Properties

Label 63.4.h.a.25.12
Level $63$
Weight $4$
Character 63.25
Analytic conductor $3.717$
Analytic rank $0$
Dimension $44$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 63.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.71712033036\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 25.12
Character \(\chi\) \(=\) 63.25
Dual form 63.4.h.a.58.12

$q$-expansion

\(f(q)\) \(=\) \(q+0.534259 q^{2} +(1.18489 - 5.05925i) q^{3} -7.71457 q^{4} +(0.696621 - 1.20658i) q^{5} +(0.633036 - 2.70295i) q^{6} +(-2.10659 - 18.4001i) q^{7} -8.39564 q^{8} +(-24.1921 - 11.9893i) q^{9} +O(q^{10})\) \(q+0.534259 q^{2} +(1.18489 - 5.05925i) q^{3} -7.71457 q^{4} +(0.696621 - 1.20658i) q^{5} +(0.633036 - 2.70295i) q^{6} +(-2.10659 - 18.4001i) q^{7} -8.39564 q^{8} +(-24.1921 - 11.9893i) q^{9} +(0.372176 - 0.644627i) q^{10} +(-9.69762 - 16.7968i) q^{11} +(-9.14088 + 39.0300i) q^{12} +(4.05999 + 7.03211i) q^{13} +(-1.12546 - 9.83039i) q^{14} +(-5.27899 - 4.95404i) q^{15} +57.2311 q^{16} +(28.8598 - 49.9867i) q^{17} +(-12.9248 - 6.40538i) q^{18} +(35.7871 + 61.9851i) q^{19} +(-5.37413 + 9.30826i) q^{20} +(-95.5866 - 11.1442i) q^{21} +(-5.18104 - 8.97382i) q^{22} +(105.165 - 182.151i) q^{23} +(-9.94788 + 42.4757i) q^{24} +(61.5294 + 106.572i) q^{25} +(2.16909 + 3.75697i) q^{26} +(-89.3217 + 108.188i) q^{27} +(16.2514 + 141.949i) q^{28} +(-78.1687 + 135.392i) q^{29} +(-2.82035 - 2.64674i) q^{30} +111.132 q^{31} +97.7414 q^{32} +(-96.4697 + 29.1605i) q^{33} +(15.4186 - 26.7058i) q^{34} +(-23.6687 - 10.2761i) q^{35} +(186.632 + 92.4921i) q^{36} +(26.2246 + 45.4224i) q^{37} +(19.1196 + 33.1161i) q^{38} +(40.3878 - 12.2083i) q^{39} +(-5.84858 + 10.1300i) q^{40} +(-201.952 - 349.790i) q^{41} +(-51.0680 - 5.95390i) q^{42} +(89.7250 - 155.408i) q^{43} +(74.8130 + 129.580i) q^{44} +(-31.3188 + 20.8378i) q^{45} +(56.1854 - 97.3160i) q^{46} -92.8201 q^{47} +(67.8123 - 289.547i) q^{48} +(-334.125 + 77.5226i) q^{49} +(32.8726 + 56.9371i) q^{50} +(-218.700 - 205.238i) q^{51} +(-31.3211 - 54.2497i) q^{52} +(214.618 - 371.730i) q^{53} +(-47.7209 + 57.8004i) q^{54} -27.0223 q^{55} +(17.6861 + 154.480i) q^{56} +(356.002 - 107.611i) q^{57} +(-41.7623 + 72.3344i) q^{58} -389.746 q^{59} +(40.7251 + 38.2183i) q^{60} -352.315 q^{61} +59.3735 q^{62} +(-169.641 + 470.392i) q^{63} -405.630 q^{64} +11.3131 q^{65} +(-51.5398 + 15.5792i) q^{66} +862.471 q^{67} +(-222.641 + 385.626i) q^{68} +(-796.942 - 747.886i) q^{69} +(-12.6452 - 5.49009i) q^{70} +377.064 q^{71} +(203.108 + 100.658i) q^{72} +(183.741 - 318.248i) q^{73} +(14.0107 + 24.2673i) q^{74} +(612.081 - 185.017i) q^{75} +(-276.082 - 478.188i) q^{76} +(-288.633 + 213.821i) q^{77} +(21.5776 - 6.52237i) q^{78} -309.996 q^{79} +(39.8684 - 69.0540i) q^{80} +(441.514 + 580.091i) q^{81} +(-107.894 - 186.879i) q^{82} +(110.580 - 191.530i) q^{83} +(737.410 + 85.9729i) q^{84} +(-40.2087 - 69.6435i) q^{85} +(47.9364 - 83.0282i) q^{86} +(592.362 + 555.899i) q^{87} +(81.4178 + 141.020i) q^{88} +(712.416 + 1233.94i) q^{89} +(-16.7323 + 11.1328i) q^{90} +(120.839 - 89.5178i) q^{91} +(-811.304 + 1405.22i) q^{92} +(131.679 - 562.247i) q^{93} -49.5899 q^{94} +99.7202 q^{95} +(115.812 - 494.498i) q^{96} +(-288.900 + 500.389i) q^{97} +(-178.509 + 41.4171i) q^{98} +(33.2245 + 522.617i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44q - 2q^{2} - q^{3} + 158q^{4} - 19q^{5} - 20q^{6} - 7q^{7} - 24q^{8} + 11q^{9} + O(q^{10}) \) \( 44q - 2q^{2} - q^{3} + 158q^{4} - 19q^{5} - 20q^{6} - 7q^{7} - 24q^{8} + 11q^{9} - 18q^{10} + 5q^{11} - 62q^{12} - 14q^{13} - 52q^{14} + 119q^{15} + 494q^{16} - 162q^{17} - 188q^{18} + 58q^{19} - 362q^{20} - 59q^{21} - 18q^{22} - 93q^{23} + 30q^{24} - 349q^{25} - 266q^{26} + 272q^{27} - 172q^{28} + 248q^{29} + 85q^{30} - 122q^{31} + 326q^{32} + 77q^{33} + 6q^{34} + 289q^{35} - 806q^{36} - 86q^{37} - 761q^{38} - 256q^{39} - 18q^{40} - 692q^{41} - 364q^{42} - 86q^{43} - 443q^{44} + 527q^{45} - 270q^{46} + 2010q^{47} - 1013q^{48} + 317q^{49} + 239q^{50} + 1209q^{51} - 335q^{52} + 258q^{53} + 577q^{54} - 870q^{55} - 1752q^{56} + 566q^{57} + 237q^{58} + 3330q^{59} + 1669q^{60} - 878q^{61} + 1812q^{62} + 2872q^{63} + 872q^{64} + 1226q^{65} + 1330q^{66} - 590q^{67} - 1374q^{68} + 1389q^{69} + 1251q^{70} + 636q^{71} - 5970q^{72} - 338q^{73} + 1119q^{74} + 2737q^{75} + 1006q^{76} + 2269q^{77} + 157q^{78} - 266q^{79} - 4817q^{80} - 505q^{81} + 6q^{82} - 1356q^{83} - 6013q^{84} + 483q^{85} - 3343q^{86} - 5755q^{87} + 369q^{88} - 2200q^{89} + 2665q^{90} + 1552q^{91} - 396q^{92} - 129q^{93} + 2382q^{94} - 6166q^{95} - 5941q^{96} - 266q^{97} + 3601q^{98} - 5395q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.534259 0.188889 0.0944445 0.995530i \(-0.469893\pi\)
0.0944445 + 0.995530i \(0.469893\pi\)
\(3\) 1.18489 5.05925i 0.228031 0.973654i
\(4\) −7.71457 −0.964321
\(5\) 0.696621 1.20658i 0.0623077 0.107920i −0.833189 0.552989i \(-0.813487\pi\)
0.895497 + 0.445068i \(0.146821\pi\)
\(6\) 0.633036 2.70295i 0.0430726 0.183912i
\(7\) −2.10659 18.4001i −0.113745 0.993510i
\(8\) −8.39564 −0.371039
\(9\) −24.1921 11.9893i −0.896003 0.444047i
\(10\) 0.372176 0.644627i 0.0117692 0.0203849i
\(11\) −9.69762 16.7968i −0.265813 0.460402i 0.701963 0.712213i \(-0.252307\pi\)
−0.967776 + 0.251811i \(0.918974\pi\)
\(12\) −9.14088 + 39.0300i −0.219896 + 0.938915i
\(13\) 4.05999 + 7.03211i 0.0866184 + 0.150027i 0.906080 0.423107i \(-0.139061\pi\)
−0.819461 + 0.573134i \(0.805727\pi\)
\(14\) −1.12546 9.83039i −0.0214852 0.187663i
\(15\) −5.27899 4.95404i −0.0908686 0.0852752i
\(16\) 57.2311 0.894236
\(17\) 28.8598 49.9867i 0.411737 0.713150i −0.583342 0.812226i \(-0.698255\pi\)
0.995080 + 0.0990761i \(0.0315887\pi\)
\(18\) −12.9248 6.40538i −0.169245 0.0838757i
\(19\) 35.7871 + 61.9851i 0.432112 + 0.748440i 0.997055 0.0766902i \(-0.0244352\pi\)
−0.564943 + 0.825130i \(0.691102\pi\)
\(20\) −5.37413 + 9.30826i −0.0600846 + 0.104070i
\(21\) −95.5866 11.1442i −0.993272 0.115803i
\(22\) −5.18104 8.97382i −0.0502092 0.0869648i
\(23\) 105.165 182.151i 0.953411 1.65136i 0.215449 0.976515i \(-0.430878\pi\)
