29 7601.62i −0.149639 0.386999i
\(729\) −14980.9 + 12766.9i −0.761108 + 0.648625i
\(730\) 850.207 1472.60i 0.0431063 0.0746623i
\(731\) 19855.2 1.00461
\(732\) −14995.0 20088.3i −0.757146 1.01432i
\(733\) 4535.45i 0.228541i −0.993450 0.114271i \(-0.963547\pi\)
0.993450 0.114271i \(-0.0364531\pi\)
\(734\) −330.061 571.682i −0.0165978 0.0287482i
\(735\) 14663.1 5054.40i 0.735858 0.253652i
\(736\) 11544.1 19995.0i 0.578154 1.00139i
\(737\) −7004.20 4043.88i −0.350072 0.202114i
\(738\) −1603.18 + 1520.26i −0.0799646 + 0.0758288i
\(739\) 15942.1 + 27612.6i 0.793561 + 1.37449i 0.923749 + 0.382998i \(0.125108\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(740\) −4852.18 8404.22i −0.241040 0.417494i
\(741\) 9054.38 6758.69i 0.448881 0.335070i
\(742\) 2645.07 3282.73i 0.130867 0.162416i
\(743\) −10135.3 + 5851.64i −0.500444 + 0.288931i −0.728897 0.684624i \(-0.759967\pi\)
0.228453 + 0.973555i \(0.426633\pi\)
\(744\) −1836.43 15540.0i −0.0904932 0.765756i
\(745\) 12842.3i 0.631552i
\(746\) 1694.29 978.200i 0.0831534 0.0480086i
\(747\) 10604.8 + 11183.2i 0.519425 + 0.547755i
\(748\) 24688.1i 1.20680i
\(749\) 18143.3 + 14619.0i 0.885104 + 0.713175i
\(750\) −2327.18 + 5413.96i −0.113302 + 0.263586i
\(751\) −16580.5 −0.805635 −0.402817 0.915280i \(-0.631969\pi\)
−0.402817 + 0.915280i \(0.631969\pi\)
\(752\) 7507.90 13004.1i 0.364076 0.630598i
\(753\) −31297.6 + 23362.3i −1.51467 + 1.13063i
\(754\) 1714.08 989.627i 0.0827895 0.0477985i
\(755\) −11094.2 −0.534782
\(756\) 18319.3 + 6179.78i 0.881303 + 0.297297i
\(757\) −16410.7 −0.787923 −0.393962 0.919127i \(-0.628896\pi\)
−0.393962 + 0.919127i \(0.628896\pi\)
\(758\) 412.325 238.056i 0.0197577 0.0114071i
\(759\) 30594.2 22837.2i 1.46311 1.09214i
\(760\) 2866.54 4964.99i 0.136816 0.236972i
\(761\) 21191.0 1.00943 0.504713 0.863287i \(-0.331598\pi\)
0.504713 + 0.863287i \(0.331598\pi\)
\(762\) 3721.31 8657.29i 0.176915 0.411575i
\(763\) −1480.28 3828.31i −0.0702354 0.181644i
\(764\) 27286.8i 1.29215i
\(765\) 18264.6 4377.97i 0.863211 0.206910i
\(766\) −4902.38 + 2830.39i −0.231241 + 0.133507i
\(767\) 27466.5i 1.29303i
\(768\) 928.919 + 7860.54i 0.0436451 + 0.369326i
\(769\) −4457.86 + 2573.75i −0.209044 + 0.120691i −0.600867 0.799349i \(-0.705178\pi\)
0.391823 + 0.920041i \(0.371844\pi\)
\(770\) −1804.14 4665.90i −0.0844374 0.218373i
\(771\) 23104.4 17246.4i 1.07923 0.805595i
\(772\) 1272.84 + 2204.62i 0.0593400 + 0.102780i
\(773\) −13537.8