Properties

Label 63.4.s.a.47.10
Level $63$
Weight $4$
Character 63.47
Analytic conductor $3.717$
Analytic rank $0$
Dimension $44$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.10
Character \(\chi\) \(=\) 63.47
Dual form 63.4.s.a.59.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.998155 + 0.576285i) q^{2} +(-1.29916 + 5.03112i) q^{3} +(-3.33579 + 5.77776i) q^{4} +0.274718 q^{5} +(-1.60260 - 5.77053i) q^{6} +(-9.15344 - 16.1001i) q^{7} -16.9100i q^{8} +(-23.6244 - 13.0725i) q^{9} +O(q^{10})\) \(q+(-0.998155 + 0.576285i) q^{2} +(-1.29916 + 5.03112i) q^{3} +(-3.33579 + 5.77776i) q^{4} +0.274718 q^{5} +(-1.60260 - 5.77053i) q^{6} +(-9.15344 - 16.1001i) q^{7} -16.9100i q^{8} +(-23.6244 - 13.0725i) q^{9} +(-0.274212 + 0.158316i) q^{10} +26.2387i q^{11} +(-24.7349 - 24.2890i) q^{12} +(-39.6128 + 22.8704i) q^{13} +(18.4148 + 10.7954i) q^{14} +(-0.356904 + 1.38214i) q^{15} +(-16.9413 - 29.3432i) q^{16} +(30.2340 + 52.3669i) q^{17} +(31.1143 - 0.566004i) q^{18} +(-38.8827 - 22.4489i) q^{19} +(-0.916403 + 1.58726i) q^{20} +(92.8936 - 25.1354i) q^{21} +(-15.1209 - 26.1902i) q^{22} +127.767i q^{23} +(85.0764 + 21.9689i) q^{24} -124.925 q^{25} +(26.3598 - 45.6565i) q^{26} +(96.4611 - 101.874i) q^{27} +(123.557 + 0.820329i) q^{28} +(58.2779 + 33.6468i) q^{29} +(-0.440263 - 1.58527i) q^{30} +(85.6986 + 49.4781i) q^{31} +(150.976 + 87.1662i) q^{32} +(-132.010 - 34.0883i) q^{33} +(-60.3565 - 34.8469i) q^{34} +(-2.51462 - 4.42301i) q^{35} +(154.336 - 92.8888i) q^{36} +(-123.714 + 214.278i) q^{37} +51.7480 q^{38} +(-63.6006 - 229.009i) q^{39} -4.64550i q^{40} +(134.234 + 232.500i) q^{41} +(-78.2370 + 78.6222i) q^{42} +(-72.4990 + 125.572i) q^{43} +(-151.601 - 87.5267i) q^{44} +(-6.49005 - 3.59125i) q^{45} +(-73.6304 - 127.532i) q^{46} +(-250.874 - 434.526i) q^{47} +(169.639 - 47.1123i) q^{48} +(-175.429 + 294.743i) q^{49} +(124.694 - 71.9922i) q^{50} +(-302.743 + 84.0781i) q^{51} -305.164i q^{52} +(-333.839 + 192.742i) q^{53} +(-37.5748 + 157.275i) q^{54} +7.20824i q^{55} +(-272.254 + 154.785i) q^{56} +(163.458 - 166.459i) q^{57} -77.5605 q^{58} +(274.307 - 475.113i) q^{59} +(-6.79513 - 6.67264i) q^{60} +(189.637 - 109.487i) q^{61} -114.054 q^{62} +(5.77539 + 500.014i) q^{63} +70.1309 q^{64} +(-10.8824 + 6.28293i) q^{65} +(151.411 - 42.0499i) q^{66} +(378.858 - 656.202i) q^{67} -403.418 q^{68} +(-642.813 - 165.990i) q^{69} +(5.05889 + 2.96571i) q^{70} +1109.53i q^{71} +(-221.056 + 399.489i) q^{72} +(-125.762 + 72.6086i) q^{73} -285.177i q^{74} +(162.297 - 628.510i) q^{75} +(259.409 - 149.770i) q^{76} +(422.446 - 240.174i) q^{77} +(195.458 + 191.934i) q^{78} +(445.950 + 772.407i) q^{79} +(-4.65409 - 8.06113i) q^{80} +(387.221 + 617.658i) q^{81} +(-267.972 - 154.714i) q^{82} +(745.760 - 1291.69i) q^{83} +(-164.647 + 620.563i) q^{84} +(8.30585 + 14.3862i) q^{85} -167.120i q^{86} +(-244.993 + 249.491i) q^{87} +443.696 q^{88} +(-145.205 + 251.503i) q^{89} +(8.54766 - 0.155492i) q^{90} +(730.810 + 428.428i) q^{91} +(-738.209 - 426.205i) q^{92} +(-360.267 + 366.880i) q^{93} +(500.822 + 289.150i) q^{94} +(-10.6818 - 6.16714i) q^{95} +(-634.686 + 646.337i) q^{96} +(144.917 + 83.6676i) q^{97} +(5.24921 - 395.297i) q^{98} +(343.004 - 619.871i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44q - 3q^{2} - 3q^{3} + 81q^{4} - 6q^{5} - 24q^{6} + 5q^{7} - 3q^{9} + O(q^{10}) \) \( 44q - 3q^{2} - 3q^{3} + 81q^{4} - 6q^{5} - 24q^{6} + 5q^{7} - 3q^{9} - 6q^{10} - 3q^{12} + 36q^{13} + 129q^{14} - 141q^{15} - 263q^{16} + 72q^{17} - 15q^{18} - 6q^{19} - 24q^{20} - 306q^{21} + 14q^{22} - 66q^{24} + 698q^{25} + 96q^{26} - 432q^{27} - 156q^{28} - 132q^{29} + 852q^{30} + 177q^{31} - 501q^{32} + 849q^{33} - 24q^{34} - 765q^{35} + 1122q^{36} + 82q^{37} - 1746q^{38} - 645q^{39} - 618q^{41} - 963q^{42} + 82q^{43} - 603q^{44} + 303q^{45} + 266q^{46} - 201q^{47} + 1569q^{48} + 515q^{49} - 1845q^{50} + 417q^{51} - 564q^{53} - 684q^{54} + 3600q^{56} + 1170q^{57} - 538q^{58} + 747q^{59} - 516q^{60} - 1209q^{61} + 2904q^{62} + 1557q^{63} - 1144q^{64} - 831q^{65} + 1029q^{66} + 295q^{67} + 7008q^{68} + 1005q^{69} - 390q^{70} - 1119q^{72} - 6q^{73} - 1788q^{75} + 144q^{76} - 1203q^{77} - 5985q^{78} - 551q^{79} + 4239q^{80} + 3741q^{81} + 18q^{82} - 1830q^{83} - 7725q^{84} - 237q^{85} - 2130q^{87} + 1246q^{88} - 4266q^{89} - 9993q^{90} - 1140q^{91} + 7896q^{92} - 1479q^{93} - 3q^{94} - 1053q^{95} + 5034q^{96} + 792q^{97} - 5667q^{98} + 4335q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.998155 + 0.576285i −0.352901 + 0.203748i −0.665962 0.745985i \(-0.731979\pi\)
0.313061 + 0.949733i \(0.398646\pi\)
\(3\) −1.29916 + 5.03112i −0.250024 + 0.968240i
\(4\) −3.33579 + 5.77776i −0.416974 + 0.722220i
\(5\) 0.274718 0.0245716 0.0122858 0.999925i \(-0.496089\pi\)
0.0122858 + 0.999925i \(0.496089\pi\)
\(6\) −1.60260 5.77053i −0.109043 0.392635i
\(7\) −9.15344 16.1001i −0.494239 0.869326i
\(8\) 16.9100i 0.747325i
\(9\) −23.6244 13.0725i −0.874976 0.484166i
\(10\) −0.274212 + 0.158316i −0.00867133 + 0.00500640i
\(11\) 26.2387i 0.719205i 0.933106 + 0.359602i \(0.117088\pi\)
−0.933106 + 0.359602i \(0.882912\pi\)
\(12\) −24.7349 24.2890i −0.595029 0.584303i
\(13\) −39.6128 + 22.8704i −0.845123 + 0.487932i −0.859002 0.511972i \(-0.828915\pi\)
0.0138792 + 0.999904i \(0.495582\pi\)
\(14\) 18.4148 + 10.7954i 0.351541 + 0.206086i
\(15\) −0.356904 + 1.38214i −0.00614348 + 0.0237912i
\(16\) −16.9413 29.3432i −0.264708 0.458488i
\(17\) 30.2340 + 52.3669i 0.431343 + 0.747108i 0.996989 0.0775399i \(-0.0247065\pi\)
−0.565646 + 0.824648i \(0.691373\pi\)
\(18\) 31.1143 0.566004i 0.407428 0.00741158i
\(19\) −38.8827 22.4489i −0.469490 0.271060i 0.246536 0.969134i \(-0.420708\pi\)
−0.716026 + 0.698074i \(0.754041\pi\)
\(20\) −0.916403 + 1.58726i −0.0102457 + 0.0177461i
\(21\) 92.8936 25.1354i 0.965287 0.261190i
\(22\) −15.1209 26.1902i −0.146536 0.253808i
\(23\) 127.767i 1.15832i 0.815214 + 0.579159i \(0.196619\pi\)
−0.815214 + 0.579159i \(0.803381\pi\)
\(24\) 85.0764 + 21.9689i 0.723590 + 0.186849i
\(25\) −124.925 −0.999396
\(26\) 26.3598 45.6565i 0.198830 0.344384i