0.737962 0.674842i \(-0.235788\pi\)
\(24\) −9.94788 + 42.4757i −0.0846085 + 0.361263i
\(25\) 61.5294 + 106.572i 0.492236 + 0.852577i
\(26\) 2.16909 + 3.75697i 0.0163613 + 0.0283385i
\(27\) −89.3217 + 108.188i −0.636665 + 0.771140i
\(28\) 16.2514 + 141.949i 0.109687 + 0.958062i
\(29\) −78.1687 + 135.392i −0.500537 + 0.866955i 0.499463 + 0.866335i \(0.333531\pi\)
−1.00000 0.000619685i \(0.999803\pi\)
\(30\) −2.82035 2.64674i −0.0171641 0.0161076i
\(31\) 111.132 0.643870 0.321935 0.946762i \(-0.395667\pi\)
0.321935 + 0.946762i \(0.395667\pi\)
\(32\) 97.7414 0.539950
\(33\) −96.4697 + 29.1605i −0.508886 + 0.153824i
\(34\) 15.4186 26.7058i 0.0777727 0.134706i
\(35\) −23.6687 10.2761i −0.114307 0.0496279i
\(36\) 186.632 + 92.4921i 0.864035 + 0.428204i
\(37\) 26.2246 + 45.4224i 0.116522 + 0.201821i 0.918387 0.395683i \(-0.129492\pi\)
−0.801865 + 0.597505i \(0.796159\pi\)
\(38\) 19.1196 + 33.1161i 0.0816212 + 0.141372i
\(39\) 40.3878 12.2083i 0.165826 0.0501253i
\(40\) −5.84858 + 10.1300i −0.0231185 + 0.0400425i
\(41\) −201.952 349.790i −0.769257 1.33239i −0.937966 0.346726i \(-0.887293\pi\)
0.168709 0.985666i \(-0.446040\pi\)
\(42\) −51.0680 5.95390i −0.187618 0.0218740i
\(43\) 89.7250 155.408i 0.318208 0.551152i −0.661906 0.749586i \(-0.730252\pi\)
0.980114 + 0.198435i \(0.0635857\pi\)
\(44\) 74.8130 + 129.580i 0.256329 + 0.443975i
\(45\) −31.3188 + 20.8378i −0.103749 + 0.0690292i
\(46\) 56.1854 97.3160i 0.180089 0.311923i
\(47\) −92.8201 −0.288068 −0.144034 0.989573i \(-0.546007\pi\)
−0.144034 + 0.989573i \(0.546007\pi\)
\(48\) 67.8123 289.547i 0.203914 0.870676i
\(49\) −334.125 + 77.5226i −0.974124 + 0.226013i
\(50\) 32.8726 + 56.9371i 0.0929779 + 0.161042i
\(51\) −218.700 205.238i −0.600472 0.563510i
\(52\) −31.3211 54.2497i −0.0835279 0.144675i
\(53\) 214.618 371.730i 0.556229 0.963416i −0.441578 0.897223i \(-0.645581\pi\)
0.997807 0.0661934i \(-0.0210854\pi\)
\(54\) −47.7209 + 57.8004i −0.120259 + 0.145660i
\(55\) −27.0223 −0.0662488
\(56\) 17.6861 + 154.480i 0.0422037 + 0.368631i
\(57\) 356.002 107.611i 0.827256 0.250060i
\(58\) −41.7623 + 72.3344i −0.0945458 + 0.163758i
\(59\) −389.746 −0.860010 −0.430005 0.902827i \(-0.641488\pi\)
−0.430005 + 0.902827i \(0.641488\pi\)
\(60\) 40.7251 + 38.2183i 0.0876265 + 0.0822327i
\(61\) −352.315 −0.739498 −0.369749 0.929132i \(-0.620556\pi\)
−0.369749 + 0.929132i \(0.620556\pi\)
\(62\) 59.3735 0.121620
\(63\) −169.641 + 470.392i −0.339250 + 0.940696i
\(64\) −405.630 −0.792245
\(65\) 11.3131 0.0215879
\(66\) −51.5398 + 15.5792i −0.0961229 + 0.0290556i
\(67\) 862.471 1.57265 0.786325 0.617813i \(-0.211981\pi\)
0.786325 + 0.617813i \(0.211981\pi\)
\(68\) −222.641 + 385.626i −0.397047 + 0.687706i
\(69\) −796.942 747.886i −1.39044 1.30485i
\(70\) −12.6452 5.49009i −0.0215913 0.00937417i
\(71\) 377.064 0.630272 0.315136 0.949047i \(-0.397950\pi\)
0.315136 + 0.949047i \(0.397950\pi\)
\(72\) 203.108 + 100.658i 0.332452 + 0.164759i
\(73\) 183.741 318.248i 0.294592 0.510248i −0.680298 0.732936i \(-0.738150\pi\)
0.974890 + 0.222688i \(0.0714830\pi\)
\(74\) 14.0107 + 24.2673i 0.0220097 + 0.0381219i
\(75\) 612.081 185.017i 0.942360 0.284853i
\(76\) −276.082 478.188i −0.416694 0.721736i
\(77\) −288.633 + 213.821i −0.427179 + 0.316456i
\(78\) 21.5776 6.52237i 0.0313228 0.00946812i
\(79\) −309.996 −0.441485 −0.220742 0.975332i \(-0.570848\pi\)
−0.220742 + 0.975332i \(0.570848\pi\)
\(80\) 39.8684 69.0540i 0.0557177 0.0965060i
\(81\) 441.514 + 580.091i 0.605644 + 0.795736i
\(82\) −107.894 186.879i −0.145304 0.251674i
\(83\) 110.580 191.530i 0.146237 0.253291i −0.783597 0.621270i \(-0.786617\pi\)
0.929834 + 0.367980i \(0.119950\pi\)
\(84\) 737.410 + 85.9729i 0.957833 + 0.111672i
\(85\) −40.2087 69.6435i −0.0513088 0.0888694i
\(86\) 47.9364 83.0282i 0.0601059 0.104107i
\(87\) 592.362 + 555.899i 0.729976 + 0.685042i
\(88\) 81.4178 + 141.020i 0.0986269 + 0.170827i
\(89\) 712.416 + 1233.94i 0.848494 + 1.46963i 0.882552 + 0.470215i \(0.155824\pi\)
−0.0340580 + 0.999420i \(0.510843\pi\)
\(90\) −16.7323 + 11.1328i −0.0195971 + 0.0130388i
\(91\) 120.839 89.5178i 0.139201 0.103121i
\(92\) −811.304 + 1405.22i −0.919395 + 1.59244i
\(93\) 131.679 562.247i 0.146823 0.626907i
\(94\) −49.5899 −0.0544129
\(95\) 99.7202 0.107696
\(96\) 115.812 494.498i 0.123126 0.525724i
\(97\) −288.900 + 500.389i −0.302406 + 0.523782i −0.976680 0.214699i \(-0.931123\pi\)
0.674275 + 0.738481i \(0.264456\pi\)
\(98\) −178.509 + 41.4171i −0.184001 + 0.0426914i
\(99\) 33.2245 + 522.617i 0.0337292 + 0.530555i
\(100\) −474.673 822.158i −0.474673 0.822158i
\(101\) 430.418 + 745.506i 0.424042 + 0.734462i 0.996330 0.0855905i \(-0.0272777\pi\)
−0.572289 + 0.820052i \(0.693944\pi\)
\(102\) −116.842 109.650i −0.113423 0.106441i
\(103\) −758.108 + 1313.08i −0.725229 + 1.25613i 0.233651 + 0.972321i \(0.424933\pi\)
−0.958880 + 0.283813i \(0.908401\pi\)
\(104\) −34.0862 59.0391i −0.0321388 0.0556660i
\(105\) −80.0341 + 107.570i −0.0743860 + 0.0999785i
\(106\) 114.662 198.600i 0.105065 0.181979i
\(107\) 636.666 + 1102.74i 0.575223 + 0.996315i 0.996017 + 0.0891594i \(0.0284180\pi\)
−0.420794 + 0.907156i \(0.638249\pi\)
\(108\) 689.078 834.623i 0.613950 0.743627i
\(109\) −148.428 + 257.085i −0.130430 + 0.225911i −0.923842 0.382773i \(-0.874969\pi\)
0.793413 + 0.608684i \(0.208302\pi\)
\(110\) −14.4369 −0.0125137
\(111\) 260.877 78.8567i 0.223075 0.0674301i
\(112\) −120.562 1053.06i −0.101715 0.888432i
\(113\) −834.841 1445.99i −0.695002 1.20378i −0.970180 0.242386i \(-0.922070\pi\)
0.275178 0.961393i \(-0.411263\pi\)
\(114\) 190.197 57.4920i 0.156260 0.0472335i
\(115\) −146.521 253.781i −0.118810 0.205784i
\(116\) 603.038 1044.49i 0.482678 0.836023i
\(117\) −13.9097 218.798i −0.0109911 0.172888i
\(118\) −208.225 −0.162446
\(119\) −980.554 425.721i −0.755355 0.327948i
\(120\) 44.3205 + 41.5924i 0.0337158 + 0.0316404i
\(121\) 477.412 826.902i 0.358687 0.621264i
\(122\) −188.228 −0.139683
\(123\) −2008.97 + 607.262i −1.47270 + 0.445163i
\(124\) −857.339 −0.620897
\(125\) 345.606 0.247295
\(126\) −90.6321 + 251.311i −0.0640805 + 0.177687i
