Properties

Label 63.4.s
Level $63$
Weight $4$
Character orbit 63.s
Rep. character $\chi_{63}(47,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $44$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.s (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(63, [\chi])\).

Total New Old
Modular forms 52 52 0
Cusp forms 44 44 0
Eisenstein series 8 8 0

Trace form

\( 44q - 3q^{2} - 3q^{3} + 81q^{4} - 6q^{5} - 24q^{6} + 5q^{7} - 3q^{9} + O(q^{10}) \) \( 44q - 3q^{2} - 3q^{3} + 81q^{4} - 6q^{5} - 24q^{6} + 5q^{7} - 3q^{9} - 6q^{10} - 3q^{12} + 36q^{13} + 129q^{14} - 141q^{15} - 263q^{16} + 72q^{17} - 15q^{18} - 6q^{19} - 24q^{20} - 306q^{21} + 14q^{22} - 66q^{24} + 698q^{25} + 96q^{26} - 432q^{27} - 156q^{28} - 132q^{29} + 852q^{30} + 177q^{31} - 501q^{32} + 849q^{33} - 24q^{34} - 765q^{35} + 1122q^{36} + 82q^{37} - 1746q^{38} - 645q^{39} - 618q^{41} - 963q^{42} + 82q^{43} - 603q^{44} + 303q^{45} + 266q^{46} - 201q^{47} + 1569q^{48} + 515q^{49} - 1845q^{50} + 417q^{51} - 564q^{53} - 684q^{54} + 3600q^{56} + 1170q^{57} - 538q^{58} + 747q^{59} - 516q^{60} - 1209q^{61} + 2904q^{62} + 1557q^{63} - 1144q^{64} - 831q^{65} + 1029q^{66} + 295q^{67} + 7008q^{68} + 1005q^{69} - 390q^{70} - 1119q^{72} - 6q^{73} - 1788q^{75} + 144q^{76} - 1203q^{77} - 5985q^{78} - 551q^{79} + 4239q^{80} + 3741q^{81} + 18q^{82} - 1830q^{83} - 7725q^{84} - 237q^{85} - 2130q^{87} + 1246q^{88} - 4266q^{89} - 9993q^{90} - 1140q^{91} + 7896q^{92} - 1479q^{93} - 3q^{94} - 1053q^{95} + 5034q^{96} + 792q^{97} - 5667q^{98} + 4335q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
63.4.s.a \(44\) \(3.717\) None \(-3\) \(-3\) \(-6\) \(5\)