\(27\) 96.4611 101.874i 0.687554 0.726134i
\(28\) 123.557 + 0.820329i 0.833929 + 0.00553670i
\(29\) 58.2779 + 33.6468i 0.373170 + 0.215450i 0.674843 0.737962i \(-0.264212\pi\)
−0.301672 + 0.953412i \(0.597545\pi\)
\(30\) −0.440263 1.58527i −0.00267935 0.00964765i
\(31\) 85.6986 + 49.4781i 0.496513 + 0.286662i 0.727273 0.686349i \(-0.240788\pi\)
−0.230759 + 0.973011i \(0.574121\pi\)
\(32\) 150.976 + 87.1662i 0.834034 + 0.481530i
\(33\) −132.010 34.0883i −0.696363 0.179818i
\(34\) −60.3565 34.8469i −0.304443 0.175770i
\(35\) −2.51462 4.42301i −0.0121442 0.0213607i
\(36\) 154.336 92.8888i 0.714516 0.430041i
\(37\) −123.714 + 214.278i −0.549686 + 0.952085i 0.448610 + 0.893728i \(0.351919\pi\)
−0.998296 + 0.0583567i \(0.981414\pi\)
\(38\) 51.7480 0.220911
\(39\) −63.6006 229.009i −0.261134 0.940276i
\(40\) 4.64550i 0.0183629i
\(41\) 134.234 + 232.500i 0.511312 + 0.885618i 0.999914 + 0.0131112i \(0.00417355\pi\)
−0.488602 + 0.872507i \(0.662493\pi\)
\(42\) −78.2370 + 78.6222i −0.287434 + 0.288849i
\(43\) −72.4990 + 125.572i −0.257116 + 0.445338i −0.965468 0.260521i \(-0.916106\pi\)
0.708352 + 0.705859i \(0.249439\pi\)
\(44\) −151.601 87.5267i −0.519424 0.299890i
\(45\) −6.49005 3.59125i −0.0214995 0.0118967i
\(46\) −73.6304 127.532i −0.236005 0.408772i
\(47\) −250.874 434.526i −0.778589 1.34856i −0.932755 0.360511i \(-0.882602\pi\)
0.154166 0.988045i \(-0.450731\pi\)
\(48\) 169.639 47.1123i 0.510110 0.141668i
\(49\) −175.429 + 294.743i −0.511455 + 0.859310i
\(50\) 124.694 71.9922i 0.352688 0.203625i
\(51\) −302.743 + 84.0781i −0.831226 + 0.230849i
\(52\) 305.164i 0.813820i
\(53\) −333.839 + 192.742i −0.865213 + 0.499531i −0.865755 0.500469i \(-0.833161\pi\)
0.000541270 1.00000i \(0.499828\pi\)
\(54\) −37.5748 + 157.275i −0.0946904 + 0.396341i
\(55\) 7.20824i 0.0176720i
\(56\) −272.254 + 154.785i −0.649669 + 0.369357i
\(57\) 163.458 166.459i 0.379835 0.386807i
\(58\) −77.5605 −0.175590
\(59\) 274.307 475.113i 0.605283 1.04838i −0.386724 0.922195i \(-0.626393\pi\)
0.992007 0.126185i \(-0.0402732\pi\)
\(60\) −6.79513 6.67264i −0.0146208 0.0143572i
\(61\) 189.637 109.487i 0.398041 0.229809i −0.287597 0.957751i \(-0.592857\pi\)
0.685638 + 0.727942i \(0.259523\pi\)
\(62\) −114.054 −0.233627
\(63\) 5.77539 + 500.014i 0.0115497 + 0.999933i
\(64\) 70.1309 0.136974
\(65\) −10.8824 + 6.28293i −0.0207660 + 0.0119893i
\(66\) 151.411 42.0499i 0.282385 0.0784241i
\(67\) 378.858 656.202i 0.690819 1.19653i −0.280750 0.959781i \(-0.590583\pi\)
0.971570 0.236753i \(-0.0760834\pi\)
\(68\) −403.418 −0.719435
\(69\) −642.813 165.990i −1.12153 0.289607i
\(70\) 5.05889 + 2.96571i 0.00863790 + 0.00506386i
\(71\) 1109.53i 1.85461i 0.374306 + 0.927305i \(0.377881\pi\)
−0.374306 + 0.927305i \(0.622119\pi\)
\(72\) −221.056 + 399.489i −0.361829 + 0.653891i
\(73\) −125.762 + 72.6086i −0.201634 + 0.116414i −0.597418 0.801930i \(-0.703806\pi\)
0.395783 + 0.918344i \(0.370473\pi\)
\(74\) 285.177i 0.447989i
\(75\) 162.297 628.510i 0.249873 0.967655i
\(76\) 259.409 149.770i 0.391530 0.226050i
\(77\) 422.446 240.174i 0.625223 0.355459i
\(78\) 195.458 + 191.934i 0.283734 + 0.278619i
\(79\) 445.950 + 772.407i 0.635104 + 1.10003i 0.986493 + 0.163803i \(0.0523763\pi\)
−0.351389 + 0.936230i \(0.614290\pi\)
\(80\) −4.65409 8.06113i −0.00650429 0.0112658i
\(81\) 387.221 + 617.658i 0.531167 + 0.847267i
\(82\) −267.972 154.714i −0.360885 0.208357i
\(83\) 745.760 1291.69i 0.986238 1.70821i 0.349939 0.936772i \(-0.386202\pi\)
0.636299 0.771442i \(-0.280464\pi\)
\(84\) −164.647 + 620.563i −0.213863 + 0.806059i
\(85\) 8.30585 + 14.3862i 0.0105988 + 0.0183576i
\(86\) 167.120i 0.209547i
\(87\) −244.993 + 249.491i −0.301909 + 0.307451i
\(88\) 443.696 0.537480
\(89\) −145.205 + 251.503i −0.172941 + 0.299542i −0.939447 0.342695i \(-0.888660\pi\)
0.766506 + 0.642237i \(0.221994\pi\)
\(90\) 8.54766 0.155492i 0.0100111 0.000182114i
\(91\) 730.810 + 428.428i 0.841865 + 0.493532i
\(92\) −738.209 426.205i −0.836561 0.482989i
\(93\) −360.267 + 366.880i −0.401698 + 0.409072i
\(94\) 500.822 + 289.150i 0.549530 + 0.317271i
\(95\) −10.6818 6.16714i −0.0115361 0.00666037i
\(96\) −634.686 + 646.337i −0.674765 + 0.687151i
\(97\) 144.917 + 83.6676i 0.151691 + 0.0875789i 0.573924 0.818908i \(-0.305420\pi\)
−0.422233 + 0.906487i \(0.638754\pi\)
\(98\) 5.24921 395.297i 0.00541072 0.407459i
\(99\) 343.004 619.871i 0.348214 0.629287i
\(100\) 416.722 721.784i 0.416722 0.721784i
\(101\) 945.019 0.931019 0.465510 0.885043i \(-0.345871\pi\)
0.465510 + 0.885043i \(0.345871\pi\)
\(102\) 253.732 258.389i 0.246306 0.250827i
\(103\) 836.645i 0.800360i −0.916437 0.400180i \(-0.868948\pi\)
0.916437 0.400180i \(-0.131052\pi\)
\(104\) 386.740 + 669.853i 0.364644 + 0.631582i
\(105\) 25.5196 6.90515i 0.0237186 0.00641785i
\(106\) 222.149 384.773i 0.203557 0.352570i
\(107\) −1220.83 704.848i −1.10301 0.636825i −0.166002 0.986125i \(-0.553086\pi\)
−0.937011 + 0.349301i \(0.886419\pi\)
\(108\) 266.828 + 897.158i 0.237736 + 0.799344i
\(109\) 7.79612 + 13.5033i 0.00685076 + 0.0118659i 0.869430 0.494055i \(-0.164486\pi\)
−0.862580 + 0.505921i \(0.831153\pi\)
\(110\) −4.15400 7.19494i −0.00360062 0.00623646i
\(111\) −917.336 900.800i −0.784411 0.770272i
\(112\) −317.359 + 541.349i −0.267746 + 0.456721i
\(113\) −382.754 + 220.983i −0.318641 + 0.183968i −0.650787 0.759261i \(-0.725561\pi\)
0.332146 + 0.943228i \(0.392227\pi\)
\(114\) −67.2290 + 260.350i −0.0552331 + 0.213895i
\(115\) 35.1000i 0.0284617i
\(116\) −388.806 + 224.477i −0.311204 + 0.179674i
\(117\) 1234.80 22.4624i 0.975703 0.0177492i
\(118\) 632.315i 0.493299i
\(119\) 566.369 966.110i 0.436294 0.744228i
\(120\) 23.3721 + 6.03525i 0.0177797 + 0.00459117i
\(121\) 642.533 0.482745
\(122\) −126.191 + 218.570i −0.0936461 + 0.162200i
\(123\) −1344.12 + 373.291i −0.985330 + 0.273647i
\(124\) −571.745 + 330.097i −0.414066 + 0.239061i
\(125\) −68.6589 −0.0491283
\(126\) −293.915 495.763i −0.207810 0.350524i
\(127\) −2019.56 −1.41108 −0.705539 0.708671i \(-0.749295\pi\)
−0.705539 + 0.708671i \(0.749295\pi\)