\(127\) 1419.40 0.991745 0.495873 0.868395i \(-0.334848\pi\)
0.495873 + 0.868395i \(0.334848\pi\)
\(128\) −998.642 −0.689596
\(129\) −679.936 638.083i −0.464070 0.435504i
\(130\) 6.04412 0.00407773
\(131\) 628.817 1089.14i 0.419389 0.726404i −0.576489 0.817105i \(-0.695578\pi\)
0.995878 + 0.0907015i \(0.0289109\pi\)
\(132\) 744.222 224.960i 0.490729 0.148336i
\(133\) 1065.14 789.062i 0.694432 0.514439i
\(134\) 460.782 0.297056
\(135\) 68.3144 + 183.140i 0.0435523 + 0.116757i
\(136\) −242.297 + 419.671i −0.152770 + 0.264606i
\(137\) −1067.01 1848.12i −0.665410 1.15252i −0.979174 0.203023i \(-0.934923\pi\)
0.313764 0.949501i \(-0.398410\pi\)
\(138\) −425.773 399.565i −0.262639 0.246473i
\(139\) 1103.28 + 1910.93i 0.673229 + 1.16607i 0.976983 + 0.213317i \(0.0684266\pi\)
−0.303754 + 0.952751i \(0.598240\pi\)
\(140\) 182.594 + 79.2756i 0.110228 + 0.0478573i
\(141\) −109.981 + 469.600i −0.0656886 + 0.280479i
\(142\) 201.450 0.119051
\(143\) 78.7445 136.389i 0.0460486 0.0797585i
\(144\) −1384.54 686.160i −0.801238 0.397083i
\(145\) 108.908 + 188.634i 0.0623745 + 0.108036i
\(146\) 98.1650 170.027i 0.0556452 0.0963802i
\(147\) −3.69320 + 1782.28i −0.00207218 + 0.999998i
\(148\) −202.312 350.414i −0.112364 0.194621i
\(149\) 882.883 1529.20i 0.485427 0.840784i −0.514433 0.857531i \(-0.671998\pi\)
0.999860 + 0.0167467i \(0.00533090\pi\)
\(150\) 327.009 98.8470i 0.178001 0.0538055i
\(151\) 1294.33 + 2241.84i 0.697555 + 1.20820i 0.969312 + 0.245834i \(0.0790619\pi\)
−0.271757 + 0.962366i \(0.587605\pi\)
\(152\) −300.456 520.405i −0.160330 0.277700i
\(153\) −1297.48 + 863.274i −0.685591 + 0.456154i
\(154\) −154.205 + 114.236i −0.0806894 + 0.0597751i
\(155\) 77.4172 134.090i 0.0401180 0.0694865i
\(156\) −311.575 + 94.1815i −0.159910 + 0.0483369i
\(157\) −2399.53 −1.21976 −0.609882 0.792492i \(-0.708783\pi\)
−0.609882 + 0.792492i \(0.708783\pi\)
\(158\) −165.618 −0.0833916
\(159\) −1626.38 1526.27i −0.811196 0.761263i
\(160\) 68.0887 117.933i 0.0336430 0.0582714i
\(161\) −3573.14 1551.33i −1.74909 0.759390i
\(162\) 235.883 + 309.919i 0.114399 + 0.150306i
\(163\) 1023.61 + 1772.94i 0.491872 + 0.851947i 0.999956 0.00936052i \(-0.00297959\pi\)
−0.508085 + 0.861307i \(0.669646\pi\)
\(164\) 1557.97 + 2698.48i 0.741811 + 1.28485i
\(165\) −32.0183 + 136.712i −0.0151068 + 0.0645033i
\(166\) 59.0782 102.326i 0.0276226 0.0478438i
\(167\) 1270.89 + 2201.24i 0.588887 + 1.01998i 0.994379 + 0.105884i \(0.0337672\pi\)
−0.405491 + 0.914099i \(0.632900\pi\)
\(168\) 802.511 + 93.5630i 0.368542 + 0.0429675i
\(169\) 1065.53 1845.56i 0.484995 0.840035i
\(170\) −21.4819 37.2077i −0.00969167 0.0167865i
\(171\) −122.608 1928.61i −0.0548310 0.862483i
\(172\) −692.190 + 1198.91i −0.306854 + 0.531487i
\(173\) 4302.80 1.89096 0.945479 0.325683i \(-0.105594\pi\)
0.945479 + 0.325683i \(0.105594\pi\)
\(174\) 316.475 + 296.994i 0.137884 + 0.129397i
\(175\) 1831.32 1356.65i 0.791054 0.586017i
\(176\) −555.006 961.298i −0.237700 0.411708i
\(177\) −461.805 + 1971.82i −0.196109 + 0.837352i
\(178\) 380.615 + 659.244i 0.160271 + 0.277598i
\(179\) 783.675 1357.37i 0.327233 0.566783i −0.654729 0.755864i \(-0.727217\pi\)
0.981962 + 0.189080i \(0.0605506\pi\)
\(180\) 241.611 160.754i 0.100048 0.0665663i
\(181\) 642.368 0.263795 0.131897 0.991263i \(-0.457893\pi\)
0.131897 + 0.991263i \(0.457893\pi\)
\(182\) 64.5590 47.8257i 0.0262936 0.0194784i
\(183\) −417.454 + 1782.45i −0.168629 + 0.720015i
\(184\) −882.930 + 1529.28i −0.353752 + 0.612717i
\(185\) 73.0745 0.0290408
\(186\) 70.3508 300.385i 0.0277332 0.118416i
\(187\) −1119.49 −0.437781
\(188\) 716.067 0.277790
\(189\) 2178.83 + 1415.62i 0.838553 + 0.544820i
\(190\) 53.2764 0.0203425
\(191\) −531.028 −0.201172 −0.100586 0.994928i \(-0.532072\pi\)
−0.100586 + 0.994928i \(0.532072\pi\)
\(192\) −480.625 + 2052.18i −0.180657 + 0.771373i
\(193\) 1417.79 0.528782 0.264391 0.964416i \(-0.414829\pi\)
0.264391 + 0.964416i \(0.414829\pi\)
\(194\) −154.347 + 267.337i −0.0571211 + 0.0989366i
\(195\) 13.4047 57.2358i 0.00492273 0.0210192i
\(196\) 2577.63 598.053i 0.939368 0.217949i
\(197\) −4070.58 −1.47217 −0.736084 0.676891i \(-0.763327\pi\)
−0.736084 + 0.676891i \(0.763327\pi\)
\(198\) 17.7505 + 279.212i 0.00637107 + 0.100216i
\(199\) −154.635 + 267.836i −0.0550844 + 0.0954090i −0.892253 0.451536i \(-0.850876\pi\)
0.837168 + 0.546945i \(0.184209\pi\)
\(200\) −516.579 894.742i −0.182638 0.316339i
\(201\) 1021.93 4363.46i 0.358614 1.53122i
\(202\) 229.955 + 398.293i 0.0800968 + 0.138732i
\(203\) 2655.89 + 1153.09i 0.918262 + 0.398676i
\(204\) 1687.17 + 1583.32i 0.579048 + 0.543405i
\(205\) −562.735 −0.191722
\(206\) −405.026 + 701.525i −0.136988 + 0.237270i
\(207\) −4728.03 + 3145.77i −1.58754 + 1.05626i
\(208\) 232.358 + 402.455i 0.0774572 + 0.134160i
\(209\) 694.100 1202.22i 0.229722 0.397890i
\(210\) −42.7589 + 57.4701i −0.0140507 + 0.0188848i
\(211\) −1225.67 2122.93i −0.399899 0.692646i 0.593814 0.804602i \(-0.297622\pi\)
−0.993713 + 0.111957i \(0.964288\pi\)
\(212\) −1655.69 + 2867.74i −0.536383 + 0.929042i
\(213\) 446.778 1907.66i 0.143722 0.613667i
\(214\) 340.145 + 589.148i 0.108653 + 0.188193i
\(215\) −125.009 216.521i −0.0396536 0.0686820i
\(216\) 749.913 908.308i 0.236227 0.286123i
\(217\) −234.110 2044.84i −0.0732369 0.639691i
\(218\) −79.2990 + 137.350i −0.0246367 + 0.0426721i
\(219\) −1392.39 1306.68i −0.429629 0.403183i
\(220\) 208.465 0.0638851
\(221\) 468.683 0.142656
\(222\) 139.376 42.1299i 0.0421364 0.0127368i
\(223\) −2312.36 + 4005.13i −0.694383 + 1.20271i 0.276005 + 0.961156i \(0.410989\pi\)
−0.970388 + 0.241550i \(0.922344\pi\)
\(224\) −205.901 1798.45i −0.0614165 0.536446i
\(225\) −210.803 3315.90i −0.0624601 0.982488i
\(226\) −446.021 772.531i −0.131278 0.227381i
\(227\) −2617.87 4534.28i −0.765436 1.32577i −0.940016 0.341131i \(-0.889190\pi\)
0.174580 0.984643i \(-0.444143\pi\)
\(228\) −2746.40 + 830.170i −0.797740 + 0.241138i
\(229\) −624.675 + 1081.97i −0.180261 + 0.312221i −0.941969 0.335699i \(-0.891027\pi\)
0.761709 + 0.647920i \(0.224361\pi\)
\(230\) −78.2799 135.585i −0.0224418 0.0388704i
\(231\) 739.776 + 1713.62i 0.210709 + 0.488086i
\(232\) 656.277 1136.70i 0.185718 0.321674i
\(233\) 1274.52 + 2207.54i 0.358355 + 0.620689i 0.987686 0.156448i \(-0.0500044\pi\)
−0.629331 + 0.777137i \(0.716671\pi\)
\(234\) −7.43139 116.895i −0.00207609 0.0326566i
\(235\) −64.6604 + 111.995i −0.0179489 + 0.0310883i
\(236\) 3006.72 0.829326
\(237\) −367.310 + 1568.35i −0.100672 + 0.429854i
\(238\) −523.870 227.445i −0.142678 0.0619458i
\(239\) 565.969 + 980.288i 0.153178 + 0.265312i 0.932394 0.361443i \(-0.117716\pi\)
−0.779216 + 0.626755i \(0.784383\pi\)
\(240\) −302.122 283.525i −0.0812580 0.0762562i
\(241\) −3160.46 5474.09i −0.844745 1.46314i −0.885843 0.463985i \(-0.846419\pi\)
0.0410983 0.999155i \(-0.486914\pi\)
\(242\) 255.062 441.780i 0.0677520 0.117350i
\(243\) 3457.97 1546.39i 0.912877 0.408235i
\(244\) 2717.96 0.713113
\(245\) −139.221 + 457.153i −0.0363040 + 0.119210i
\(246\) −1073.31 + 324.435i −0.278177 + 0.0840863i
\(247\) −290.591 + 503.318i −0.0748576 + 0.129657i
\(248\) −933.028 −0.238901
\(249\) −837.973 786.392i −0.213271 0.200143i
\(250\) 184.643 0.0467114
\(251\) 1739.84 0.437521 0.218761 0.975779i \(-0.429799\pi\)
0.218761 + 0.975779i \(0.429799\pi\)
\(252\) 1308.71 3628.87i 0.327146 0.907133i
\(253\) −4079.41 −1.01372
\(254\) 758.328 0.187330
\(255\) −399.987 + 120.906i −0.0982281 + 0.0296920i
\(256\) 2711.50 0.661988
\(257\) −3665.25 + 6348.39i −0.889618 + 1.54086i −0.0492900 + 0.998785i \(0.515696\pi\)
−0.840328 + 0.542079i \(0.817637\pi\)
\(258\) −363.262 340.901i −0.0876577 0.0822619i
\(259\) 780.530 578.221i 0.187258 0.138722i
\(260\) −87.2756 −0.0208177
\(261\) 3514.32 2338.23i 0.833451 0.554532i
\(262\) 335.951 581.884i 0.0792180 0.137210i
\(263\) −2016.64 3492.92i −0.472818 0.818945i 0.526698 0.850053i \(-0.323430\pi\)
−0.999516 + 0.0311075i \(0.990097\pi\)
\(264\) 809.926 244.821i 0.188816 0.0570746i
\(265\) −299.015 517.910i −0.0693146 0.120056i
\(266\) 569.061 421.563i 0.131171 0.0971718i
\(267\) 7086.95 2142.21i 1.62440 0.491016i
\(268\) −6653.59 −1.51654
\(269\) −2562.84 + 4438.97i −0.580890 + 1.00613i 0.414485 + 0.910056i \(0.363962\pi\)
−0.995374 + 0.0960740i \(0.969371\pi\)
\(270\) 36.4976 + 97.8441i 0.00822656 + 0.0220541i
\(271\) −3560.18 6166.40i −0.798027 1.38222i −0.920899 0.389800i \(-0.872544\pi\)
0.122873 0.992422i \(-0.460789\pi\)
\(272\) 1651.68 2860.79i 0.368190 0.637725i
\(273\) −309.713 717.421i −0.0686619 0.159049i
\(274\) −570.062 987.376i −0.125689 0.217699i
\(275\) 1193.38 2066.99i 0.261685 0.453252i
\(276\) 6148.06 + 5769.62i 1.34083 + 1.25830i
\(277\) 433.555 + 750.940i 0.0940426 + 0.162887i 0.909209 0.416341i \(-0.136688\pi\)
−0.815166 + 0.579227i \(0.803354\pi\)
\(278\) 589.436 + 1020.93i 0.127166 + 0.220257i
\(279\) −2688.53 1332.40i −0.576910 0.285909i
\(280\) 198.714 + 86.2745i 0.0424122 + 0.0184139i
\(281\) −3122.11 + 5407.66i −0.662811 + 1.14802i 0.317063 + 0.948404i \(0.397303\pi\)
−0.979874 + 0.199617i \(0.936030\pi\)
\(282\) −58.7584 + 250.888i −0.0124079 + 0.0529793i
\(283\) 2926.59 0.614728 0.307364 0.951592i \(-0.400553\pi\)
0.307364 + 0.951592i \(0.400553\pi\)
\(284\) −2908.89 −0.607784
\(285\) 118.157 504.510i 0.0245580 0.104858i
\(286\) 42.0699 72.8673i 0.00869807 0.0150655i
\(287\) −6010.74 + 4452.78i −1.23625 + 0.915817i
\(288\) −2364.57 1171.85i −0.483797 0.239763i
\(289\) 790.720 + 1369.57i 0.160944 + 0.278764i
\(290\) 58.1850 + 100.779i 0.0117819 + 0.0204068i
\(291\) 2189.28 + 2054.52i 0.441024 + 0.413877i
\(292\) −1417.48 + 2455.15i −0.284081 + 0.492043i
\(293\) 2992.94 + 5183.92i 0.596755 + 1.03361i 0.993297 + 0.115593i \(0.0368769\pi\)
−0.396542 + 0.918017i \(0.629790\pi\)
\(294\) −1.97312 + 952.197i −0.000391411 + 0.188889i
\(295\) −271.505 + 470.261i −0.0535852 + 0.0928123i
\(296\) −220.173 381.350i −0.0432340 0.0748836i
\(297\) 2683.42 + 451.150i 0.524268 + 0.0881427i
\(298\) 471.688 816.987i 0.0916918 0.158815i
\(299\) 1707.88 0.330332
\(300\) −4721.94 + 1427.33i −0.908737 + 0.274689i
\(301\) −3048.53 1323.56i −0.583769 0.253452i
\(302\) 691.505 + 1197.72i 0.131760 + 0.228216i
\(303\) 4281.70 1294.25i 0.811806 0.245389i
\(304\) 2048.14 + 3547.47i 0.386410 + 0.669282i
\(305\) −245.430 + 425.098i −0.0460764 + 0.0798066i
\(306\) −693.192 + 461.212i −0.129501 + 0.0861625i
\(307\) −3568.44 −0.663394 −0.331697 0.943386i \(-0.607621\pi\)
−0.331697 + 0.943386i \(0.607621\pi\)
\(308\) 2226.68 1649.53i 0.411937 0.305165i
\(309\) 5744.94 + 5391.31i 1.05766 + 0.992560i
\(310\) 41.3608 71.6390i 0.00757786 0.0131252i
\(311\) 5843.16 1.06539 0.532694 0.846308i \(-0.321180\pi\)
0.532694 + 0.846308i \(0.321180\pi\)
\(312\) −339.082 + 102.496i −0.0615280 + 0.0185984i
\(313\) −3900.57 −0.704388 −0.352194 0.935927i \(-0.614564\pi\)
−0.352194 + 0.935927i \(0.614564\pi\)
\(314\) −1281.97 −0.230400
\(315\) 449.392 + 532.371i 0.0803821 + 0.0952244i
\(316\) 2391.49 0.425733
\(317\) 2538.79 0.449819 0.224910 0.974380i \(-0.427791\pi\)
0.224910 + 0.974380i \(0.427791\pi\)
\(318\) −868.907 815.421i −0.153226 0.143794i
\(319\) 3032.20 0.532197
\(320\) −282.570 + 489.426i −0.0493629 + 0.0854991i
\(321\) 6333.41 1914.44i 1.10124 0.332877i
\(322\) −1908.98 828.811i −0.330383 0.143440i
\(323\) 4131.24 0.711667
\(324\) −3406.09 4475.15i −0.584035 0.767345i
\(325\) −499.618 + 865.363i −0.0852733 + 0.147698i
\(326\) 546.871 + 947.208i 0.0929091 + 0.160923i
\(327\) 1124.79 + 1055.55i 0.190217 + 0.178508i
\(328\) 1695.51 + 2936.72i 0.285424 + 0.494369i
\(329\) 195.533 + 1707.90i 0.0327663 + 0.286199i
\(330\) −17.1061 + 73.0398i −0.00285351 + 0.0121840i
\(331\) 10441.2 1.73384 0.866921 0.498446i \(-0.166096\pi\)
0.866921 + 0.498446i \(0.166096\pi\)
\(332\) −853.075 + 1477.57i −0.141020 + 0.244253i
\(333\) −89.8469 1413.28i −0.0147855 0.232574i
\(334\) 678.982 + 1176.03i 0.111234 + 0.192663i
\(335\) 600.815 1040.64i 0.0979881 0.169720i
\(336\) −5470.53 637.797i −0.888220 0.103556i
\(337\) −2095.75 3629.94i −0.338762 0.586753i 0.645438 0.763812i \(-0.276675\pi\)
−0.984200 + 0.177060i \(0.943341\pi\)