\(128\) −1277.81 + 737.745i −0.882372 + 0.509438i
\(129\) −537.580 527.889i −0.366909 0.360295i
\(130\) 7.24152 12.5427i 0.00488556 0.00846204i
\(131\) 954.174 0.636386 0.318193 0.948026i \(-0.396924\pi\)
0.318193 + 0.948026i \(0.396924\pi\)
\(132\) 637.311 649.010i 0.420233 0.427947i
\(133\) −5.52058 + 831.502i −0.00359921 + 0.542108i
\(134\) 873.322i 0.563011i
\(135\) 26.4996 27.9866i 0.0168943 0.0178422i
\(136\) 885.526 511.259i 0.558333 0.322353i
\(137\) 1382.02i 0.861857i 0.902386 + 0.430928i \(0.141814\pi\)
−0.902386 + 0.430928i \(0.858186\pi\)
\(138\) 737.285 204.759i 0.454796 0.126306i
\(139\) −2724.54 + 1573.02i −1.66254 + 0.959867i −0.691041 + 0.722815i \(0.742848\pi\)
−0.971497 + 0.237052i \(0.923819\pi\)
\(140\) 33.9433 + 0.225359i 0.0204909 + 0.000136045i
\(141\) 2512.08 697.656i 1.50039 0.416690i
\(142\) −639.407 1107.49i −0.377872 0.654494i
\(143\) −600.089 1039.39i −0.350923 0.607817i
\(144\) 16.6391 + 914.680i 0.00962910 + 0.529329i
\(145\) 16.0100 + 9.24339i 0.00916938 + 0.00529394i
\(146\) 83.6865 144.949i 0.0474380 0.0821650i
\(147\) −1254.98 1265.52i −0.704142 0.710059i
\(148\) −825.365 1429.57i −0.458410 0.793989i
\(149\) 363.709i 0.199975i 0.994989 + 0.0999873i \(0.0318802\pi\)
−0.994989 + 0.0999873i \(0.968120\pi\)
\(150\) 200.203 + 720.880i 0.108977 + 0.392398i
\(151\) −516.508 −0.278363 −0.139181 0.990267i \(-0.544447\pi\)
−0.139181 + 0.990267i \(0.544447\pi\)
\(152\) −379.612 + 657.508i −0.202570 + 0.350861i
\(153\) −29.6947 1632.37i −0.0156907 0.862544i
\(154\) −283.258 + 483.180i −0.148218 + 0.252830i
\(155\) 23.5430 + 13.5925i 0.0122001 + 0.00704374i
\(156\) 1535.32 + 396.457i 0.787973 + 0.203474i
\(157\) −1002.39 578.732i −0.509552 0.294190i 0.223097 0.974796i \(-0.428383\pi\)
−0.732650 + 0.680606i \(0.761717\pi\)
\(158\) −890.254 513.988i −0.448258 0.258802i
\(159\) −535.998 1929.99i −0.267342 0.962629i
\(160\) 41.4760 + 23.9462i 0.0204935 + 0.0118319i
\(161\) 2057.07 1169.51i 1.00696 0.572487i
\(162\) −742.453 393.369i −0.360078 0.190778i
\(163\) 1783.72 3089.49i 0.857126 1.48459i −0.0175321 0.999846i \(-0.505581\pi\)
0.874658 0.484740i \(-0.161086\pi\)
\(164\) −1791.10 −0.852814
\(165\) −36.2655 9.36467i −0.0171107 0.00441842i
\(166\) 1719.08i 0.803775i
\(167\) 1874.87 + 3247.37i 0.868754 + 1.50473i 0.863271 + 0.504741i \(0.168412\pi\)
0.00548318 + 0.999985i \(0.498255\pi\)
\(168\) −425.040 1570.83i −0.195194 0.721383i
\(169\) −52.3864 + 90.7359i −0.0238445 + 0.0412999i
\(170\) −16.5811 9.57308i −0.00748064 0.00431895i
\(171\) 625.116 + 1038.64i 0.279554 + 0.464482i
\(172\) −483.683 837.763i −0.214421 0.371389i
\(173\) 1176.24 + 2037.30i 0.516922 + 0.895335i 0.999807 + 0.0196514i \(0.00625564\pi\)
−0.482885 + 0.875684i \(0.660411\pi\)
\(174\) 100.764 390.216i 0.0439016 0.170013i
\(175\) 1143.49 + 2011.30i 0.493941 + 0.868801i
\(176\) 769.927 444.518i 0.329747 0.190379i
\(177\) 2033.98 + 1997.32i 0.863748 + 0.848179i
\(178\) 334.718i 0.140945i
\(179\) 1977.18 1141.53i 0.825595 0.476657i −0.0267473 0.999642i \(-0.508515\pi\)
0.852342 + 0.522985i \(0.175182\pi\)
\(180\) 42.3988 25.5183i 0.0175568 0.0105668i
\(181\) 3446.80i 1.41546i 0.706482 + 0.707731i \(0.250281\pi\)
−0.706482 + 0.707731i \(0.749719\pi\)
\(182\) −976.359 6.48233i −0.397651 0.00264012i
\(183\) 304.473 + 1096.33i 0.122991 + 0.442857i
\(184\) 2160.55 0.865640
\(185\) −33.9864 + 58.8662i −0.0135067 + 0.0233942i
\(186\) 148.175 573.819i 0.0584123 0.226207i
\(187\) −1374.04 + 793.301i −0.537324 + 0.310224i
\(188\) 3347.45 1.29861
\(189\) −2523.13 620.542i −0.971063 0.238824i
\(190\) 14.2161 0.00542814
\(191\) 1540.99 889.689i 0.583780 0.337045i −0.178854 0.983876i \(-0.557239\pi\)
0.762634 + 0.646830i \(0.223906\pi\)
\(192\) −91.1113 + 352.837i −0.0342468 + 0.132624i
\(193\) 249.570 432.268i 0.0930800 0.161219i −0.815726 0.578439i \(-0.803662\pi\)
0.908806 + 0.417220i \(0.136995\pi\)
\(194\) −192.866 −0.0713760
\(195\) −17.4722 62.9130i −0.00641648 0.0231041i
\(196\) −1117.76 1996.79i −0.407347 0.727693i
\(197\) 4333.51i 1.56726i 0.621229 + 0.783629i \(0.286634\pi\)
−0.621229 + 0.783629i \(0.713366\pi\)
\(198\) 14.8512 + 816.396i 0.00533044 + 0.293024i
\(199\) −1426.57 + 823.632i −0.508176 + 0.293396i −0.732084 0.681215i \(-0.761452\pi\)
0.223907 + 0.974610i \(0.428119\pi\)
\(200\) 2112.48i 0.746874i
\(201\) 2809.23 + 2758.59i 0.985811 + 0.968041i
\(202\) −943.276 + 544.601i −0.328558 + 0.189693i
\(203\) 8.27433 1246.27i 0.00286081 0.430890i
\(204\) 524.105 2029.64i 0.179876 0.696586i
\(205\) 36.8765 + 63.8719i 0.0125637 + 0.0217610i
\(206\) 482.146 + 835.102i 0.163071 + 0.282448i
\(207\) 1670.24 3018.42i 0.560818 1.01350i
\(208\) 1342.19 + 774.911i 0.447422 + 0.258319i
\(209\) 589.030 1020.23i 0.194948 0.337659i
\(210\) −21.4932 + 21.5990i −0.00706271 + 0.00709748i
\(211\) −1023.38 1772.54i −0.333897 0.578327i 0.649375 0.760468i \(-0.275031\pi\)
−0.983272 + 0.182141i \(0.941697\pi\)
\(212\) 2571.79i 0.833166i
\(213\) −5582.19 1441.46i −1.79571 0.463697i
\(214\) 1624.77 0.519006
\(215\) −19.9168 + 34.4969i −0.00631775 + 0.0109427i
\(216\) −1722.69 1631.16i −0.542658 0.513826i
\(217\) 12.1675 1832.65i 0.00380638 0.573312i
\(218\) −15.5635 8.98558i −0.00483528 0.00279165i
\(219\) −201.918 727.053i −0.0623029 0.224336i
\(220\) −41.6475 24.0452i −0.0127631 0.00736876i
\(221\) −2395.31 1382.93i −0.729076 0.420932i
\(222\) 1434.76 + 370.491i 0.433761 + 0.112008i
\(223\) −1682.84 971.590i −0.505343 0.291760i 0.225574 0.974226i \(-0.427574\pi\)
−0.730917 + 0.682466i \(0.760908\pi\)
\(224\) 21.4357 3228.61i 0.00639389 0.963038i
\(225\) 2951.26 + 1633.07i 0.874448 + 0.483874i
\(226\) 254.699 441.151i 0.0749659 0.129845i
\(227\) −3979.61 −1.16359 −0.581797 0.813334i \(-0.697650\pi\)
−0.581797 + 0.813334i \(0.697650\pi\)
\(228\) 416.496 + 1499.69i 0.120979 + 0.435613i
\(229\) 3742.04i 1.07983i −0.841720 0.539915i \(-0.818456\pi\)
0.841720 0.539915i \(-0.181544\pi\)
\(230\) −20.2276 35.0353i −0.00579900 0.0100442i
\(231\) 659.519 + 2437.40i 0.187849 + 0.694239i
\(232\) 568.968 985.481i 0.161011 0.278879i