\(338\) 569.270 986.005i 0.0916101 0.158673i
\(339\) −8304.81 + 2510.34i −1.33055 + 0.402192i
\(340\) 310.193 + 537.270i 0.0494781 + 0.0856987i
\(341\) −1077.72 1866.67i −0.171149 0.296439i
\(342\) −65.5046 1030.38i −0.0103570 0.162913i
\(343\) 2130.28 + 5984.61i 0.335348 + 0.942094i
\(344\) −753.299 + 1304.75i −0.118067 + 0.204499i
\(345\) −1457.55 + 440.583i −0.227455 + 0.0687542i
\(346\) 2298.81 0.357181
\(347\) 1908.52 0.295258 0.147629 0.989043i \(-0.452836\pi\)
0.147629 + 0.989043i \(0.452836\pi\)
\(348\) −4569.82 4288.52i −0.703931 0.660601i
\(349\) 130.338 225.753i 0.0199910 0.0346254i −0.855857 0.517213i \(-0.826970\pi\)
0.875848 + 0.482587i \(0.160303\pi\)
\(350\) 978.397 724.801i 0.149421 0.110692i
\(351\) −1123.43 188.878i −0.170839 0.0287223i
\(352\) −947.859 1641.74i −0.143526 0.248594i
\(353\) −2875.56 4980.62i −0.433571 0.750968i 0.563606 0.826043i \(-0.309413\pi\)
−0.997178 + 0.0750758i \(0.976080\pi\)
\(354\) −246.723 + 1053.46i −0.0370429 + 0.158167i
\(355\) 262.671 454.959i 0.0392708 0.0680190i
\(356\) −5495.98 9519.32i −0.818221 1.41720i
\(357\) −3315.68 + 4456.44i −0.491553 + 0.660672i
\(358\) 418.685 725.184i 0.0618106 0.107059i
\(359\) −2533.53 4388.20i −0.372464 0.645126i 0.617480 0.786586i \(-0.288153\pi\)
−0.989944 + 0.141461i \(0.954820\pi\)
\(360\) 262.941 174.947i 0.0384951 0.0256125i
\(361\) 868.066 1503.53i 0.126559 0.219206i
\(362\) 343.191 0.0498279
\(363\) −3617.83 3395.13i −0.523104 0.490905i
\(364\) −932.217 + 690.591i −0.134235 + 0.0994418i
\(365\) −255.995 443.396i −0.0367107 0.0635847i
\(366\) −223.028 + 952.291i −0.0318521 + 0.136003i
\(367\) 292.144 + 506.008i 0.0415525 + 0.0719711i 0.886054 0.463583i \(-0.153436\pi\)
−0.844501 + 0.535554i \(0.820103\pi\)
\(368\) 6018.72 10424.7i 0.852575 1.47670i
\(369\) 691.896 + 10883.4i 0.0976115 + 1.53541i
\(370\) 39.0407 0.00548548
\(371\) −7291.97 3165.91i −1.02043 0.443035i
\(372\) −1015.85 + 4337.49i −0.141584 + 0.604539i
\(373\) −1541.39 + 2669.77i −0.213969 + 0.370605i −0.952953 0.303118i \(-0.901972\pi\)
0.738984 + 0.673723i \(0.235306\pi\)
\(374\) −598.096 −0.0826920
\(375\) 409.504 1748.51i 0.0563912 0.240780i
\(376\) 779.284 0.106884
\(377\) −1269.46 −0.173423
\(378\) 1164.06 + 756.306i 0.158393 + 0.102911i
\(379\) 2231.91 0.302495 0.151247 0.988496i \(-0.451671\pi\)
0.151247 + 0.988496i \(0.451671\pi\)
\(380\) −769.298 −0.103853
\(381\) 1681.83 7181.12i 0.226149 0.965616i
\(382\) −283.706 −0.0379992
\(383\) −1596.66 + 2765.49i −0.213017 + 0.368956i −0.952657 0.304046i \(-0.901662\pi\)
0.739640 + 0.673002i \(0.234996\pi\)
\(384\) −1183.28 + 5052.38i −0.157250 + 0.671428i
\(385\) 56.9247 + 497.211i 0.00753546 + 0.0658188i
\(386\) 757.468 0.0998811
\(387\) −4033.87 + 2683.91i −0.529853 + 0.352535i
\(388\) 2228.74 3860.29i 0.291616 0.505094i
\(389\) 5149.92 + 8919.92i 0.671237 + 1.16262i 0.977553 + 0.210687i \(0.0675702\pi\)
−0.306316 + 0.951930i \(0.599096\pi\)
\(390\) 7.16159 30.5787i 0.000929850 0.00397029i
\(391\) −6070.10 10513.7i −0.785110 1.35985i
\(392\) 2805.19 650.852i 0.361438 0.0838597i
\(393\) −4765.17 4471.86i −0.611632 0.573983i
\(394\) −2174.74 −0.278076
\(395\) −215.950 + 374.036i −0.0275079 + 0.0476451i
\(396\) −256.313 4031.76i −0.0325258 0.511625i
\(397\) 6193.80 + 10728.0i 0.783018 + 1.35623i 0.930176 + 0.367114i \(0.119654\pi\)
−0.147158 + 0.989113i \(0.547013\pi\)
\(398\) −82.6152 + 143.094i −0.0104048 + 0.0180217i
\(399\) −2729.99 6323.77i −0.342533 0.793444i
\(400\) 3521.40 + 6099.24i 0.440175 + 0.762405i
\(401\) 2499.35 4329.00i 0.311250 0.539102i −0.667383 0.744715i \(-0.732586\pi\)
0.978633 + 0.205613i \(0.0659189\pi\)
\(402\) 545.975 2331.21i 0.0677382 0.289230i
\(403\) 451.197 + 781.495i 0.0557710 + 0.0965982i
\(404\) −3320.49 5751.26i −0.408912 0.708257i
\(405\) 1007.50 128.620i 0.123612 0.0157807i
\(406\) 1418.93 + 616.050i 0.173450 + 0.0753056i
\(407\) 508.633 880.978i 0.0619460 0.107294i
\(408\) 1836.13 + 1723.10i 0.222798 + 0.209084i
\(409\) −7898.75 −0.954934 −0.477467 0.878650i \(-0.658445\pi\)
−0.477467 + 0.878650i \(0.658445\pi\)
\(410\) −300.646 −0.0362142
\(411\) −10614.4 + 3208.48i −1.27389 + 0.385067i
\(412\) 5848.47 10129.9i 0.699354 1.21132i
\(413\) 821.033 + 7171.35i 0.0978217 + 0.854429i
\(414\) −2525.99 + 1680.66i −0.299869 + 0.199516i
\(415\) −154.064 266.847i −0.0182234 0.0315639i
\(416\) 396.829 + 687.328i 0.0467696 + 0.0810073i
\(417\) 10975.2 3317.53i 1.28886 0.389592i
\(418\) 370.829 642.294i 0.0433919 0.0751570i
\(419\) −5022.29 8698.86i −0.585572 1.01424i −0.994804 0.101810i \(-0.967536\pi\)
0.409231 0.912431i \(-0.365797\pi\)
\(420\) 617.428 829.855i 0.0717319 0.0964114i
\(421\) −5.00064 + 8.66136i −0.000578899 + 0.00100268i −0.866315 0.499499i \(-0.833518\pi\)
0.865736 + 0.500501i \(0.166851\pi\)
\(422\) −654.826 1134.19i −0.0755366 0.130833i
\(423\) 2245.51 + 1112.85i 0.258110 + 0.127916i
\(424\) −1801.86 + 3120.91i −0.206382 + 0.357465i
\(425\) 7102.92 0.810687
\(426\) 238.695 1019.19i 0.0271475 0.115915i
\(427\) 742.182 + 6482.62i 0.0841141 + 0.734698i
\(428\) −4911.61 8507.15i −0.554700 0.960768i
\(429\) −596.726 559.994i −0.0671566 0.0630228i
\(430\) −66.7869 115.678i −0.00749012 0.0129733i
\(431\) −1362.41 + 2359.77i −0.152262 + 0.263726i −0.932059 0.362307i \(-0.881989\pi\)
0.779796 + 0.626033i \(0.215323\pi\)
\(432\) −5111.98 + 6191.72i −0.569329 + 0.689581i
\(433\) −4356.92 −0.483557 −0.241779 0.970331i \(-0.577731\pi\)
−0.241779 + 0.970331i \(0.577731\pi\)
\(434\) −125.075 1092.48i −0.0138337 0.120831i
\(435\) 1083.39 327.483i 0.119413 0.0360956i
\(436\) 1145.06 1983.30i 0.125776 0.217851i
\(437\) 15054.2 1.64792
\(438\) −743.894 698.104i −0.0811521 0.0761568i
\(439\) 7876.44 0.856315 0.428157 0.903704i \(-0.359163\pi\)
0.428157 + 0.903704i \(0.359163\pi\)
\(440\) 226.869 0.0245808
\(441\) 9012.61 + 2130.48i 0.973179 + 0.230049i
\(442\) 250.398 0.0269462
\(443\) −4206.13 −0.451104 −0.225552 0.974231i \(-0.572419\pi\)
−0.225552 + 0.974231i \(0.572419\pi\)
\(444\) −2012.55 + 608.345i −0.215116 + 0.0650243i
\(445\) 1985.14 0.211471
\(446\) −1235.40 + 2139.78i −0.131161 + 0.227178i
\(447\) −6690.48 6278.65i −0.707940 0.664363i
\(448\) 854.493 + 7463.61i 0.0901139 + 0.787104i
\(449\) 8229.28 0.864952 0.432476 0.901645i \(-0.357640\pi\)
0.432476 + 0.901645i \(0.357640\pi\)
\(450\) −112.623 1771.55i −0.0117980 0.185581i
\(451\) −3916.90 + 6784.27i −0.408957 + 0.708334i
\(452\) 6440.44 + 11155.2i 0.670205 + 1.16083i
\(453\) 12875.7 3892.00i 1.33543 0.403669i
\(454\) −1398.62 2422.48i −0.144582 0.250424i
\(455\) −23.8320 208.162i −0.00245552 0.0214478i
\(456\) −2988.87 + 903.462i −0.306944 + 0.0927817i
\(457\) 786.679 0.0805236 0.0402618 0.999189i \(-0.487181\pi\)
0.0402618 + 0.999189i \(0.487181\pi\)
\(458\) −333.738 + 578.052i −0.0340493 + 0.0589751i
\(459\) 2830.15 + 7587.18i 0.287800 + 0.771545i
\(460\) 1130.34 + 1957.81i 0.114571 + 0.198442i
\(461\) −9476.59 + 16413.9i −0.957416 + 1.65829i −0.228677 + 0.973502i \(0.573440\pi\)
−0.728739 + 0.684791i \(0.759893\pi\)
\(462\) 395.232 + 915.516i 0.0398005 + 0.0921941i
\(463\) 6255.13 + 10834.2i 0.627863 + 1.08749i 0.987980 + 0.154583i \(0.0494036\pi\)
−0.360117 + 0.932907i \(0.617263\pi\)
\(464\) −4473.68 + 7748.64i −0.447598 + 0.775262i
\(465\) −586.667 550.555i −0.0585076 0.0549062i
\(466\) 680.925 + 1179.40i 0.0676893 + 0.117241i
\(467\) −6997.28 12119.6i −0.693352 1.20092i −0.970733 0.240161i \(-0.922800\pi\)
0.277381 0.960760i \(-0.410534\pi\)
\(468\) 107.307 + 1687.93i 0.0105989 + 0.166719i
\(469\) −1816.87 15869.5i −0.178881 1.56244i
\(470\) −34.5454 + 59.8344i −0.00339034 + 0.00587224i
\(471\) −2843.17 + 12139.8i −0.278145 + 1.18763i
\(472\) 3272.17 0.319097
\(473\) −3480.48 −0.338335
\(474\) −196.239 + 837.905i −0.0190159 + 0.0811946i
\(475\) −4403.92 + 7627.81i −0.425402 + 0.736817i
\(476\) 7564.55 + 3284.26i 0.728405 + 0.316247i
\(477\) −9648.85 + 6419.81i −0.926185 + 0.616232i
\(478\) 302.374 + 523.727i 0.0289336 + 0.0501145i
\(479\) −4638.59 8034.27i −0.442469 0.766378i 0.555403 0.831581i \(-0.312564\pi\)
−0.997872 + 0.0652029i \(0.979231\pi\)
\(480\) −515.976 484.215i −0.0490645 0.0460444i
\(481\) −212.943 + 368.829i −0.0201858 + 0.0349629i
\(482\) −1688.51 2924.58i −0.159563 0.276371i
\(483\) −12082.3 + 16239.3i −1.13823 + 1.52984i
\(484\) −3683.03 + 6379.19i −0.345889 + 0.599098i
\(485\) 402.507 + 697.163i 0.0376844 + 0.0652712i
\(486\) 1847.45 826.173i 0.172432 0.0771110i
\(487\) 1909.97 3308.17i 0.177719 0.307819i −0.763380 0.645950i \(-0.776461\pi\)
0.941099 + 0.338131i \(0.109795\pi\)
\(488\) 2957.91 0.274382
\(489\) 10182.6 3077.96i 0.941663 0.284642i
\(490\) −74.3799 + 244.238i −0.00685743 + 0.0225174i
\(491\) −4413.32 7644.10i −0.405643 0.702594i 0.588753 0.808313i \(-0.299619\pi\)
−0.994396 + 0.105719i \(0.966286\pi\)
\(492\) 15498.3 4684.77i 1.42016 0.429280i
\(493\) 4511.87 + 7814.79i 0.412179 + 0.713916i
\(494\) −155.251 + 268.902i −0.0141398 + 0.0244908i
\(495\) 653.725 + 323.977i 0.0593591 + 0.0294176i
\(496\) 6360.23 0.575772
\(497\) −794.318 6938.01i −0.0716902 0.626181i
\(498\) −447.694 420.137i −0.0402845 0.0378048i
\(499\) 8605.92 14905.9i 0.772052 1.33723i −0.164384 0.986396i \(-0.552564\pi\)
0.936436 0.350837i \(-0.114103\pi\)
\(500\) −2666.20 −0.238472
\(501\) 12642.5 3821.52i 1.12739 0.340784i
\(502\) 929.525 0.0826429
\(503\) 13600.4 1.20559 0.602797 0.797895i \(-0.294053\pi\)
0.602797 + 0.797895i \(0.294053\pi\)
\(504\) 1424.24 3949.25i 0.125875 0.349035i
\(505\) 1199.35 0.105684
\(506\) −2179.46 −0.191480
\(507\) −8074.61 7577.58i −0.707309 0.663771i
\(508\) −10950.1 −0.956361
\(509\) −4805.19 + 8322.83i −0.418440 + 0.724760i −0.995783 0.0917422i \(-0.970756\pi\)
0.577342 + 0.816502i \(0.304090\pi\)
\(510\) −213.697 + 64.5953i −0.0185542 + 0.00560849i
\(511\) −6242.85 2710.42i −0.540445 0.234642i
\(512\) 9437.78 0.814639
\(513\) −9902.60 1664.88i −0.852263 0.143287i
\(514\) −1958.19 + 3391.68i −0.168039 + 0.291052i
\(515\) 1056.23 + 1829.44i 0.0903746 + 0.156533i
\(516\) 5245.41 + 4922.53i 0.447512 + 0.419966i
\(517\) 900.134 + 1559.08i 0.0765723 + 0.132627i
\(518\) 417.005 308.920i 0.0353710 0.0262030i
\(519\) 5098.33 21769.0i 0.431198 1.84114i
\(520\) −94.9807 −0.00800996
\(521\) −5228.57 + 9056.15i −0.439670 + 0.761530i −0.997664 0.0683147i \(-0.978238\pi\)
0.557994 + 0.829845i \(0.311571\pi\)
\(522\) 1877.55 1249.22i 0.157430 0.104745i
\(523\) −7878.59 13646.1i −0.658713 1.14092i −0.980949 0.194265i \(-0.937768\pi\)
0.322236 0.946659i \(-0.395565\pi\)
\(524\) −4851.05 + 8402.27i −0.404426 + 0.700486i
\(525\) −4693.73 10872.6i −0.390193 0.903843i
\(526\) −1077.41 1866.12i −0.0893101 0.154690i
\(527\) 3207.26 5555.14i 0.265105 0.459176i
\(528\) −5521.07 + 1668.89i −0.455064 + 0.137555i
\(529\) −16035.9 27775.1i −1.31799 2.28282i
\(530\) −159.752 276.698i −0.0130928 0.0226773i
\(531\) 9428.77 + 4672.77i 0.770572 + 0.381885i
\(532\) −8217.10 + 6087.27i −0.669655 + 0.496084i
\(533\) 1639.84 2840.29i 0.133264 0.230819i
\(534\) 3786.27 1144.50i 0.306831 0.0927476i
\(535\) 1774.06 0.143363
\(536\) −7241.00 −0.583514
\(537\) −5938.69 5573.13i −0.477231 0.447856i
\(538\) −1369.22 + 2371.56i −0.109724 + 0.190047i
\(539\) 4542.34 + 4860.43i 0.362992 + 0.388411i
\(540\) −527.016 1412.85i −0.0419984 0.112591i
\(541\) 592.613 + 1026.44i 0.0470950 + 0.0815710i 0.888612 0.458660i \(-0.151670\pi\)
−0.841517 + 0.540231i \(0.818337\pi\)
\(542\) −1902.05 3294.46i −0.150738 0.261087i
\(543\) 761.133 3249.90i 0.0601535 0.256845i
\(544\) 2820.80 4885.77i 0.222318 0.385065i
\(545\) 206.796 + 358.182i 0.0162535 + 0.0281520i
\(546\) −165.467 383.289i −0.0129695 0.0300426i
\(547\) −2260.79 + 3915.81i −0.176718 + 0.306084i −0.940754 0.339089i \(-0.889881\pi\)
0.764037 + 0.645173i \(0.223215\pi\)
\(548\) 8231.56 + 14257.5i 0.641669 + 1.11140i
\(549\) 8523.24 + 4224.01i 0.662592 + 0.328372i
\(550\) 637.573 1104.31i 0.0494295 0.0856143i
\(551\) −11189.7 −0.865151
\(552\) 6690.84 + 6278.99i 0.515908 + 0.484151i
\(553\) 653.034 + 5703.95i 0.0502167 + 0.438620i
\(554\) 231.631 + 401.196i 0.0177636 + 0.0307675i
\(555\) 86.5850 369.702i 0.00662221 0.0282757i