\(233\) −4212.14 2431.88i −1.18432 0.683767i −0.227309 0.973823i \(-0.572993\pi\)
−0.957010 + 0.290056i \(0.906326\pi\)
\(234\) −1219.58 + 734.017i −0.340710 + 0.205061i
\(235\) −68.9196 119.372i −0.0191311 0.0331361i
\(236\) 1830.06 + 3169.75i 0.504774 + 0.874294i
\(237\) −4465.44 + 1240.14i −1.22389 + 0.339899i
\(238\) −8.56945 + 1290.72i −0.00233393 + 0.351533i
\(239\) −3994.45 + 2306.19i −1.08108 + 0.624165i −0.931189 0.364537i \(-0.881227\pi\)
−0.149896 + 0.988702i \(0.547894\pi\)
\(240\) 46.6029 12.9426i 0.0125342 0.00348101i
\(241\) 945.401i 0.252691i 0.991986 + 0.126346i \(0.0403248\pi\)
−0.991986 + 0.126346i \(0.959675\pi\)
\(242\) −641.348 + 370.282i −0.170361 + 0.0983580i
\(243\) −3610.57 + 1145.72i −0.953162 + 0.302460i
\(244\) 1460.90i 0.383297i
\(245\) −48.1936 + 80.9714i −0.0125672 + 0.0211146i
\(246\) 1126.52 1147.20i 0.291969 0.297329i
\(247\) 2053.67 0.529036
\(248\) 836.676 1449.17i 0.214230 0.371057i
\(249\) 5529.81 + 5430.13i 1.40738 + 1.38201i
\(250\) 68.5322 39.5671i 0.0173374 0.0100098i
\(251\) −478.897 −0.120429 −0.0602146 0.998185i \(-0.519178\pi\)
−0.0602146 + 0.998185i \(0.519178\pi\)
\(252\) −2908.22 1634.57i −0.726988 0.408605i
\(253\) −3352.44 −0.833068
\(254\) 2015.83 1163.84i 0.497971 0.287504i
\(255\) −83.1691 + 23.0978i −0.0204245 + 0.00567231i
\(256\) 569.780 986.887i 0.139106 0.240939i
\(257\) −4135.57 −1.00377 −0.501887 0.864933i \(-0.667361\pi\)
−0.501887 + 0.864933i \(0.667361\pi\)
\(258\) 840.803 + 217.116i 0.202892 + 0.0523918i
\(259\) 4582.31 + 30.4233i 1.09935 + 0.00729889i
\(260\) 83.8342i 0.0199968i
\(261\) −936.932 1556.72i −0.222202 0.369190i
\(262\) −952.414 + 549.876i −0.224581 + 0.129662i
\(263\) 1336.33i 0.313315i 0.987653 + 0.156658i \(0.0500719\pi\)
−0.987653 + 0.156658i \(0.949928\pi\)
\(264\) −576.433 + 2232.29i −0.134383 + 0.520409i
\(265\) −91.7117 + 52.9498i −0.0212596 + 0.0122743i
\(266\) −473.672 833.150i −0.109183 0.192044i
\(267\) −1076.70 1057.29i −0.246789 0.242341i
\(268\) 2527.58 + 4377.90i 0.576107 + 0.997847i
\(269\) −1094.02 1894.90i −0.247969 0.429494i 0.714993 0.699131i \(-0.246430\pi\)
−0.962962 + 0.269637i \(0.913096\pi\)
\(270\) −10.3225 + 43.2063i −0.00232669 + 0.00973871i
\(271\) 3642.53 + 2103.02i 0.816488 + 0.471400i 0.849204 0.528065i \(-0.177082\pi\)
−0.0327159 + 0.999465i \(0.510416\pi\)
\(272\) 1024.41 1774.33i 0.228360 0.395531i
\(273\) −3104.91 + 3120.20i −0.688344 + 0.691732i
\(274\) −796.440 1379.48i −0.175601 0.304150i
\(275\) 3277.85i 0.718770i
\(276\) 3103.34 3160.31i 0.676809 0.689233i
\(277\) −2108.80 −0.457421 −0.228710 0.973495i \(-0.573451\pi\)
−0.228710 + 0.973495i \(0.573451\pi\)
\(278\) 1813.01 3140.23i 0.391141 0.677476i
\(279\) −1377.77 2289.18i −0.295645 0.491217i
\(280\) −74.7932 + 42.5223i −0.0159634 + 0.00907569i
\(281\) 5062.18 + 2922.65i 1.07468 + 0.620465i 0.929455 0.368934i \(-0.120277\pi\)
0.145221 + 0.989399i \(0.453611\pi\)
\(282\) −2105.39 + 2144.04i −0.444590 + 0.452751i
\(283\) 6556.08 + 3785.15i 1.37710 + 0.795067i 0.991809 0.127729i \(-0.0407688\pi\)
0.385288 + 0.922796i \(0.374102\pi\)
\(284\) −6410.61 3701.17i −1.33944 0.773324i
\(285\) 44.9050 45.7293i 0.00933313 0.00950446i
\(286\) 1197.96 + 691.645i 0.247682 + 0.142999i
\(287\) 2514.58 4289.35i 0.517180 0.882204i
\(288\) −2427.24 4032.88i −0.496620 0.825138i
\(289\) 628.305 1088.26i 0.127886 0.221505i
\(290\) −21.3073 −0.00431451
\(291\) −609.212 + 620.395i −0.122724 + 0.124977i
\(292\) 968.828i 0.194166i
\(293\) 92.9288 + 160.957i 0.0185289 + 0.0320930i 0.875141 0.483868i \(-0.160768\pi\)
−0.856612 + 0.515961i \(0.827435\pi\)
\(294\) 1981.97 + 539.964i 0.393165 + 0.107113i
\(295\) 75.3571 130.522i 0.0148727 0.0257603i
\(296\) 3623.45 + 2092.00i 0.711516 + 0.410794i
\(297\) 2673.03 + 2531.01i 0.522239 + 0.494492i
\(298\) −209.600 363.038i −0.0407444 0.0705713i
\(299\) −2922.09 5061.22i −0.565181 0.978922i
\(300\) 3089.99 + 3034.29i 0.594669 + 0.583950i
\(301\) 2685.34 + 17.8288i 0.514221 + 0.00341406i
\(302\) 515.555 297.656i 0.0982346 0.0567158i
\(303\) −1227.73 + 4754.51i −0.232777 + 0.901450i
\(304\) 1521.26i 0.287007i
\(305\) 52.0967 30.0780i 0.00978049 0.00564677i
\(306\) 970.350 + 1612.24i 0.181278 + 0.301196i
\(307\) 2608.06i 0.484853i 0.970170 + 0.242427i \(0.0779434\pi\)
−0.970170 + 0.242427i \(0.922057\pi\)
\(308\) −21.5243 + 3241.96i −0.00398202 + 0.599766i
\(309\) 4209.26 + 1086.94i 0.774940 + 0.200109i
\(310\) −31.3327 −0.00574058
\(311\) 1846.85 3198.84i 0.336738 0.583247i −0.647079 0.762423i \(-0.724010\pi\)
0.983817 + 0.179176i \(0.0573431\pi\)
\(312\) −3872.55 + 1075.49i −0.702692 + 0.195152i
\(313\) 5911.47 3412.99i 1.06753 0.616337i 0.140023 0.990148i \(-0.455282\pi\)
0.927505 + 0.373811i \(0.121949\pi\)
\(314\) 1334.06 0.239762
\(315\) 1.58661 + 137.363i 0.000283794 + 0.0245699i
\(316\) −5950.38 −1.05929
\(317\) −2657.16 + 1534.11i −0.470791 + 0.271811i −0.716571 0.697514i \(-0.754289\pi\)
0.245780 + 0.969326i \(0.420956\pi\)
\(318\) 1647.23 + 1617.54i 0.290479 + 0.285242i
\(319\) −882.846 + 1529.13i −0.154953 + 0.268386i
\(320\) 19.2662 0.00336567
\(321\) 5132.24 5226.45i 0.892379 0.908760i
\(322\) −1379.31 + 2352.81i −0.238713 + 0.407196i
\(323\) 2714.89i 0.467680i
\(324\) −4860.37 + 176.890i −0.833396 + 0.0303309i
\(325\) 4948.60 2857.08i 0.844613 0.487638i
\(326\) 4111.72i 0.698550i
\(327\) −78.0650 + 21.6803i −0.0132019 + 0.00366643i
\(328\) 3931.57 2269.90i 0.661844 0.382116i
\(329\) −4699.57 + 8016.51i −0.787525 + 1.34336i
\(330\) 41.5954 11.5519i 0.00693863 0.00192700i
\(331\) −455.469 788.896i −0.0756340 0.131002i 0.825728 0.564069i \(-0.190765\pi\)
−0.901362 + 0.433067i \(0.857431\pi\)
\(332\) 4975.40 + 8617.64i 0.822471 + 1.42456i
\(333\) 5723.80 3444.94i 0.941929 0.566912i
\(334\) −3742.83 2160.92i −0.613169 0.354013i
\(335\) 104.079 180.271i 0.0169745 0.0294007i
\(336\) −2311.29 2299.97i −0.375272 0.373434i
\(337\) −2379.71 4121.79i −0.384663 0.666255i 0.607060 0.794656i \(-0.292349\pi\)
−0.991722 + 0.128401i \(0.959016\pi\)
\(338\) 120.758i 0.0194330i
\(339\) −614.533 2212.77i −0.0984568 0.354517i