\(556\) −8511.32 14742.0i −0.649209 1.12446i
\(557\) −9190.20 + 15917.9i −0.699104 + 1.21088i 0.269673 + 0.962952i \(0.413084\pi\)
−0.968777 + 0.247932i \(0.920249\pi\)
\(558\) −1436.37 711.845i −0.108972 0.0540050i
\(559\) 1457.13 0.110251
\(560\) −1354.58 588.112i −0.102217 0.0443791i
\(561\) −1326.46 + 5663.77i −0.0998278 + 0.426247i
\(562\) −1668.02 + 2889.09i −0.125198 + 0.216849i
\(563\) 8148.85 0.610005 0.305003 0.952351i \(-0.401343\pi\)
0.305003 + 0.952351i \(0.401343\pi\)
\(564\) 848.458 3622.76i 0.0633449 0.270471i
\(565\) −2326.27 −0.173216
\(566\) 1563.56 0.116115
\(567\) 9743.63 9345.90i 0.721683 0.692224i
\(568\) −3165.70 −0.233855
\(569\) −10045.8 −0.740141 −0.370070 0.929004i \(-0.620666\pi\)
−0.370070 + 0.929004i \(0.620666\pi\)
\(570\) 63.1264 269.539i 0.00463873 0.0198065i
\(571\) −18378.4 −1.34696 −0.673478 0.739208i \(-0.735200\pi\)
−0.673478 + 0.739208i \(0.735200\pi\)
\(572\) −607.480 + 1052.19i −0.0444056 + 0.0769128i
\(573\) −629.208 + 2686.61i −0.0458735 + 0.195872i
\(574\) −3211.29 + 2378.94i −0.233513 + 0.172988i
\(575\) 25883.0 1.87721
\(576\) 9813.03 + 4863.21i 0.709854 + 0.351794i
\(577\) 7295.68 12636.5i 0.526383 0.911722i −0.473145 0.880985i \(-0.656881\pi\)
0.999527 0.0307372i \(-0.00978551\pi\)
\(578\) 422.449 + 731.703i 0.0304006 + 0.0526555i
\(579\) 1679.92 7172.97i 0.120579 0.514851i
\(580\) −840.177 1455.23i −0.0601491 0.104181i
\(581\) −3757.10 1631.20i −0.268280 0.116478i
\(582\) 1169.64 + 1097.65i 0.0833046 + 0.0781768i
\(583\) −8325.16 −0.591411
\(584\) −1542.62 + 2671.90i −0.109305 + 0.189322i
\(585\) −273.687 135.636i −0.0193429 0.00958607i
\(586\) 1599.00 + 2769.55i 0.112720 + 0.195238i
\(587\) −4804.17 + 8321.07i −0.337801 + 0.585089i −0.984019 0.178064i \(-0.943017\pi\)
0.646218 + 0.763153i \(0.276350\pi\)
\(588\) 28.4914 13749.5i 0.00199824 0.964319i
\(589\) 3977.11 + 6888.55i 0.278224 + 0.481898i
\(590\) −145.054 + 251.241i −0.0101217 + 0.0175312i
\(591\) −4823.18 + 20594.1i −0.335700 + 1.43338i
\(592\) 1500.86 + 2599.57i 0.104198 + 0.180476i
\(593\) −5093.51 8822.22i −0.352724 0.610936i 0.634001 0.773332i \(-0.281411\pi\)
−0.986726 + 0.162395i \(0.948078\pi\)
\(594\) 1433.64 + 241.031i 0.0990285 + 0.0166492i
\(595\) −1196.74 + 886.553i −0.0824566 + 0.0610842i
\(596\) −6811.06 + 11797.1i −0.468107 + 0.810785i
\(597\) 1171.83 + 1099.69i 0.0803344 + 0.0753894i
\(598\) 912.449 0.0623960
\(599\) −21280.9 −1.45161 −0.725804 0.687902i \(-0.758532\pi\)
−0.725804 + 0.687902i \(0.758532\pi\)
\(600\) −5138.81 + 1553.34i −0.349652 + 0.105691i
\(601\) 5973.18 10345.9i 0.405410 0.702190i −0.588959 0.808163i \(-0.700462\pi\)
0.994369 + 0.105973i \(0.0337956\pi\)
\(602\) −1628.71 707.126i −0.110268 0.0478743i
\(603\) −20865.0 10340.4i −1.40910 0.698331i
\(604\) −9985.16 17294.8i −0.672667 1.16509i
\(605\) −665.151 1152.07i −0.0446979 0.0774190i
\(606\) 2287.54 691.467i 0.153341 0.0463514i
\(607\) 12041.0 20855.6i 0.805155 1.39457i −0.111031 0.993817i \(-0.535415\pi\)
0.916186 0.400753i \(-0.131251\pi\)
\(608\) 3497.88 + 6058.51i 0.233319 + 0.404120i
\(609\) 8980.72 12070.5i 0.597565 0.803158i
\(610\) −131.123 + 227.112i −0.00870332 + 0.0150746i
\(611\) −376.849 652.721i −0.0249520 0.0432181i
\(612\) 10009.5 6659.79i 0.661129 0.439879i
\(613\) −1910.99 + 3309.93i −0.125912 + 0.218086i −0.922089 0.386978i \(-0.873519\pi\)
0.796177 + 0.605064i \(0.206852\pi\)
\(614\) −1906.47 −0.125308
\(615\) −666.777 + 2847.02i −0.0437187 + 0.186671i
\(616\) 2423.26 1795.16i 0.158500 0.117417i
\(617\) −7038.79 12191.5i −0.459272 0.795483i 0.539650 0.841889i \(-0.318556\pi\)
−0.998923 + 0.0464064i \(0.985223\pi\)
\(618\) 3069.28 + 2880.36i 0.199781 + 0.187484i
\(619\) 12122.3 + 20996.4i 0.787132 + 1.36335i 0.927717 + 0.373285i \(0.121768\pi\)
−0.140585 + 0.990069i \(0.544898\pi\)
\(620\) −597.240 + 1034.45i −0.0386867 + 0.0670073i
\(621\) 10313.1 + 27647.7i 0.666424 + 1.78658i
\(622\) 3121.76 0.201240
\(623\) 21203.8 15707.9i 1.36358 1.01015i
\(624\) 2311.44 698.693i 0.148288 0.0448239i
\(625\) −7450.42 + 12904.5i −0.476827 + 0.825889i
\(626\) −2083.91 −0.133051
\(627\) −5259.89 4936.12i −0.335023 0.314401i
\(628\) 18511.3 1.17624
\(629\) 3027.35 0.191905
\(630\) 240.092 + 284.424i 0.0151833 + 0.0179868i
\(631\) −7470.58 −0.471314 −0.235657 0.971836i \(-0.575724\pi\)
−0.235657 + 0.971836i \(0.575724\pi\)
\(632\) 2602.62 0.163808
\(633\) −12192.7 + 3685.56i −0.765587 + 0.231418i
\(634\) 1356.37 0.0849659
\(635\) 988.786 1712.63i 0.0617933 0.107029i
\(636\) 12546.8 + 11774.5i 0.782253 + 0.734102i
\(637\) −1901.69 2034.86i −0.118285 0.126568i
\(638\) 1619.98 0.100526
\(639\) −9121.97 4520.73i −0.564726 0.279871i
\(640\) −695.675 + 1204.94i −0.0429671 + 0.0744213i
\(641\) 7798.13 + 13506.8i 0.480511 + 0.832269i 0.999750 0.0223597i \(-0.00711790\pi\)
−0.519239 + 0.854629i \(0.673785\pi\)
\(642\) 3383.68 1022.80i 0.208011 0.0628767i
\(643\) 13714.2 + 23753.6i 0.841109 + 1.45684i 0.888958 + 0.457990i \(0.151430\pi\)
−0.0478482 + 0.998855i \(0.515236\pi\)
\(644\) 27565.2 + 11967.8i 1.68668 + 0.732296i
\(645\) −1243.56 + 375.897i −0.0759147 + 0.0229472i
\(646\) 2207.15 0.134426
\(647\) 1413.31 2447.93i 0.0858780 0.148745i −0.819887 0.572525i \(-0.805964\pi\)
0.905765 + 0.423780i \(0.139297\pi\)
\(648\) −3706.80 4870.24i −0.224717 0.295249i
\(649\) 3779.61 + 6546.47i 0.228602 + 0.395950i
\(650\) −266.925 + 462.328i −0.0161072 + 0.0278985i
\(651\) −10622.8 1238.49i −0.639538 0.0745623i
\(652\) −7896.68 13677.5i −0.474322 0.821550i
\(653\) 3416.70 5917.89i 0.204756 0.354648i −0.745299 0.666730i \(-0.767693\pi\)
0.950055 + 0.312083i \(0.101027\pi\)
\(654\) 600.928 + 563.938i 0.0359299 + 0.0337182i
\(655\) −876.094 1517.44i −0.0522623 0.0905210i
\(656\) −11557.9 20018.9i −0.687897 1.19147i
\(657\) −8260.63 + 5496.17i −0.490530 + 0.326371i
\(658\) 104.465 + 912.458i 0.00618919 + 0.0540598i
\(659\) −2394.72 + 4147.77i −0.141555 + 0.245181i −0.928082 0.372375i \(-0.878544\pi\)
0.786527 + 0.617556i \(0.211877\pi\)
\(660\) 247.007 1054.68i 0.0145678 0.0622019i
\(661\) 13763.7 0.809903 0.404952 0.914338i \(-0.367288\pi\)
0.404952 + 0.914338i \(0.367288\pi\)
\(662\) 5578.32 0.327504
\(663\) 555.335 2371.18i 0.0325301 0.138898i
\(664\) −928.388 + 1608.02i −0.0542597 + 0.0939806i
\(665\) −210.069 1834.86i −0.0122498 0.106997i
\(666\) −48.0015 755.056i −0.00279282 0.0439306i
\(667\) 16441.3 + 28477.1i 0.954435 + 1.65313i
\(668\) −9804.34 16981.6i −0.567876 0.983591i
\(669\) 17523.1 + 16444.5i 1.01268 + 0.950344i
\(670\) 320.991 555.972i 0.0185089 0.0320583i
\(671\) 3416.62 + 5917.76i 0.196568 + 0.340466i
\(672\) −9342.77 1089.25i −0.536317 0.0625280i
\(673\) −10042.1 + 17393.4i −0.575176 + 0.996233i 0.420847 + 0.907132i \(0.361733\pi\)
−0.996023 + 0.0891016i \(0.971600\pi\)
\(674\) −1119.67 1939.33i −0.0639884 0.110831i
\(675\) −17025.7 2862.45i −0.970846 0.163224i
\(676\) −8220.13 + 14237.7i −0.467690 + 0.810063i
\(677\) 23113.0 1.31212 0.656060 0.754709i \(-0.272222\pi\)
0.656060 + 0.754709i \(0.272222\pi\)
\(678\) −4436.92 + 1341.17i −0.251326 + 0.0759696i
\(679\) 9815.78 + 4261.66i 0.554779 + 0.240865i
\(680\) 337.578 + 584.702i 0.0190375 + 0.0329740i
\(681\) −26041.9 + 7871.85i −1.46539 + 0.442951i
\(682\) −575.782 997.283i −0.0323282 0.0559940i
\(683\) 1185.46 2053.27i 0.0664132 0.115031i −0.830907 0.556412i \(-0.812178\pi\)
0.897320 + 0.441381i \(0.145511\pi\)
\(684\) 945.870 + 14878.4i 0.0528746 + 0.831710i
\(685\) −2973.22 −0.165841
\(686\) 1138.12 + 3197.33i 0.0633436 + 0.177951i
\(687\) 4733.79 + 4442.40i 0.262890 + 0.246708i
\(688\) 5135.06 8894.18i 0.284553 0.492860i
\(689\) 3485.40 0.192718
\(690\) −778.710 + 235.385i −0.0429638 + 0.0129869i
\(691\) 10628.1 0.585111 0.292555 0.956249i \(-0.405494\pi\)
0.292555 + 0.956249i \(0.405494\pi\)
\(692\) −33194.2 −1.82349
\(693\) 9546.19 1712.27i 0.523275 0.0938582i
\(694\) 1019.64 0.0557710
\(695\) 3074.27 0.167789
\(696\) −4973.26 4667.13i −0.270849 0.254177i
\(697\) −23313.2 −1.26693
\(698\) 69.6345 120.610i 0.00377608 0.00654036i
\(699\) 12678.7 3832.45i 0.686052 0.207377i
\(700\) −14127.8 + 10466.0i −0.762830 + 0.565109i
\(701\) −13584.8 −0.731942 −0.365971 0.930626i \(-0.619263\pi\)
−0.365971 + 0.930626i \(0.619263\pi\)
\(702\) −600.205 100.910i −0.0322696 0.00542533i
\(703\) −1877.01 + 3251.07i −0.100701 + 0.174419i
\(704\) 3933.64 + 6813.27i 0.210589 + 0.364751i
\(705\) 489.996 + 459.835i 0.0261764 + 0.0245651i
\(706\) −1536.29 2660.94i −0.0818969 0.141850i
\(707\) 12810.6 9490.19i 0.681462 0.504831i
\(708\) 3562.62 15211.8i 0.189112 0.807476i
\(709\) 21284.0 1.12741 0.563707 0.825975i \(-0.309375\pi\)
0.563707 + 0.825975i \(0.309375\pi\)
\(710\) 140.334 243.066i 0.00741781 0.0128480i
\(711\) 7499.46 + 3716.63i 0.395572 + 0.196040i
\(712\) −5981.19 10359.7i −0.314824 0.545291i
\(713\) 11687.3 20242.9i 0.613873 1.06326i
\(714\) −1771.43 + 2380.89i −0.0928489 + 0.124794i
\(715\) −109.710 190.024i −0.00573836 0.00993913i
\(716\) −6045.71 + 10471.5i −0.315557 + 0.546561i
\(717\) 5630.13 1701.85i 0.293251 0.0886428i
\(718\) −1353.56 2344.43i −0.0703543 0.121857i
\(719\) −13420.8 23245.5i −0.696120 1.20572i −0.969802 0.243895i \(-0.921575\pi\)
0.273681 0.961820i \(-0.411759\pi\)
\(720\) −1792.41 + 1192.57i −0.0927765 + 0.0617283i
\(721\) 25757.8 + 11183.1i 1.33047 + 0.577643i
\(722\) 463.772 803.277i 0.0239055 0.0414056i
\(723\) −31439.6 + 9503.42i −1.61722 + 0.488847i
\(724\) −4955.59 −0.254383
\(725\) −19238.7 −0.985527
\(726\) −1932.86 1813.88i −0.0988086 0.0927265i
\(727\) 8514.96 14748.3i 0.434391 0.752387i −0.562855 0.826556i \(-0.690297\pi\)
0.997246 + 0.0741684i \(0.0236302\pi\)
\(728\) −1014.52 + 751.560i −0.0516491 + 0.0382619i
\(729\) −3726.28 19327.1i −0.189314 0.981917i
\(730\) −136.768 236.888i −0.00693424 0.0120105i
\(731\) −5178.90 8970.11i −0.262036 0.453860i
\(732\) 3220.47 13750.8i 0.162612 0.694325i
\(733\) −710.792 + 1231.13i −0.0358168 + 0.0620365i −0.883378 0.468661i \(-0.844737\pi\)
0.847561 + 0.530697i \(0.178070\pi\)
\(734\) 156.080 + 270.339i 0.00784881 + 0.0135945i
\(735\) 2147.89 + 1246.03i 0.107791 + 0.0625312i
\(736\) 10279.0 17803.7i 0.514794 0.891650i
\(737\) −8363.91 14486.7i −0.418031 0.724051i
\(738\) 369.651 + 5814.56i 0.0184377 + 0.290023i
\(739\) 12068.5 20903.3i 0.600742 1.04052i −0.391967 0.919979i \(-0.628205\pi\)
0.992709 0.120537i \(-0.0384616\pi\)
\(740\) −563.738 −0.0280046
\(741\) 2202.09 + 2066.55i 0.109171 + 0.102451i
\(742\) −3895.80 1691.42i −0.192748 0.0836844i
\(743\) 3732.57 + 6465.00i 0.184300 + 0.319216i 0.943340 0.331827i \(-0.107665\pi\)
−0.759041 + 0.651043i \(0.774332\pi\)
\(744\) −1105.53 + 4720.43i −0.0544769 + 0.232607i
\(745\) −1230.07 2130.54i −0.0604916 0.104775i
\(746\) −823.503 + 1426.35i −0.0404163 + 0.0700031i
\(747\) −4971.46 + 3307.73i −0.243502 + 0.162013i
\(748\) 8636.36 0.422161
\(749\) 18949.3 14037.7i 0.924421 0.684816i
\(750\) 218.781 934.156i 0.0106517 0.0454807i
\(751\) −12695.5 + 21989.2i −0.616863 + 1.06844i 0.373191 + 0.927754i \(0.378263\pi\)
−0.990055 + 0.140684i \(0.955070\pi\)
\(752\) −5312.20 −0.257601
\(753\) 2061.51 8802.30i 0.0997686 0.425994i
\(754\) −678.218 −0.0327576
\(755\) 3606.62 0.173852
\(756\) −16808.7 10920.9i −0.808634 0.525381i
\(757\) −1908.73 −0.0916434 −0.0458217 0.998950i \(-0.514591\pi\)
−0.0458217 + 0.998950i \(0.514591\pi\)
\(758\) 1192.42 0.0571379
\(759\) −4833.64 + 20638.8i −0.231159 + 0.987009i
\(760\) −837.215 −0.0399592
\(761\) −11616.9 + 20121.0i −0.553365 + 0.958457i 0.444664 + 0.895698i \(0.353323\pi\)
−0.998029 + 0.0627589i \(0.980010\pi\)
\(762\) 898.533 3836.58i 0.0427171 0.182394i
\(763\) 5043.06 + 2189.52i 0.239280 + 0.103887i
\(764\) 4096.65 0.193994
\(765\) 137.757 + 2166.90i 0.00651061 + 0.102411i
\(766\) −853.029 + 1477.49i −0.0402365 + 0.0696917i
\(767\) −1582.36 2740.74i −0.0744927 0.129025i
\(768\) 3212.82 13718.2i 0.150954 0.644547i
\(769\) −13166.1 22804.4i −0.617403 1.06937i −0.989958 0.141363i \(-0.954852\pi\)
0.372555 0.928010i \(-0.378482\pi\)
\(770\) 30.4125 + 265.639i 0.00142336 + 0.0124324i
\(771\) 27775.2 + 26065.5i 1.29741 + 1.21754i
\(772\) −10937.7 −0.509916
\(773\) 6385.60 11060.2i 0.297120 0.514628i