\(340\) −110.826 −0.0176776
\(341\) −1298.24 + 2248.61i −0.206169 + 0.357095i
\(342\) −1222.51 676.474i −0.193292 0.106958i
\(343\) 6351.19 + 126.517i 0.999802 + 0.0199163i
\(344\) 2123.43 + 1225.96i 0.332812 + 0.192149i
\(345\) −176.593 45.6006i −0.0275577 0.00711610i
\(346\) −2348.13 1355.69i −0.364845 0.210643i
\(347\) 2185.79 + 1261.97i 0.338154 + 0.195233i 0.659455 0.751744i \(-0.270787\pi\)
−0.321302 + 0.946977i \(0.604120\pi\)
\(348\) −624.250 2247.76i −0.0961590 0.346243i
\(349\) −6370.82 3678.20i −0.977142 0.564153i −0.0757357 0.997128i \(-0.524131\pi\)
−0.901406 + 0.432975i \(0.857464\pi\)
\(350\) −2300.46 1348.62i −0.351328 0.205962i
\(351\) −1491.19 + 6241.61i −0.226763 + 0.949152i
\(352\) −2287.12 + 3961.41i −0.346318 + 0.599841i
\(353\) −192.834 −0.0290752 −0.0145376 0.999894i \(-0.504628\pi\)
−0.0145376 + 0.999894i \(0.504628\pi\)
\(354\) −3181.25 821.480i −0.477632 0.123337i
\(355\) 304.809i 0.0455707i
\(356\) −968.748 1677.92i −0.144223 0.249802i
\(357\) 4124.81 + 4104.60i 0.611507 + 0.608512i
\(358\) −1315.69 + 2278.84i −0.194236 + 0.336426i
\(359\) −3707.83 2140.72i −0.545103 0.314715i 0.202042 0.979377i \(-0.435242\pi\)
−0.747144 + 0.664662i \(0.768576\pi\)
\(360\) −60.7282 + 109.747i −0.00889071 + 0.0160671i
\(361\) −2421.59 4194.32i −0.353053 0.611506i
\(362\) −1986.34 3440.44i −0.288397 0.499518i
\(363\) −834.754 + 3232.66i −0.120698 + 0.467412i
\(364\) −4913.18 + 2793.30i −0.707475 + 0.402222i
\(365\) −34.5491 + 19.9469i −0.00495447 + 0.00286046i
\(366\) −935.708 918.841i −0.133634 0.131226i
\(367\) 5775.69i 0.821495i −0.911749 0.410747i \(-0.865268\pi\)
0.911749 0.410747i \(-0.134732\pi\)
\(368\) 3749.11 2164.55i 0.531075 0.306616i
\(369\) −131.839 7247.42i −0.0185996 1.02245i
\(370\) 78.3435i 0.0110078i
\(371\) 6158.95 + 3610.60i 0.861878 + 0.505264i
\(372\) −917.969 3305.37i −0.127942 0.460686i
\(373\) −12373.8 −1.71767 −0.858834 0.512255i \(-0.828810\pi\)
−0.858834 + 0.512255i \(0.828810\pi\)
\(374\) 914.335 1583.67i 0.126415 0.218957i
\(375\) 89.1990 345.431i 0.0122832 0.0475680i
\(376\) −7347.85 + 4242.28i −1.00781 + 0.581859i
\(377\) −3078.07 −0.420500
\(378\) 2876.09 834.647i 0.391349 0.113570i
\(379\) 9640.94 1.30665 0.653327 0.757076i \(-0.273373\pi\)
0.653327 + 0.757076i \(0.273373\pi\)
\(380\) 71.2645 41.1446i 0.00962050 0.00555440i
\(381\) 2623.73 10160.6i 0.352803 1.36626i
\(382\) −1025.43 + 1776.10i −0.137344 + 0.237887i
\(383\) 10541.8 1.40642 0.703212 0.710980i \(-0.251748\pi\)
0.703212 + 0.710980i \(0.251748\pi\)
\(384\) −2051.60 7387.28i −0.272644 0.981720i
\(385\) 116.054 65.9802i 0.0153627 0.00873419i
\(386\) 575.294i 0.0758593i
\(387\) 3354.28 2018.81i 0.440588 0.265173i
\(388\) −966.822 + 558.195i −0.126503 + 0.0730363i
\(389\) 1429.20i 0.186281i 0.995653 + 0.0931406i \(0.0296906\pi\)
−0.995653 + 0.0931406i \(0.970309\pi\)
\(390\) 53.6958 + 52.7279i 0.00697178 + 0.00684611i
\(391\) −6690.78 + 3862.92i −0.865389 + 0.499633i
\(392\) 4984.12 + 2966.51i 0.642184 + 0.382223i
\(393\) −1239.63 + 4800.57i −0.159112 + 0.616174i
\(394\) −2497.34 4325.52i −0.319325 0.553087i
\(395\) 122.511 + 212.195i 0.0156055 + 0.0270295i
\(396\) 2437.28 + 4049.56i 0.309287 + 0.513884i
\(397\) −5532.85 3194.39i −0.699460 0.403834i 0.107686 0.994185i \(-0.465656\pi\)
−0.807146 + 0.590351i \(0.798989\pi\)
\(398\) 949.294 1644.23i 0.119557 0.207079i
\(399\) −4176.22 1108.03i −0.523991 0.139025i
\(400\) 2116.39 + 3665.69i 0.264548 + 0.458211i
\(401\) 15077.6i 1.87765i 0.344396 + 0.938825i \(0.388084\pi\)
−0.344396 + 0.938825i \(0.611916\pi\)
\(402\) −4393.79 1134.59i −0.545130 0.140766i
\(403\) −4526.34 −0.559487
\(404\) −3152.39 + 5460.09i −0.388211 + 0.672401i
\(405\) 106.377 + 169.682i 0.0130516 + 0.0208187i
\(406\) 709.946 + 1248.74i 0.0867833 + 0.152645i
\(407\) −5622.37 3246.08i −0.684744 0.395337i
\(408\) 1421.76 + 5119.40i 0.172519 + 0.621196i
\(409\) 5666.97 + 3271.83i 0.685119 + 0.395554i 0.801781 0.597618i \(-0.203886\pi\)
−0.116662 + 0.993172i \(0.537219\pi\)
\(410\) −73.6169 42.5027i −0.00886751 0.00511966i
\(411\) −6953.13 1795.47i −0.834484 0.215485i
\(412\) 4833.93 + 2790.87i 0.578036 + 0.333729i
\(413\) −10160.2 67.4567i −1.21054 0.00803712i
\(414\) 72.3168 + 3975.38i 0.00858497 + 0.471931i
\(415\) 204.874 354.852i 0.0242334 0.0419735i
\(416\) −7974.12 −0.939815
\(417\) −4374.41 15751.1i −0.513707 1.84973i
\(418\) 1357.80i 0.158880i
\(419\) 3808.29 + 6596.15i 0.444027 + 0.769077i 0.997984 0.0634684i \(-0.0202162\pi\)
−0.553957 + 0.832545i \(0.686883\pi\)
\(420\) −45.2316 + 170.480i −0.00525495 + 0.0198061i
\(421\) 2874.27 4978.38i 0.332739 0.576321i −0.650309 0.759670i \(-0.725360\pi\)
0.983048 + 0.183349i \(0.0586938\pi\)
\(422\) 2042.98 + 1179.52i 0.235665 + 0.136061i
\(423\) 246.398 + 13544.9i 0.0283222 + 1.55692i
\(424\) 3259.27 + 5645.23i 0.373312 + 0.646595i
\(425\) −3776.97 6541.91i −0.431083 0.746657i
\(426\) 6402.59 1778.13i 0.728184 0.202232i
\(427\) −3498.58 2051.00i −0.396506 0.232447i
\(428\) 8144.89 4702.45i 0.919855 0.531079i
\(429\) 6008.89 1668.79i 0.676251 0.187809i
\(430\) 45.9111i 0.00514890i
\(431\) 11353.0 6554.64i 1.26880 0.732543i 0.294040 0.955793i \(-0.405000\pi\)
0.974761 + 0.223251i \(0.0716668\pi\)
\(432\) −4623.48 1104.60i −0.514925 0.123022i
\(433\) 12018.7i 1.33390i −0.745102 0.666951i \(-0.767599\pi\)
0.745102 0.666951i \(-0.232401\pi\)
\(434\) 1043.99 + 1836.28i 0.115468 + 0.203098i
\(435\) −67.3042 + 68.5397i −0.00741837 + 0.00755454i
\(436\) −104.025 −0.0114263
\(437\) 2868.24 4967.94i 0.313974 0.543819i
\(438\) 620.535 + 609.350i 0.0676948 + 0.0664745i
\(439\) −3519.12 + 2031.76i −0.382593 + 0.220890i −0.678946 0.734188i \(-0.737563\pi\)
0.296353 + 0.955079i \(0.404230\pi\)
\(440\) 121.892 0.0132067
\(441\) 7997.43 4669.83i 0.863560 0.504247i
\(442\) 3187.85 0.343056
\(443\) −5733.91 + 3310.47i −0.614958 + 0.355046i −0.774903 0.632080i \(-0.782201\pi\)
0.159946 + 0.987126i \(0.448868\pi\)
\(444\) 8264.65 2295.26i 0.883385 0.245334i
\(445\) −39.8905 + 69.0924i −0.00424942 + 0.00736021i
\(446\) 2239.65 0.237782
\(447\) −1829.87 472.517i −0.193623 0.0499984i
\(448\) −641.939 1129.12i −0.0676981 0.119075i
\(449\) 3211.25i 0.337524i 0.985657 + 0.168762i \(0.0539769\pi\)
−0.985657 + 0.168762i \(0.946023\pi\)
\(450\) −3886.93 + 70.7078i −0.407182 + 0.00740710i
\(451\) −6100.48 + 3522.11i −0.636940 + 0.367738i
\(452\) 2948.61i 0.306839i
\(453\) 671.027 2598.61i 0.0695973 0.269522i
\(454\) 3972.26 2293.39i 0.410634 0.237079i
\(455\) 200.767 + 117.697i 0.0206859 + 0.0121269i
\(456\) −2814.82 2764.08i −0.289071 0.283860i
\(457\) 3926.69 + 6801.23i 0.401932 + 0.696166i 0.993959 0.109752i \(-0.0350056\pi\)
−0.592027 + 0.805918i \(0.701672\pi\)
\(458\) 2156.48 + 3735.14i 0.220013 + 0.381073i
\(459\) 8251.22 + 1971.31i 0.839072 + 0.200464i
\(460\) −202.800 117.086i −0.0205556 0.0118678i
\(461\) 2992.54 5183.22i 0.302335 0.523659i −0.674330 0.738430i \(-0.735567\pi\)
0.976664 + 0.214771i \(0.0689006\pi\)
\(462\) −2062.94 2052.83i −0.207742 0.206724i
\(463\) 9378.59 + 16244.2i 0.941383 + 1.63052i 0.762837 + 0.646591i \(0.223806\pi\)
0.178546 + 0.983932i \(0.442861\pi\)
\(464\) 2280.08i 0.228125i
\(465\) −98.9719 + 100.789i −0.00987034 + 0.0100515i
\(466\) 5605.82 0.557263
\(467\) −4572.53 + 7919.86i −0.453087 + 0.784770i −0.998576 0.0533484i \(-0.983011\pi\)
0.545489 + 0.838118i \(0.316344\pi\)
\(468\) −3989.25 + 7209.30i −0.394024 + 0.712073i
\(469\) −14032.8 93.1678i −1.38161 0.00917290i
\(470\) 137.585 + 79.4347i 0.0135028 + 0.00779585i
\(471\) 4213.94 4291.30i 0.412247 0.419814i
\(472\) −8034.17 4638.53i −0.783480 0.452343i
\(473\) −3294.84 1902.28i −0.320289 0.184919i
\(474\) 3742.52 3811.22i 0.362658 0.369315i
\(475\) 4857.40 + 2804.42i 0.469206 + 0.270896i
\(476\) 3692.66 + 6495.08i 0.355573 + 0.625424i
\(477\) 10406.3 189.303i 0.998897 0.0181711i
\(478\) 2658.05 4603.88i 0.254344 0.440537i
\(479\) −40.6827 −0.00388067 −0.00194033 0.999998i \(-0.500618\pi\)
−0.00194033 + 0.999998i \(0.500618\pi\)
\(480\) −174.360 + 177.561i −0.0165800 + 0.0168844i
\(481\) 11317.5i 1.07284i
\(482\) −544.820 943.657i −0.0514852 0.0891751i
\(483\) 3211.48 + 11868.8i 0.302541 + 1.11811i
\(484\) −2143.36 + 3712.40i −0.201292 + 0.348648i
\(485\) 39.8112 + 22.9850i 0.00372729 + 0.00215195i
\(486\) 2943.65 3224.32i 0.274747 0.300943i
\(487\) 5493.67 + 9515.32i 0.511174 + 0.885380i 0.999916 + 0.0129516i \(0.00412273\pi\)
−0.488742 + 0.872429i \(0.662544\pi\)
\(488\) −1851.43 3206.76i −0.171742 0.297466i
\(489\) 13226.3 + 12987.8i 1.22313 + 1.20109i
\(490\) 1.44206 108.595i 0.000132950 0.0100119i
\(491\) −2232.83 + 1289.12i −0.205226 + 0.118488i −0.599091 0.800681i \(-0.704471\pi\)
0.393865 + 0.919168i \(0.371138\pi\)
\(492\) 2326.93 9011.25i 0.213224 0.825729i
\(493\) 4069.11i 0.371731i
\(494\) −2049.88 + 1183.50i −0.186697 + 0.107790i
\(495\) 94.2296 170.290i 0.00855617 0.0154626i
\(496\) 3352.90i 0.303527i
\(497\) 17863.6 10156.0i 1.61226 0.916621i
\(498\) −8648.91 2233.36i −0.778247 0.200963i
\(499\) −1096.63 −0.0983809 −0.0491904 0.998789i \(-0.515664\pi\)
−0.0491904 + 0.998789i \(0.515664\pi\)
\(500\) 229.032 396.694i 0.0204852 0.0354814i
\(501\) −18773.7 + 5213.84i −1.67414 + 0.464945i
\(502\) 478.014 275.981i 0.0424996 0.0245372i
\(503\) −22314.6 −1.97805 −0.989024 0.147755i \(-0.952795\pi\)
−0.989024 + 0.147755i \(0.952795\pi\)
\(504\) 8455.25 97.6620i 0.747275 0.00863137i
\(505\) 259.614 0.0228766
\(506\) 3346.26 1931.96i 0.293991 0.169736i
\(507\) −388.445 381.443i −0.0340265 0.0334132i
\(508\) 6736.82 11668.5i 0.588382 1.01911i
\(509\) 5432.23 0.473044 0.236522 0.971626i \(-0.423993\pi\)
0.236522 + 0.971626i \(0.423993\pi\)
\(510\) 69.7048 70.9843i 0.00605212 0.00616321i
\(511\) 2320.16 + 1360.16i 0.200857 + 0.117750i
\(512\) 10490.5i 0.905506i
\(513\) −6037.63 + 1795.68i −0.519625 + 0.154544i
\(514\) 4127.94 2383.27i 0.354233 0.204516i
\(515\) 229.842i 0.0196661i
\(516\) 4843.27 1345.08i 0.413204 0.114755i
\(517\) 11401.4 6582.59i 0.969888 0.559965i
\(518\) −4591.39 + 2610.35i −0.389448 + 0.221414i
\(519\) −11778.0 + 3271.00i −0.996142 + 0.276649i
\(520\) 106.245 + 184.021i 0.00895987 + 0.0155189i
\(521\) 5784.74 + 10019.5i 0.486438 + 0.842535i 0.999878 0.0155903i \(-0.00496276\pi\)
−0.513441 + 0.858125i \(0.671629\pi\)
\(522\) 1832.32 + 1013.91i 0.153637 + 0.0850145i
\(523\) 9256.60 + 5344.30i 0.773925 + 0.446826i 0.834273 0.551352i \(-0.185888\pi\)
−0.0603481 + 0.998177i \(0.519221\pi\)
\(524\) −3182.93 + 5512.99i −0.265356 + 0.459611i
\(525\) −11604.7 + 3140.03i −0.964705 + 0.261032i
\(526\) −770.110 1333.87i −0.0638372 0.110569i
\(527\) 5983.69i 0.494599i
\(528\) 1236.16 + 4451.10i 0.101888 + 0.366873i
\(529\) −4157.49 −0.341702
\(530\) 61.0284 105.704i 0.00500170 0.00866320i
\(531\) −12691.2 + 7638.37i −1.03720 + 0.624250i
\(532\) −4785.80 2805.61i −0.390020 0.228644i
\(533\) −10634.7 6139.97i −0.864243 0.498971i
\(534\) 1684.01 + 434.853i 0.136468 + 0.0352396i
\(535\) −335.385 193.635i −0.0271028 0.0156478i
\(536\) −11096.4 6406.50i −0.894200 0.516266i
\(537\) 3174.48 + 11430.5i 0.255100 + 0.918549i
\(538\) 2184.00 + 1260.94i 0.175017 + 0.101046i
\(539\) −7733.67 4603.02i −0.618020 0.367841i
\(540\) 73.3025 + 246.466i 0.00584155 + 0.0196411i
\(541\) −6142.32 + 10638.8i −0.488131 + 0.845468i −0.999907 0.0136513i \(-0.995655\pi\)
0.511776 + 0.859119i \(0.328988\pi\)
\(542\) −4847.75 −0.384186
\(543\) −17341.3 4477.95i −1.37051 0.353899i
\(544\) 10541.5i 0.830818i
\(545\) 2.14174 + 3.70960i 0.000168334 + 0.000291563i
\(546\) 1301.06 4903.76i 0.101979 0.384362i
\(547\) 2319.96 4018.29i 0.181342 0.314094i −0.760996 0.648757i \(-0.775289\pi\)
0.942338 + 0.334663i \(0.108622\pi\)
\(548\) −7985.01 4610.15i −0.622450 0.359372i
\(549\) −5911.31 + 107.534i −0.459542 + 0.00835960i
\(550\) 1888.98 + 3271.80i 0.146448 + 0.253655i
\(551\) −1510.67 2616.56i −0.116800 0.202303i
\(552\) −2806.90 + 10870.0i −0.216431 + 0.838147i
\(553\) 8353.89 14250.0i 0.642394 1.09579i
\(554\) 2104.91 1215.27i 0.161424 0.0931983i
\(555\) −252.009 247.466i −0.0192742 0.0189268i
\(556\) 20989.0i 1.60096i
\(557\) −918.666 + 530.392i −0.0698835 + 0.0403473i −0.534535 0.845147i \(-0.679513\pi\)
0.464651 + 0.885494i \(0.346180\pi\)
\(558\) 2694.45 + 1490.97i 0.204418 + 0.113114i
\(559\) 6632.33i 0.501821i
\(560\) −87.1843 + 148.719i −0.00657895 + 0.0112223i
\(561\) −2206.10 7943.57i −0.166027 0.597822i
\(562\) −6737.12 −0.505673
\(563\) 9805.04 16982.8i 0.733984 1.27130i −0.221183 0.975232i \(-0.570992\pi\)
0.955168 0.296066i \(-0.0956748\pi\)
\(564\) −4348.88 + 16841.4i −0.324682 + 1.25736i
\(565\) −105.150 + 60.7081i −0.00782951 + 0.00452037i
\(566\) −8725.31 −0.647972
\(567\) 6399.98 11888.0i 0.474028 0.880510i
\(568\) 18762.2 1.38600
\(569\) 18029.9 10409.6i 1.32839 0.766945i 0.343337 0.939212i \(-0.388443\pi\)
0.985050 + 0.172267i \(0.0551093\pi\)
\(570\) −18.4690 + 71.5230i −0.00135716 + 0.00525574i
\(571\) −7362.92 + 12753.0i −0.539630 + 0.934667i 0.459294 + 0.888285i \(0.348103\pi\)
−0.998924 + 0.0463823i \(0.985231\pi\)
\(572\) 8007.09 0.585303
\(573\) 2474.14 + 8908.74i 0.180382 + 0.649508i
\(574\) −38.0468 + 5730.55i −0.00276663 + 0.416705i
\(575\) 15961.3i 1.15762i
\(576\) −1656.80 916.784i −0.119849 0.0663183i
\(577\) −14296.1 + 8253.86i −1.03146 + 0.595516i −0.917404 0.397958i \(-0.869719\pi\)
−0.114060 + 0.993474i \(0.536386\pi\)
\(578\) 1448.33i 0.104226i
\(579\) 1850.56 + 1817.20i 0.132827 + 0.130432i
\(580\) −106.812 + 61.6680i −0.00764678 + 0.00441487i
\(581\) −27622.7 183.395i −1.97243 0.0130956i
\(582\) 250.564 970.330i 0.0178457 0.0691091i
\(583\) −5057.29 8759.48i −0.359265 0.622266i
\(584\) 1227.81 + 2126.64i 0.0869988 + 0.150686i
\(585\) 339.222 6.17084i 0.0239745 0.000436124i
\(586\) −185.515 107.107i −0.0130777 0.00755043i
\(587\) 6104.52 10573.3i 0.429234 0.743456i −0.567571 0.823324i \(-0.692117\pi\)
0.996805 + 0.0798686i \(0.0254501\pi\)
\(588\) 11498.2 3029.44i 0.806428 0.212469i
\(589\) −2221.46 3847.68i −0.155405 0.269170i
\(590\) 173.709i 0.0121211i
\(591\) −21802.4 5629.93i −1.51748 0.391852i
\(592\) 8383.49 0.582026
\(593\) −4385.09 + 7595.19i −0.303666 + 0.525965i −0.976963 0.213407i \(-0.931544\pi\)
0.673298 + 0.739372i \(0.264877\pi\)
\(594\) −4126.68 985.912i −0.285050 0.0681018i
\(595\) 155.592 265.408i 0.0107204 0.0182868i
\(596\) −2101.42 1213.26i −0.144426 0.0833842i
\(597\) −2290.44 8247.29i −0.157021 0.565392i
\(598\) 5833.41 + 3367.92i 0.398906 + 0.230308i
\(599\) 19136.2 + 11048.3i 1.30531 + 0.753623i 0.981310 0.192433i \(-0.0616377\pi\)
0.324003 + 0.946056i \(0.394971\pi\)
\(600\) −10628.1 2744.45i −0.723153 0.186736i
\(601\) 10189.4 + 5882.86i 0.691572 + 0.399279i 0.804201 0.594358i \(-0.202594\pi\)
−0.112629 + 0.993637i \(0.535927\pi\)
\(602\) −2690.66 + 1529.73i −0.182165 + 0.103566i
\(603\) −17528.5 + 10549.7i −1.18377 + 0.712468i
\(604\) 1722.96 2984.26i 0.116070 0.201039i
\(605\) 176.516 0.0118618
\(606\) −1514.48 5453.26i −0.101521 0.365550i
\(607\) 8352.53i 0.558515i 0.960216 + 0.279258i \(0.0900884\pi\)
−0.960216 + 0.279258i \(0.909912\pi\)
\(608\) −3913.58 6778.52i −0.261047 0.452147i
\(609\) 6259.37 + 1660.73i 0.416490 + 0.110503i
\(610\) −34.6671 + 60.0451i −0.00230103 + 0.00398550i
\(611\) 19875.6 + 11475.2i 1.31601 + 0.759797i
\(612\) 9530.49 + 5273.67i 0.629489 + 0.348326i
\(613\) −6844.06 11854.3i −0.450945 0.781059i 0.547500 0.836805i \(-0.315579\pi\)
−0.998445 + 0.0557466i \(0.982246\pi\)
\(614\) −1502.99 2603.25i −0.0987877 0.171105i
\(615\) −369.256 + 102.550i −0.0242111 + 0.00672393i
\(616\) −4061.35 7143.58i −0.265644 0.467245i
\(617\) 2227.88 1286.27i 0.145366 0.0839274i −0.425553 0.904934i \(-0.639920\pi\)
0.570919 + 0.821006i \(0.306587\pi\)
\(618\) −4827.88 + 1340.80i −0.314249 + 0.0872735i
\(619\) 27393.3i 1.77872i 0.457206 + 0.889361i \(0.348850\pi\)
−0.457206 + 0.889361i \(0.651150\pi\)
\(620\) −157.069 + 90.6838i −0.0101743 + 0.00587411i
\(621\) 13016.1 + 12324.6i 0.841094 + 0.796406i
\(622\) 4257.26i 0.274438i
\(623\) 5378.36 + 35.7085i 0.345874 + 0.00229636i
\(624\) −5642.39 + 5745.96i −0.361981 + 0.368626i
\(625\) 15596.7 0.998189
\(626\) −3933.71 + 6813.39i −0.251154 + 0.435012i
\(627\) 4367.65 + 4288.92i 0.278194 + 0.273179i
\(628\) 6687.55 3861.06i 0.424940 0.245339i
\(629\) −14961.5 −0.948414
\(630\) −80.7439 136.195i −0.00510621 0.00861293i
\(631\) −15166.2 −0.956822 −0.478411 0.878136i \(-0.658787\pi\)
−0.478411 + 0.878136i \(0.658787\pi\)
\(632\) 13061.4 7541.02i 0.822082 0.474629i
\(633\) 10247.4 2845.92i 0.643441 0.178697i
\(634\) 1768.17 3062.56i 0.110762 0.191845i
\(635\) −554.810 −0.0346724
\(636\) 12939.0 + 3341.17i 0.806704 + 0.208311i
\(637\) 208.320 15687.7i 0.0129575 0.975778i
\(638\) 2035.08i 0.126285i
\(639\) 14504.3 26212.0i 0.897939 1.62274i
\(640\) −351.038 + 202.672i −0.0216813 + 0.0125177i
\(641\) 22415.6i 1.38122i 0.723226 + 0.690612i \(0.242659\pi\)
−0.723226 + 0.690612i \(0.757341\pi\)
\(642\) −2110.84 + 8174.44i −0.129764 + 0.502522i
\(643\) 14768.9 8526.82i 0.905798 0.522963i 0.0267213 0.999643i \(-0.491493\pi\)
0.879077 + 0.476680i \(0.158160\pi\)
\(644\) −104.811 + 15786.5i −0.00641326 + 0.965956i
\(645\) −147.683 145.021i −0.00901553 0.00885302i
\(646\) 1564.55 + 2709.88i 0.0952886 + 0.165045i
\(647\) 13132.8 + 22746.6i 0.797995 + 1.38217i 0.920920 + 0.389752i \(0.127439\pi\)
−0.122925 + 0.992416i \(0.539227\pi\)
\(648\) 10444.6 6547.91i 0.633184 0.396954i
\(649\) 12466.3 + 7197.43i 0.754000 + 0.435322i
\(650\) −3292.98 + 5703.62i −0.198710 + 0.344176i
\(651\) 9204.49 + 2442.13i 0.554151 + 0.147027i
\(652\) 11900.2 + 20611.8i 0.714798 + 1.23807i
\(653\) 153.742i 0.00921345i 0.999989 + 0.00460672i \(0.00146637\pi\)
−0.999989 + 0.00460672i \(0.998534\pi\)
\(654\) 65.4270 66.6280i 0.00391192 0.00398373i
\(655\) 262.129 0.0156370
\(656\) 4548.19 7877.70i 0.270697 0.468861i
\(657\) 3920.22 71.3132i 0.232789 0.00423469i
\(658\) 71.1069 10710.0i 0.00421282 0.634529i
\(659\) −9292.80 5365.20i −0.549311 0.317145i 0.199533 0.979891i \(-0.436058\pi\)
−0.748844 + 0.662746i \(0.769391\pi\)
\(660\) 175.081 178.295i 0.0103258 0.0105153i
\(661\) −27734.8 16012.7i −1.63201 0.942243i −0.983471 0.181063i \(-0.942046\pi\)
−0.648541 0.761180i \(-0.724621\pi\)
\(662\) 909.258 + 524.960i 0.0533826 + 0.0308205i
\(663\) 10069.6 10254.4i 0.589850 0.600677i
\(664\) −21842.6 12610.8i −1.27659 0.737040i
\(665\) −1.51661 + 228.429i −8.84383e−5 + 0.0133204i
\(666\) −3727.97 + 6737.13i −0.216901 + 0.391980i
\(667\) −4298.96 + 7446.01i −0.249560 + 0.432250i
\(668\) −25016.7 −1.44899
\(669\) 7074.47 7204.34i 0.408841 0.416346i
\(670\) 239.918i 0.0138341i
\(671\) 2872.79 + 4975.81i 0.165280 + 0.286273i
\(672\) 16215.7 + 4302.33i 0.930853 + 0.246973i
\(673\) −6229.97 + 10790.6i −0.356831 + 0.618050i −0.987430 0.158059i \(-0.949476\pi\)
0.630598 + 0.776110i \(0.282810\pi\)
\(674\) 4750.65 + 2742.79i 0.271496 + 0.156748i
\(675\) −12050.4 + 12726.5i −0.687138 + 0.725695i
\(676\) −349.500 605.352i −0.0198851 0.0344420i
\(677\) 4805.25 + 8322.94i 0.272793 + 0.472491i 0.969576 0.244791i \(-0.0787193\pi\)
−0.696783 + 0.717282i \(0.745386\pi\)
\(678\) 1888.59 + 1854.55i 0.106978 + 0.105049i
\(679\) 20.5753 3099.02i 0.00116290 0.175154i
\(680\) 243.270 140.452i 0.0137191 0.00792073i
\(681\) 5170.15 20021.9i 0.290926 1.12664i
\(682\) 2992.62i 0.168026i
\(683\) 24434.5 14107.2i 1.36890 0.790335i 0.378113 0.925760i \(-0.376573\pi\)
0.990788 + 0.135425i \(0.0432398\pi\)
\(684\) −8086.24 + 147.098i −0.452025 + 0.00822285i
\(685\) 379.668i 0.0211772i
\(686\) −6412.38 + 3533.81i −0.356889 + 0.196679i
\(687\) 18826.7 + 4861.52i 1.04553 + 0.269983i
\(688\) 4912.92 0.272243
\(689\) 8816.19 15270.1i 0.487475 0.844331i
\(690\) 202.546 56.2512i 0.0111751 0.00310354i
\(691\) 2458.51 1419.42i 0.135349 0.0781439i −0.430796 0.902449i \(-0.641767\pi\)
0.566146 + 0.824305i \(0.308434\pi\)
\(692\) −15694.7 −0.862172
\(693\) −13119.7 + 151.538i −0.719157 + 0.00830659i
\(694\) −2909.01 −0.159113
\(695\) −748.483 + 432.137i −0.0408512 + 0.0235854i
\(696\) 4218.89 + 4142.85i 0.229766 + 0.225624i
\(697\) −8116.85 + 14058.8i −0.441102 + 0.764010i
\(698\) 8478.76 0.459779
\(699\) 17707.3 18032.4i 0.958158 0.975746i
\(700\) −15435.3 102.479i −0.833426 0.00553336i
\(701\) 5765.47i 0.310640i −0.987864 0.155320i \(-0.950359\pi\)
0.987864 0.155320i \(-0.0496409\pi\)
\(702\) −2108.50 7089.44i −0.113362 0.381159i
\(703\) 9620.64 5554.48i 0.516144 0.297996i
\(704\) 1840.14i 0.0985126i
\(705\) 690.114 191.659i 0.0368670 0.0102387i
\(706\) 192.479 111.128i 0.0102607 0.00592399i
\(707\) −8650.18 15214.9i −0.460146 0.809359i
\(708\) −18325.0 + 5089.22i −0.972732 + 0.270148i
\(709\) −2400.73 4158.18i −0.127167 0.220259i 0.795411 0.606070i \(-0.207255\pi\)
−0.922578 + 0.385811i \(0.873922\pi\)
\(710\) −175.657 304.247i −0.00928492 0.0160819i
\(711\) −437.994 24077.3i −0.0231027 1.27000i
\(712\) 4252.92 + 2455.42i 0.223855 + 0.129243i
\(713\) −6321.68 + 10949.5i −0.332046 + 0.575121i
\(714\) −6482.62 1719.96i −0.339784 0.0901513i
\(715\) −164.856 285.538i −0.00862273 0.0149350i
\(716\) 15231.6i 0.795014i
\(717\) −6413.31 23092.7i −0.334044 1.20281i
\(718\) 4934.65 0.256490
\(719\) 2528.38 4379.29i 0.131144 0.227149i −0.792974 0.609256i \(-0.791468\pi\)
0.924118 + 0.382107i \(0.124802\pi\)
\(720\) 4.57106 + 251.280i 0.000236602 + 0.0130064i
\(721\) −13470.1 + 7658.18i −0.695774 + 0.395569i
\(722\) 4834.25 + 2791.05i 0.249186 + 0.143867i
\(723\) −4756.43 1228.23i −0.244666 0.0631788i
\(724\) −19914.8 11497.8i −1.02228 0.590211i
\(725\) −7280.34 4203.31i −0.372945 0.215320i
\(726\) −1029.72 3707.75i −0.0526398 0.189542i
\(727\) −8680.56 5011.72i −0.442839 0.255673i 0.261962 0.965078i \(-0.415630\pi\)
−0.704801 + 0.709405i \(0.748964\pi\)
\(728\) 7244.73 12358.0i 0.368829 0.629147i
\(729\) −1073.52 19653.7i −0.0545403 0.998512i
\(730\) 22.9902 39.8202i 0.00116563 0.00201892i
\(731\) −8767.75 −0.443621
\(732\) −7349.97 1897.95i −0.371124 0.0958335i
\(733\) 31917.2i 1.60831i 0.594422 + 0.804153i \(0.297381\pi\)
−0.594422 + 0.804153i \(0.702619\pi\)
\(734\) 3328.44 + 5765.03i 0.167378 + 0.289906i
\(735\) −344.766 347.663i −0.0173019 0.0174473i
\(736\) −11137.0 + 19289.8i −0.557765 + 0.966077i
\(737\) 17217.8 + 9940.73i 0.860553 + 0.496841i
\(738\) 4308.18 + 7158.07i 0.214886 + 0.357036i
\(739\) 4191.82 + 7260.45i 0.208659 + 0.361407i 0.951292 0.308291i \(-0.0997569\pi\)
−0.742634 + 0.669698i \(0.766424\pi\)
\(740\) −226.743 392.731i −0.0112638 0.0195095i
\(741\) −2668.05 + 10332.3i −0.132271 + 0.512233i
\(742\) −8228.32 54.6302i −0.407104 0.00270288i
\(743\) 14035.0 8103.09i 0.692992 0.400099i −0.111740 0.993737i \(-0.535642\pi\)
0.804732 + 0.593638i \(0.202309\pi\)
\(744\) 6203.95 + 6092.12i 0.305709 + 0.300199i
\(745\) 99.9176i 0.00491369i
\(746\) 12351.0 7130.82i 0.606167 0.349971i
\(747\) −34503.7 + 20766.5i −1.68999 + 1.01714i
\(748\) 10585.1i 0.517421i
\(749\) −173.334 + 26107.4i −0.00845594 + 1.27362i
\(750\) 110.032 + 396.198i 0.00535709 + 0.0192895i
\(751\) −29812.4 −1.44856 −0.724281 0.689505i \(-0.757828\pi\)
−0.724281 + 0.689505i \(0.757828\pi\)
\(752\) −8500.26 + 14722.9i −0.412198 + 0.713948i
\(753\) 622.165 2409.39i 0.0301102 0.116604i
\(754\) 3072.39 1773.84i 0.148395 0.0856758i
\(755\) −141.894 −0.00683981
\(756\) 12002.0 12508.1i 0.577391 0.601737i
\(757\) 29462.2 1.41456 0.707281 0.706933i \(-0.249922\pi\)
0.707281 + 0.706933i \(0.249922\pi\)
\(758\) −9623.15 + 5555.93i −0.461120 + 0.266227i
\(759\) 4355.36 16866.5i 0.208287 0.806610i
\(760\) −104.286 + 180.630i −0.00497746 + 0.00862121i
\(761\) −1305.63 −0.0621931 −0.0310965 0.999516i \(-0.509900\pi\)
−0.0310965 + 0.999516i \(0.509900\pi\)
\(762\) 3236.54 + 11653.9i 0.153868 + 0.554038i
\(763\) 146.043 249.120i 0.00692939 0.0118201i
\(764\) 11871.3i 0.562156i
\(765\) −8.15767 448.442i −0.000385544 0.0211940i
\(766\) −10522.3 + 6075.08i −0.496329 + 0.286556i
\(767\) 25094.0i 1.18135i
\(768\) 4224.91 + 4148.76i 0.198507 + 0.194929i
\(769\) −1387.38 + 801.002i −0.0650586 + 0.0375616i −0.532176 0.846633i \(-0.678626\pi\)
0.467118 + 0.884195i \(0.345292\pi\)
\(770\) −77.8162 + 132.739i −0.00364195 + 0.00621242i
\(771\) 5372.77 20806.6i 0.250967 0.971893i
\(772\) 1665.03 + 2883.91i 0.0776239 + 0.134449i
\(773\) −9429.57